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Preface
We would like to present the book Light Weight Materials:
Processing and Characterization. In the automotive
industry, the need to reduce vehicle weight has led to
extensive research efforts to develop aluminum and
magnesium alloys for structural car body parts. In
aerospace, the move towards composite airframe
structures has led to an increased use of formable titanium
alloys. All of the above-mentioned materials can be
categorized into a group called “lightweight materials”.
The distinguishing feature of lightweight materials is their
low densities, ranging from as low as 0.80 g/cm3 for
unfilled polymers to as high as 4.5 g/cm3 for titanium.
Although the density of titanium is higher than that of
unfilled polymers, it is significantly lighter than metals:
alloy steel (7.86 g/cm3) and superalloys (7.8–9.4 g/cm3). In
a nutshell, lightweight materials exhibit a wide range of
properties and therefore offer a wide range of applications.
This book primarily aims to provide researchers and
students with an overview of the recent advancements in
the processing, manufacturing and characterization of
lightweight materials, which promises increased flexibility
in manufacturing in tandem with mass communication,
improved productivity and better quality. It has a collection
of chapters contributed by eminent researchers who focus
on the topics associated with lightweight materials,
including the current buzzword composite materials. This
book provides the recent advancements in the processing,
manufacturing and characterization of lightweight
materials and hence would be a panacea in all areas of
lightweight materials.



This book has two major objectives. Firstly its chapters by
eminent researchers in the field enlighten readers about
the current status of the subject. Secondly, as the densities
vary a lot so do the applications ranging from automobile,
aviation to bio-mechatronics; hence, this book would serve
as an excellent guideline for people in all of these fields.
The chapters of this book are divided into three parts,
namely Part 1: Manufacturing Processing Techniques, Part
2: Characterization and Part 3: Analysis.
Part 1 contains Chapters 1–3, Part 2 contains Chapters 4
and 5 and Part 3 contains Chapters 6–8.
Chapter 1 explains an advanced technique called additive
manufacturing (AM), which is predominantly known as 3D
printing and rapid prototyping. It is an on-demand
production without any dedicated apparatus or tooling,
which allows breakthrough performance and supreme
flexibility in industries. The aerospace industry is the
primary user of AM, as it enables it to create complex user-
defined part design and fabricate with different lightweight
materials without wastage of raw materials, reducing the
time and cost of production. This chapter provides in-depth
knowledge about its classification and selection process for
various applications required by engineering industries,
especially in the aerospace industry.
Chapter 2 mainly deals with the manufacturing of polymer
gears. Polymer gears are widely used in medical devices
upon which human lives depend. In addition, they are
useful in other applications such as in the automotive and
manufacturing industries. A precise gear of better design
and effective manufacturing process decides its long-term
application, strength and property. Polymer gears can be
fabricated with the same machining process as metal
gears, usually milling or hobbing from a blank. However,
for lightweight materials, such as polymers, it is preferable



to be either fabricated by injection molding or machined
from a rod (additive manufacturing). The details of such
manufacturing techniques are presented in this chapter.
Chapter 3, the last chapter of Part 1, discusses in detail
reinforcing, performance analysis, processing and
characterization of various methods of polymer welding,
i.e. laser welding, infrared welding, spin welding, stir
welding, and vibration welding. This chapter also covers
various alloys of aluminum for lightweight applications and
the current status of polymer composite applications in
industries and future prospects. This chapter highlights the
complications related to fusion, heat transfer and joint
strength, as well as their solutions with the future prospect
of polymer welding empowering polymers to be an absolute
substitute for metal, which can be achieved by
understanding the concept of dissimilar welding for joining
polymer composites with metals and their controlling
factors, and by selecting an appropriate welding process
for various types of polymers.
Chapter 4, the first chapter of Part 2, provides the reader
with an idea of fabrication and a description of the
processing techniques of natural-based composites for light
body vehicle applications. In doing so, the genetic equation
for modeling tool flank wear is developed using
experimentally measured flank wear values and genetic
programming. Using these results, the genetic model
presenting the connection between cutting parameters and
tool flank wear is extracted. Then, based on a defined
machining performance index and the obtained genetic
equation, optimum cutting parameters are determined.
This chapter concludes that the proposed modeling and
optimization methodology offer the optimum cutting
parameters and can be implemented in real industrial
applications.



Chapter 5 presents the response surface methodology, an
optimization technique, to design a catalytic cracking
experiment of plastic waste. The catalyst-to-feedstock ratio,
the operating temperature and the reaction time were
chosen as an effective parameter of the catalytic cracking
process. The characterization of the obtained liquid
product was performed using the Fourier transform with
infrared (FTIR) spectra, gas chromatography with mass
spectrometry (GC/MS) analysis and physico-chemical
analysis. This chapter concludes that the developed
quadratic model is well fit to the experimental domains and
predicts operating conditions that are most suitable for
conducting catalytic cracking experiments under recycling
techniques of lightweight materials, especially plastics.
Chapter 6, the first chapter of Part 3, discusses laser
welding. The uniqueness of this chapter is the way it has
dealt with the subject. The finite element analysis was used
to select suitable models for the Gaussian beam profile and
the application of the Frustum model to conduction mode
welding and keyhole laser welds. Temperature and stress
analysis was carried out within and around the weld region.
This chapter discusses the analytical comparative
approximation of different model approaches applicable to
the laser weld process, and indicates that the parametric
study information will be useful to the engineers of nuclear
fabrication applications in finalizing different components.
Chapter 7 elaborates on the effect of formability
parameters on tailor-welded blanks of lightweight
materials. The product finds its maximum application in the
automotive manufacturing industry. It is quite common that
different materials with varying cross-sections are used
based on the requirements in aerospace and automotive
industries. To manage the herculean task of organizing
this, researchers have enthusiastically proposed a tailor-
made welded blanks (TWB) strategy, and in many



automotive industries this technique has been adopted.
This chapter suggests testing the formability of tailor-
welded blanks with various light alloy sheets used in the
aerospace and automotive industries. An overall review of
various parameters that affect the formability of tailor-
welded blanks is presented in this chapter, so that other
investigators can rely on the same for more critical
observations in this field.
Chapter 8, the last chapter of this section, presents the
various ways of optimizing a vehicle body, such as shape
optimization for aerodynamics and aesthetics, and weight
of materials to be used for fuel efficiency, material
conservation, recyclability and others. This chapter
considers a product called “B-pillar”, one of the critical
structural support members of sedan cars. They have
replaced the existing material with a composite, mainly to
overcome the stress developed due to the system as it is a
structural member and to safeguard the occupant in the
case of a side crash. Different mechanical properties such
as tensile, compression and bending strength, as well as
water absorption, were measured. The model of the sedan
car B-pillar panel developed was analyzed for impact and
crush simulation. It concluded that a composite can be
used for the outer panel of B-pillar, which results in
reduced vehicle weight and fuel consumption and
increased energy absorption.
First and foremost, we would like to thank God. It was your
blessing that provided us with the strength to believe in
passion and hard work and to pursue our dreams. We thank
our families for having the patience with us for taking yet
another challenge that decreased the amount of time we
could spend with them. They are our inspiration and
motivation. We would like to thank our parents and
grandparents for allowing us to follow our ambitions. We
would like to thank all the contributing authors, as they are



the pillars of this structure. We would also like to thank
them for believing in us. We would like to thank all of our
colleagues and friends in different parts of the world for
sharing their ideas helping us to shape our thoughts. We
will be satisfied with our efforts when the professionals
concerned with all the fields related to lightweight
materials are benefitted.
We owe a huge thanks to all of our technical reviewers,
Editorial Advisory Board members, Book Development
Editor and the team at ISTE Ltd for their availability to
work on this huge project. All of their efforts helped us to
complete this book, and we could not have done it without
them.
Last, but definitely not least, we would like to thank all of
the individuals who have taken time out and helped us
during the process of editing this book. Without their
support and encouragement, we would have probably given
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PART 1
Manufacturing Processing
Techniques



1
Additive Manufacturing: Technology,
Materials and Applications in
Aerospace
Additive manufacturing (AM), predominantly known as 3D
printing, is transmuting product design, production and
service. AM assists us in achieving on-demand production
without dedicated apparatus or tooling, unlocks digital
design tools, and leads to breakthrough performance and
supreme flexibility in industries. Knowledge acts as a
barrier to this technique since the selection process for
various materials and their applications and requirements
differ from each individualized processes. The aerospace
industry is the primary user of AM, as it enables it to create
complex user-defined part design and fabricate with
different materials without wastage of raw materials,
reducing the time and cost of production.
This research work promotes the clarity of AM technology
by providing in-depth knowledge about its classification
and selection process for various applications required by
engineering industries, especially in the aerospace
industry. Several 3D printing methods and the use of
different materials and their applications in the aerospace
industry are discussed in detail.

1.1. Introduction
Additive manufacturing technology enables a variety of
innovative and economically reliable components when
compared to conventional manufacturing methods. The
term “rapid prototyping” (RP) is defined as the emphasis of



generating a design for a prototype or a base model at a
faster rate to promote the end product for manufacturing.
It is used in various industries to rapidly develop various
peripherals with intricate user-defined models into a
commercialized product (Devadiga 2017). RP technology
emerged as the first methodology for making user-defined
models, but it lags behind modern methodology due to its
inadequate efficiency to effectively create products within
the time limit and cost of production. Additive
manufacturing (AM) technology developed from RP
technology to enhance the quality of the output product.
AM acts as a basic principle of creating three-dimensional
(3D) objects generated through computer-aided design
(CAD) systems. In AM technology, the components are
produced from CAD data and slicing software to create a
specified part geometry rather than complex tooling and
additional fixtures that are used in conventional
manufacturing methodologies. In AM technology, the
structures are built in a layer-by-layer fashion with a
specified cross-section, which is not only used in
manufacturing industries to fabricate automobile
components and dynamic mechanical structures but is also
used in tissue engineering with the capacity of bioprinting
to create biomedical implants, artificial human organs and
drug delivery systems (Herzog 2016). AM technology acts
as a key to solving environmental and engineering issues
since it has free-form fabrication (FFF) that facilitates
producing user-defined geometries with all classes of raw
materials without any limitations, unlike metals, non-
metals, alloys and synthetic polymers, with no wastage of
materials. This technology can be further improved by
increasing its applications across the engineering industry
(Dhinakaran 2019). There are numerous stages involved in
product development, initially from generating a CAD
model to the conversion of the STL file format to make the
end product (DebRoy 2018). As AM is a multi-purpose



method, it is used not only for producing new components
but also to simplify and alter the existing components.

Figure 1.1. Additive manufacturing process (Tofail 2018).
For a color version of this figure, see
www.iste.co.uk/kumar/materials.zip

1.2. Additive manufacturing
configuration
AM technology uses specialized designing software to
produce CAD models with user-defined cross-sections and
process constraints such as material restraints, source of
energy, timings and layer thickness. The computed CAD
design is then formatted into an STL (stereolithographic)
file format. The STL file displays the peripherally closed
external surface of the CAD geometry and performs the
slice calculation using a slicing software, and then it is sent
to the AM machine which is verified for its build orientation
and position (Brandsmeier 2017). The construction of the

http://www.iste.co.uk/kumar/materials.zip


material is automatically carried out in a layered fashion by
the machine (3D printer) without any human supervision.
The 3D printer needs manpower to only monitor the
availability of raw materials and to check for any run-time
errors. After completing the product, the interaction of the
part with the machine is cut down by adjusting the machine
temperature and then detached. In post-processing, the
part is cleaned before use and treated mechanically for
surface finish and the required texture (Scheck 2016).

Figure 1.2. Additive manufacturing procedure. For a color
version of this figure, see
www.iste.co.uk/kumar/materials.zip

1.3. Classification of AM technology
The diversity of materials has convoluted the 3D structures
being fabricated with a distinct class of functional time and
assembly. AM technology emerged as a great boon over
conventional methodologies for creating complex

http://www.iste.co.uk/kumar/materials.zip

