

WAVES SERIES

Recording and Voice Processing 1

History and Generalities

Jean-Michel Réveillac

ISTE

WILEY

Table of Contents

[Cover](#)

[Title Page](#)

[Copyright](#)

[Preface](#)

[Introduction](#)

[1 Recording History](#)

[1.1. In the beginning was the phonograph](#)

[1.2. When it really started](#)

[1.3. Magnetic recording](#)

[1.4. The advent of 78 rpm](#)

[1.5. The magnetic tape and the LP](#)

[1.6. 8-track cartridges, mini-cassette and Trictron](#)

[1.7. The compact disk and the advent of digital technology](#)

[1.8. Digital technology is essential](#)

[1.9. Hard disk recorder and minidisc](#)

[1.10. Microcomputer, direct-to-disk and DAW](#)

[1.11. To conclude](#)

[2 The Voice](#)

[2.1. The vocal apparatus and its functioning](#)

[2.2. Voice and breath](#)

[2.3. Song and speech](#)

[2.4. Frequency, intensity and timbre](#)

[2.5. Voice and range](#)

[2.6. Voice quality](#)

[2.7. Characteristics of the vocal timbre](#)

2.8. Conclusion

3 Microphones

3.1. A little history

3.2. The characteristics of a microphone

3.3. Microphone families

3.4. Uses of microphones according to their directivity

3.5. Conclusion

4 The Acoustic Environment

4.1. Location of pickup and sound isolation

4.2 Acoustic processing

4.3. Acoustic booths

4.4. Accessories

4.5. Conclusion

Conclusion

Appendices

Appendix 1. Sound Unit

Appendix 2. Audio Connectivity

Appendix 3. Audio Processing Plugins

Appendix 4. Tube and JFET Microphone Amplifiers

Appendix 5. Microphone Pairs

Glossary

References

Index

List of Illustrations

Introduction

[Figure I.1. Vocal differences in the same sentence. 3D spectrogram of a male voi...](#)

[Figure I.2. A wire recorder, the Webster Chicago 180-1 \(1949\). For a color versi...](#)

[Figure I.3. The famous Neumann U67 tube microphone and its power supply. For a c...](#)

[Figure I.4. The famous EMI Abbey Road studio 2 control room with its REDD.37 con...](#)

Chapter 1

[Figure 1.1. The phonautograph. For a color version of this figure, see www.iste....](#)

[Figure 1.2. Charles Cros' "paleophone"](#)

[Figure 1.3. Edison's phonograph](#)

[Figure 1.4. A Pathé sapphire pick-up for a vertically engraved disk. For a color...](#)

[Figure 1.5. Emile Berliner and his first phonograph](#)

[Figure 1.6. The Columbia Graphophone Grand. For a color version of this figure, ...](#)

[Figure 1.7. The "Edison Concert" phonograph. For a color version of this figure, ...](#)

[Figure 1.8. Poulsen's "telegraphone"](#)

[Figure 1.9. The Columbia Multiplex, with its three pavilions](#)

[Figure 1.10. Pathé's "Poisson" Pantograph. At the left end is the engraving styl...](#)

[Figure 1.11. Pathé's "Poisson" principle](#)

[Figure 1.12. A Columbia double-sided 78 with its cover. For a color version of t...](#)

[Figure 1.13. The electric pick-up \(top\) and the membrane read head \(bottom\)](#)

[Figure 1.14. Examples of electric pick-up phono cabinets \(wireless telegraphy\). ...](#)

[Figure 1.15. A mechanical phonograph case. For a color version of this figure, s...](#)

[Figure 1.16. Curt Stille's magnetic reader-recorder](#)

[Figure 1.17. Fritz Pfleumer with his magnetic tape machine](#)

[Figure 1.18. The AEG K1 tape recorder \(the letter K stands for "Koffer", the sui...](#)

[Figure 1.19. A 4 \(rpm\) disk and its cover. For a color version of this figure, s...](#)

[Figure 1.20. An electrophone from the 1950s. For a color version of this figure,...](#)

[Figure 1.21. Pick-up and groove of a stereophonic LP](#)

[Figure 1.22. The Nagra I news reel-to-reel tape recorder with miniature lamps. F...](#)

[Figure 1.23. An 8-track tape and its internal structure. For a color version of ...](#)

[Figure 1.24. The Akai GXR-82D 8-track tape player/recorder](#)

[Figure 1.25. A limited edition 8-track released in 2009 - Cheap Trick - "The Lat...](#)

[Figure 1.26. The Telefunken 76 \(Tube\) tape recorder, 4 tracks \(stereo 2 X 2 trac...](#)

[Figure 1.27. The different formats of magnetic tape recording](#)

[Figure 1.28. One of the first mini-cassette player-recorders with its microphone...](#)

[Figure 1.29. A type I - C90 \(2 X 45 min\) mini-cassette from TDK. For a color ver...](#)

[Figure 1.30. The Tascam 122 MKII professional cassette deck. For a color version...](#)

[Figure 1.31. The Portastudio 144 stand-alone multitrack from Tascam \(1979\). For ...](#)

[Figure 1.32. A musicassette - Metallica - "Master of Puppets". For a color versi...](#)

[Figure 1.33. A trimicron disk from MDR. For a color version of this figure, see ...](#)

[Figure 1.34. A 24-track 2-inch multitrack \(Studer A800 - MKII\), a standard of ex...](#)

[Figure 1.35. The first CD released by Sony, Billy Joel - "52nd Street". It came ...](#)

[Figure 1.36. The first two commercial CD players, the Philips CD100 \(left\) and t...](#)

[Figure 1.37. The first portable CD Player, Sony D50 "Discman"](#)

[Figure 1.38. Studer D827 Mk II \(DASH 48 tracks\). with its remote control console....](#)

[Figure 1.39. Sony PCM 3324 S digital multitrack \(DASH 24 Tracks\). For a color ve...](#)

[Figure 1.40. A studio DAT player-recorder - Sony PCM 2800](#)

[Figure 1.41. A DAT cassette \(73 x 54 10.5 mm\), on the left, compared to a mini-c...](#)

[Figure 1.42. A DCC cassette](#)

[Figure 1.43. The Matsushita RS-DC8 technics DCC player-recorder](#)

[Figure 1.44. The first-generation ADAT Blackface player from Alesis. For a color...](#)

[Figure 1.45. An S-VHS tape for use with an ADAT recorder. For a color version of...](#)

[Figure 1.46. The Tascam DA-88 digital player-recorder. For a color version of th...](#)

[Figure 1.47. A 90 minute Hi-8 cassette \(95 x 62 x 15 mm\). For a color version of...](#)

[Figure 1.48. The imposing Akai DR1200 reader-recorder with its bank of vu-meters...](#)

[Figure 1.49. The Fostex D80 hard disk recorder – 8 tracks \(1996\). For a color ve...](#)

[Figure 1.50. Tascam MX-2424 – 24-bit, 96 kHz, 24-track hard disk recorder \(2004\)...](#)

[Figure 1.51. A minidisc. For a color version of this figure, see \[www.iste.co.uk/\]\(http://www.iste.co.uk/\)...](#)

[Figure 1.52. The Tascam MD-801R MKII minidisc player-recorder. For a color versi...](#)

[Figure 1.53. Digidesign sound designer \(left\) and sound tools \(right\).](#)

[Figure 1.54. The Audiomedia II board in Nubus format for Apple Macintosh. For a ...](#)

[Figure 1.55. The 888 interface for Pro Tools III. For a color version of this fi...](#)

[Figure 1.56. Pro Tools 2020 version. For a color version of this figure, see \[www...\]\(http://www.iste.co.uk/\)](#)

[Figure 1.57. Evolution of the vinyl record market worldwide](#)

[Figure 1.58. The T560 vinyl engraving bench of the German manufacturer Souri's A...](#)

Chapter 2

[Figure 2.1. The stages of sound creation in a human being](#)

[Figure 2.2. The different elements of the phonation chain](#)

[Figure 2.3. Larynx and vocal cords, the key elements of the voice's timbre](#)

[Figure 2.4. Thoracic cage, sternum and intercostal muscle](#)

[Figure 2.5. The oblique and transverse abdominal muscles](#)

[Figure 2.6. The soprano range](#)

[Figure 2.7. The mezzo-soprano range](#)

[Figure 2.8. The alto range](#)

[Figure 2.9. The tenor range](#)

[Figure 2.10. The baritone range](#)

[Figure 2.11. The bass range](#)

[Figure 2.12. Concept of voice quality¹](#)

Chapter 3

[Figure 3.1. Sir Charles Wheatstone](#)

[Figure 3.2. Johann Philipp Reis](#)

[Figure 3.3. Reis's telephone with its transmitter \(microphone\), left, and receiv...](#)

[Figure 3.4. The water microphone of A. G. Bell and E. Gray Over the months, the ...](#)

[Figure 3.5. One of the sketches of the telephone patent filed by A. G. Bell](#)

[Figure 3.6. Principle of the carbon microphone. For a color version of this figure, see www.is...](#)

[Figure 3.7. Schematic diagram of a dynamic moving coil microphone. For a color version of this figure, see www.is...](#)

[Figure 3.8. Charcoal microphone pad. The diaphragm can be seen on the right through the...](#)

[Figure 3.9. A triode](#)

[Figure 3.10. Schematic diagram of a condenser microphone. For a color version of this figure, see www.is...](#)

[Figure 3.11. The first mass-produced condenser microphone, the Neumann CVM3 \(1928\)](#)

[Figure 3.12. Principle of the piezoelectric microphone. For a color version of this figure, see www.is...](#)

[Figure 3.13. Two vintage shotgun microphones: top: Sony ECM672 \(1985\), bottom: E...](#)

[Figure 3.14. Three germanium transistors. Their dimensions speak for themselves,...](#)

[Figure 3.15. The double membrane capsule, named M7, built by G. Neumann. For a color version of this figure, see www.is...](#)

[Figure 3.16. The electret microphone and its principle. For a color version of this figure, see www.is...](#)

[Figure 3.17. The MEMS microphone and its principle. For a color version of this figure, see www.is...](#)

[Figure 3.18. Evolution of the microphone over time. For a color version of this figure, see www.is...](#)

[Figure 3.19. Pressure transducer. For a color version of this figure, see www.is...](#)

[Figure 3.20. Sum of incident and reflected waves. For a color version of this fi...](#)

[Figure 3.21. A phase shift of 180° cancels the signal. For a color version of th...](#)

[Figure 3.22. Acoustic operation of a pressure gradient microphone. For a color v...](#)

[Figure 3.23. The frequency response curve of a Shure SM58 Microphone](#)

[Figure 3.24. Directivity diagrams of a Shure SM58SE microphone](#)

[Figure 3.25. The directivity diagram for a perfect omnidirectional microphone](#)

[Figure 3.26. The directivity diagram for the Shure SM80-LC omnidirectional micro...](#)

[Figure 3.27. The directivity diagram for a perfect hemispherical microphone](#)

[Figure 3.28. The directivity diagram for the AKG C547BL hemispherical microphone...](#)

[Figure 3.29. The directivity diagram for a perfect bidirectional microphone](#)

[Figure 3.30. The directivity diagram for the Audio-Technica AT4080 bidirectional...](#)

[Figure 3.31. The directivity diagram for a perfect cardioid microphone](#)

[Figure 3.32. The directivity diagram for the Shure D5C cardioid microphone on th...](#)

[Figure 3.33. The directivity diagram for a perfect supercardioid microphone](#)

[Figure 3.34. Comparison of supercardioid directivity, green and dotted, and card...](#)

[Figure 3.35. The directivity diagram for the Rode NTG-2 supercardioid microphone...](#)

[Figure 3.36. The directivity diagram for a perfect hypercardioid microphone](#)

[Figure 3.37. The directivity diagram for the Audio Technica AT4053b supercardioid...](#)

[Figure 3.38. The directivity diagram for a perfect subcardioid microphone](#)

[Figure 3.39. The directivity diagram for the Audio Technica AT808G subcardioid m...](#)

[Figure 3.40. The directivity diagram for a perfect shotgun microphone](#)

[Figure 3.41. Directivity diagram for the Rode NTG-1 shotgun microphones, left, a...](#)

[Figure 3.42. Two power supplies, the Neumann M149A model specifically for the Ne...](#)

[Figure 3.43. A transformer with its core and two windings. For a color version o...](#)

[Figure 3.44. A typical microphone transformer \(14 x 10 x 12 mm\). For a color ver...](#)

[Figure 3.45. A 1 ms audio signal sampled at 96 kHz. For a color version of this ...](#)

[Figure 3.46. Microphone configuration according to the Blumlein system. For a co...](#)

[Figure 3.47. Microphone configuration according to the MS system. For a color ve...](#)

Chapter 4

[Figure 4.1. Direct sound and indirect or reflected sound. For a color version of...](#)

[Figure 4.2. Foam bass traps for wall corners \(Auralex\)](#)

[Figure 4.3. Absorbing panel type bass trap \(t.akustic\)](#)

[Figure 4.4. Porous absorber - absorption curves \(without absorber \(green\), absor...](#)

[Figure 4.5. Example of an attenuation curve for a Helmholtz absorber. For a colo...](#)

[Figure 4.6. Perforated Helmholtz panel \(Acoustissimo, left\) and laminar resonato...](#)

[Figure 4.7. Cylindrical Helmholtz absorbers \(Vicoustic and Hofa\). For a color ve...](#)

[Figure 4.8. Diaphragm bass traps \(GIK Acoustics\). For a color version of this fi...](#)

[Figure 4.9. Mechanical analogy for a diaphragm or flexural bass trap. For a colo...](#)

[Figure 4.10. Two examples of active bass traps \(PSI Audio - Bag End\)](#)

[Figure 4.11. A specular reflection, the angle of the incident wave is equal to t...](#)

[Figure 4.12. Comb filtering between 20 and 20 kHz. For a color version of this f...](#)

[Figure 4.13. Two Schroeder diffusers. For a color version of this figure, see ww...](#)

[Figure 4.14. Quadratic diffuser, also called QRD diffuser \(Auralex, t.akustic an...](#)

[Figure 4.15. The flutter echo principle. For a color version of this figure, see...](#)

[Figure 4.16. A poly-cylindrical diffuser \(Acoustic Geometry and GIK Acoustics\). ...](#)

[Figure 4.17. Diffusers with original designs \(Jocavi and Jaya\). For a color vers...](#)

[Figure 4.18. Examples of removable cabins \(Clearsonic and t.akustic\).](#)

[Figure 4.19. A cabin with removable panels on a tripod \(Power Studio\).](#)

[Figure 4.20. Premanufactured acoustic booths \(Vicoustic and Keoda\). For a color ...](#)

[Figure 4.21. Three examples: a tripod \(Neewer\), microphone stand \(Tonor\) and tab...](#)

[Figure 4.22. A sound barrier and a sound recording session](#)

[Figure 4.23. A universal pop filter](#)

[Figure 4.24. Pop filters of various shapes \(t-Bone, Aston and Tuloka\).](#)

[Figure 4.25. A closed headphone, left, and an open headphone, right \(Beyerdynami...](#)

[Figure 4.26. Power loss \(attenuation\) curve according to amplifier output impeda...](#)

[Figure 4.27. Graph for determining the power required for a headphone based on i...](#)

[Figure 4.28. Different types of suspensions: spider, double-lyre, universal, buo...](#)

[Figure 4.29. Examples of stands](#)

[Figure 4.30. Examples of boom stands](#)

[Figure 4.31. Examples of articulating arms](#)

[Figure 4.32. Examples of different gooseneck microphones](#)

[Figure 4.33. Thread adapter for microphone support and suspension](#)

[Figure 4.34. Ball joint adapter \(Gravity\)](#)

[Figure 4.35. Different types of foam cups \(Shure, Sennheiser and Rode\). For a co...](#)

[Figure 4.36. Long-hair cap \(Rode and Rycote\)](#)

[Figure 4.37. Cage and windjammer caps \(Rycote\)](#)

[Figure 4.38. An anechoic chamber \(CNRS, LMA Laboratory and Aix-Marseille Univers...](#)

Appendix 1

[Figure A1.1. Sound level scales](#)

[Figure A1.2. Comparison of bel, decibel \(dB SPL\) and pascal \(Pa\). For a color ve...](#)

[Figure A1.3. Psophometric diagram \(weighted curve\) dBA](#)

Appendix 2

[Figure A2.1. Some models of coaxial jacks. 1\) subminiature 2.5 mm mono male jack...](#)

[Figure A2.2. The different contact points for the 6.35 mm jack connectors](#)

[Figure A2.3. A “Bantam” or TT patchbay cable in TRS version](#)

[Figure A2.4. Pinout of the 3-pin XLR connectors](#)

[Figure A2.5. Wiring diagram of a classic XLR cable. For a color version of this ...](#)

[Figure A2.6. Wiring diagram of XLR jack adapters. For a color version of this fi...](#)

[Figure A2.7. Wiring diagram for an insert cord. For a color version of this figure...](#)

[Figure A2.8. Different types of USB connectors](#)

[Figure A2.9. Different USB connectors](#)

[Figure A2.10. Some Sub-D connectors and a female Sub-D/XLR breakout cable. For a...](#)

[Figure A2.11. BNC male and chassis connectors](#)

[Figure A2.12. RCA male and female connectors and chassis. For a color version of...](#)

[Figure A2.13. Toslink male and chassis connectors](#)

[Figure A2.14. A Toslink/Mini Toslink cable](#)

Appendix 4

[Figure A4.1. A tube microphone, Neumann U47. The tube can be seen in the center,...](#)

[Figure A4.2. Principle of a triode and a Telefunken VF14¹ tube designed specific...](#)

[Figure A4.3. Schematic of an FET transistor \(M type on the left, P type on the r...](#)

[Figure A4.4. A widely used JFET transistor, the 2N3819](#)

[Figure A4.5. A Neumann U87 clone. The arrow indicates the famous JFET \(2N3819\) m...](#)

Appendix 5

[Figure A5.1. Principle of the AB pair](#)

[Figure A5.2. An AB pair](#)

[Figure A5.3. Principle of the XY pair](#)

[Figure A5.4. An XY pair](#)

[Figure A5.5. The Rode NT4 XY stereo microphone](#)

[Figure A5.6. Principle of the ORTF pair](#)
[Figure A5.7. An ORTF pair](#)
[Figure A5.8. Principle of the MS pair](#)
[Figure A5.9. An MS pair](#)
[Figure A5.10. Principle of the Decca tree](#)
[Figure A5.11. Decca tree installation](#)
[Figure A5.12. Principle of the Blumlein method](#)
[Figure A5.13. A Blumlein installation](#)
[Figure A5.14. Principle of the Faulkner Array](#)
[Figure A5.15. Principle of the sound-absorbing disk method](#)
[Figure A5.16. A Jecklin Disk installation](#)
[Figure A5.17. Principle of the artificial head](#)
[Figure A5.18. Neumann KU100 artificial head](#)

List of Tables

Chapter 1

[Table 1.1. Some digital audio workstations \(this list is far from exhaustive\)](#)

Chapter 3

[Table 3.1. Some models of dynamic moving coil microphones with their main charac...](#)

[Table 3.2. Some ribbon microphone models with their main characteristics³⁸. For ...](#)

[Table 3.3. Some condenser microphone models³⁹ with their main characteristics \(n...](#)

Table 3.4. Some models of USB microphones

Chapter 4

Table 4.1. Major manufacturers of absorbent panels (this list is not exhaustive)

Table 4.2. Major manufacturers of diffusers (this list is not exhaustive)

Table 4.3. Major manufacturers of acoustic booths (this list is not exhaustive)

Table 4.4. Major manufacturers of isolation shields (this list is not exhaustive...)

Table 4.5. Major manufacturers of pop filters (this list is not exhaustive)

Appendix 2

Table A2.1. USB type-A and type-B pinout

Table A2.2. USB mini-A and micro-B pinout

Appendix 3

Table A3.1. Some compression plugins

Table A3.2. Some equalization plugins

Table A3.3. Some De-Esser plugins

Table A3.4. Some reverb plugins

Recording and Voice Processing 1

History and Generalities

Jean-Michel Réveillac

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd
27-37 St George's Road
London SW19 4EU
UK
www.iste.co.uk

John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
www.wiley.com

© ISTE Ltd 2021
The rights of Jean-Michel Réveillac to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2021942968

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-670-8

Preface

If you want to know if this book is for you, how it is constructed and organized, what it contains and what conventions will be used, you've come to the right place, this is the place to start.

Target audience

This book is intended for all those who, amateur or professional, are interested in sound recording, recording and mixing in the field of singing and voice or musicians, performers, commentators and composers.

The work presented in some sections requires minimum knowledge in the field of acoustics and digital audio.

You must have a good knowledge of your computer's operating system (paths, folders and directories, files, names, extensions, copying, moving, etc.) and know how to handle a DAW (Digital Audio Workstation), such as Avid Pro Tools, Apple Logic Pro X, Ableton Live, Steinberg Cubase, FL Studio, MOTU Digital Performer, Cockos Reaper, etc., or a digital integrated studio, such as Tascam DP-03SD, Tascam DP32, Roland VS-1680, Akai DPS16HD, Yamaha AW4416, etc.

Structure and contents of the book

This work is composed of two volumes:

- 1) history and generalities;
- 2) studio work.

Volume 1 presents a preface, specifying the contents and the writing conventions used, then an introduction followed by four chapters, a conclusion and five appendices:

- recording history;
- voice;
- microphones;
- acoustic environment.

The conclusion summarizes the main topics discussed and introduces the concepts that will be addressed in the second volume.

Appendices 1–5 provide some additional information. You will find in this order:

- sound unit;
- audio connectivity;
- audio processing plugins;
- tube and JFET mic amplifiers;
- microphone pairs.

Volume 2 presents a preface and an introduction identical to those of Volume 1 followed by four chapters, a conclusion and five appendices:

- processing hardware and software;
- configuration and audio channel;
- voice recording;
- special effects.

Appendices 1–4 are taken from Volume 1 to complement the previous chapters by including:

- sound unit;
- audio connectivity;
- audio processing plugins;
- microphone pairs.

[Appendix 5](#) of Volume 2 provides details on the types of software plugins available from different vendors and operating systems.

The conclusion sheds light on the whole book and gives a brief overview of the future evolution of voice recording.

Each volume can be read separately. While there are concepts that are dependent on another chapter, references to the relevant sections are given. However, the first two chapters of Volume 1, devoted to the history of recording and to the human voice, provide a contextual basis for the understanding of several notions that you will find in the following chapters.

If you're a novice on the subject, I strongly advise you to read them first, to discover the basics of the subject of this book.

For the others, I hope that you will discover new notions that will enrich your knowledge.

At the end of each volume, you will find a reference list and a list of Internet links.

A glossary is also present; it will explain some acronyms and terminologies very specific to sound recording, recording and mixing.

Conventions

This book uses the following typographical conventions:

Italics, which are reserved for important terms used for the first time in the text which may be present in the glossary at the end of the book, mathematical terms, comments, equations, expressions or variables.

Remarks are indicated by the presence of the keyword: NOTE. They complete the explanations already provided.

The figures and tables all have a legend that is often useful for understanding.

Vocabulary and definition

As with all techniques, voice recording has its own vocabulary. Certain words, acronyms, abbreviations, initialisms and proper names are not always familiar and will be included in the glossary.

Acknowledgments

I would especially like to thank the ISTE Ltd team and my editor Chantal Ménascé, who trusted me.

Finally, I would like to thank my wife, Vanna, and my daughters Océane and Léa who supported me throughout the writing of this book.

August 2021

Introduction

Since Plato and Aristotle, we have often heard this quote, "*The voice is the mirror of the soul*". It is true that before understanding the meaning of a word, we must understand its emotional side; we recognize the intonation that makes a voice more or less unique. The paralinguistic characteristics of a voice, that personalize it, take priority over the meaning of the message that is delivered. They express the emotional aspect of the interlocutor and favor the transmission of emotions.

It is also necessary to take the environment into consideration; the voice exists only through its medium, the air which surrounds us. The numerous acoustic variables, vocal cords and different morpho-anatomical cavities of the individual form the timbre of the voice, which can be modified during its diffusion by the environmental medium in which it is established.

Each individual has a different timbre that represents a sound signature. The voice is the reflection of the body and the spirit, but let us not assume that its characteristics are as static and reliable as the genetic code or fingerprints. They are variable, determined by numerous parameters linked to morphology, imagination, environment, affect and even gestures, even if many of these elements do not affect the hard core that builds the essence of a voice.

The recorded voice brings different sensations that often flout the canons of the direct voice, spoken or sung, but it is far from being unpleasant and it has become, by force of things, a standard. Our world is constantly saturated with music or recorded voices; few people can claim to have heard a particular performer with his or her live voice.

Voices are optimized for recording and broadcasting; they must remain intelligible and are sometimes enriched, or even placed in a virtual environment, but our ears have become accustomed.

Figure I.1. *Vocal differences in the same sentence. 3D spectrogram of a male voice, on the left, and a female voice, on the right*

(source: www.projectrhea.org). For a color version of this figure, see www.iste.co.uk/reveillac/recording.zip

It is in part the facts I have just mentioned that led me to write this book, to which I would add the pleasure of bringing, to one or more performers, the possibility of discovering and hearing themselves on a medium such as a CD, DVD, streaming platform, podcast, etc.

I will not forget the listeners nor the public for whom we all work *in fine*: artists, commentators, singers, sound engineers, technicians, etc.

This work, as its title suggests, is above all devoted to the recording and processing of the voice. I have tried to aggregate a set of elements that contribute and intertwine in this same field, taking care of the ins and outs.

I remain convinced that in order to understand the techniques and handle certain hardware or software, it is useful to know what surrounds them. Throughout the book, I have often specified the historical context without

forgetting the personages to whom we owe these wonderful inventions. They made it possible for us to listen to the voice, whether spoken, whispered, sung or shouted. At the beginning of the 21st century, and for more than 120 years already, this seems so common, so futile, so banal, but what would our ancestors from the past centuries think of it?

Volume 1 of this book, more oriented towards theory and generalities, will begin with a short history of the recording of the spoken and sung voice from the first machines until today, which will be followed by an outline of the mechanisms and specificities that characterize the human voice.

With these elements, we will approach microphones, an essential and necessary tool for voice capture, to then understand the recording environment, whose influence creates the conditions for a good recording.

Figure I.2. A wire recorder, the Webster Chicago 180-1 (1949). For a color version of this figure, see www.iste.co.uk/reveillac/recording.zip

SAVAUX Vincent, LOUËT Yves

MMSE-based Algorithm for Joint Signal Detection, Channel and Noise Variance Estimation for OFDM Systems

THOMAS Jean-Hugh, YAAKOUBI Nourdin

New Sensors and Processing Chain

TING Michael

Molecular Imaging in Nano MRI

VALIÈRE Jean-Christophe

Acoustic Particle Velocity Measurements using Laser: Principles, Signal Processing and Applications

VANBÉSIEN Olivier, CENTENO Emmanuel

Dispersion Engineering for Integrated Nanophotonics

2013

BENMAMMAR Badr, AMRAOUI Asma

Radio Resource Allocation and Dynamic Spectrum Access

BOURLIER Christophe, PINEL Nicolas, KUBICKÉ Gildas

Method of Moments for 2D Scattering Problems: Basic Concepts and Applications

GOURE Jean-Pierre

Optics in Instruments: Applications in Biology and Medicine

LAZAROV Andon, KOSTADINOV Todor Pavlov

Bistatic SAR/GISAR/FISAR Theory Algorithms and Program Implementation

LHEURETTE Eric

Metamaterials and Wave Control

PINEL Nicolas, BOURLIER Christophe

Electromagnetic Wave Scattering from Random Rough Surfaces: Asymptotic Models

SHINOHARA Naoki

Wireless Power Transfer via Radiowaves

TERRE Michel, PISCHELLA Mylène, VIVIER Emmanuelle

Wireless Telecommunication Systems

2012

LALAUZE René

Chemical Sensors and Biosensors

LE MENN Marc

Instrumentation and Metrology in Oceanography

LI Jun-chang, PICART Pascal

Digital Holography

2011

BECHERRAWY Tamer

Mechanical and Electromagnetic Vibrations and Waves

BESNIER Philippe, DÉMOULIN Bernard

Electromagnetic Reverberation Chambers

GOURE Jean-Pierre

Optics in Instruments

GROUS Ammar

Applied Metrology for Manufacturing Engineering

LE CHEVALIER François, LESSELIER Dominique, STARAJ Robert

Non-standard Antennas

2010

BEGAUD Xavier

Ultra Wide Band Antennas

MARAGE Jean-Paul, MORI Yvon

Sonar and Underwater Acoustics

2009

BOUDRIOUA Azzedine

Photonic Waveguides

BRUNEAU Michel, POTEL Catherine

Materials and Acoustics Handbook

DE FORNEL Frédérique, FAVENNEC Pierre-Noël

Measurements using Optic and RF Waves

FRENCH COLLEGE OF METROLOGY

Transverse Disciplines in Metrology

2008

FILIPPI Paul J.T.

Vibrations and Acoustic Radiation of Thin Structures

LALAUZE René

Physical Chemistry of Solid-Gas Interfaces

2007

KUNDU Tribikram

Advanced Ultrasonic Methods for Material and Structure Inspection

PLACKO Dominique

Fundamentals of Instrumentation and Measurement

RIPKA Pavel, TIPEK Alois

Modern Sensors Handbook

2006

BALAGEAS Daniel *et al.*

Structural Health Monitoring

BOUCHET Olivier *et al.*

Free-Space Optics

BRUNEAU Michel, SCELO Thomas

Fundamentals of Acoustics

FRENCH COLLEGE OF METROLOGY

Metrology in Industry

GUILLAUME Philippe

Music and Acoustics

GUYADER Jean-Louis

Vibration in Continuous Media