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Introduction

This book was written to introduce the Microsoft Orleans framework and to provide an
understanding of why it was created and how it can advance your current and potential
applications. Actor model frameworks are not widely taught or known in mainstream
development. Since the frameworks are not common knowledge, this book was written
with beginners and intermediate developers in mind. An overview of Orleans is provided
concerning topics such as how it can enhance projects, and how to get started in the
code base.

First, we cover the origins of Orleans which was established in 2010. This book
explains what it was built to accomplish and examples that showcase its successes in
production. Next, we look at how Orleans works concerting lifecycles, which removes
a massive amount of overhead from developers. Lifecycles are emphasized since they
play a significant role in what makes Orleans unique by abstracting the work from the
developers and making projects faster and more maintainable, compared with previous
actor model frameworks. Next, we dive into commonly used architectures - monolithic
and microservices - to show how Orleans can possibly enhance them. New and
existing developers can benefit by learning how Orleans can extend their monolithic or
microservice patterns.

The remainder of this book is hands-on coding where we set up a project and walk
through adding features to it such as

¢ Timers and reminders
e Unit tests
e Dashboard

Then we walk through deploying Orleans to AKS. What good is our work if we
cannot deploy for others to use it? I believe that all development books should have a
deployment section so that the applications can be treated as real work. It allows you to
deploy as we would in a business. We walk the setup of an app, code it, and deploy it. The
pipeline will trigger when there is a commit and deploy if it meets the standards.

xvii



INTRODUCTION

Finally, we conclude by summarizing what we have covered. We discuss where you
can go next to further your journey with Orleans. I would treat this book as a strong
starting point. It provides a strong understanding of what Orleans can do for you, how
coding differs, resource requirements, and next steps.
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CHAPTER 1

A Primer on Microsoft

Orleans and the
Actor Model

Origins of Orleans

Microsoft Orleans is an open source project, which provides the developer with a simple
programming model enabling them to build software, which can scale from a single
machine to hundreds of servers.

You can think of Orleans as a distributed runtime, allowing the .NET developer to
easily build software capable of processing high volumes of data and deployable to the
cloud or on-premises.

Orleans is a “batteries included” framework, which ships with many of the features
required for distributed systems built in.

First, what is an actor model? An actor model is defined as “a mathematical model
of concurrent computation that treats 'actor’ as the universal primitive of concurrent
computation” (Patent Issued for Actor Model Programming (USPTO 10,768,902),
2020). Actor model frameworks use the model as a basis on which the frameworks
pass messages between actors, and actors are created on a needed basis. Actor model
frameworks are able to take advantage of concurrency through multicore computers
and software abstraction. This means that actor model frameworks are able to process
millions and billions of messages in real time or near-real time. We will cover this more
in this chapter and throughout the book.

© Thomas Nelson 2022
T. Nelson, Introducing Microsoft Orleans, https://doi.org/10.1007/978-1-4842-8014-0_1
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CHAPTER 1 APRIMER ON MICROSOFT ORLEANS AND THE ACTOR MODEL

Orleans, created in 2010 by Microsoft Research, is an actor framework that
harnesses the inert capabilities of cloud architecture (Orleans - Virtual Actors, 2018).
The framework helps distribution experts and novices by using prebuilt libraries to
create globally distributed, highly available, highly elastic robust solutions. The libraries
remove many complexities -such as lifecycles - while using a common programming
language. Ultimately, Orleans allows a single developer to create an extremely scalable
application without being an expert in distributed system development. Other actor
model frameworks require the developer to determine how to handle the life span
of each actor and monitor and check health. Also, Orleans is a production-proven -
through the use of IoT applications and game studios - and open source framework for
Microsoft’s internal and external flagship applications.

Origins and Use Cases of Orleans

Initially, Orleans was created to help expand cloud computing to a larger developer
audience when cloud computing was new and gaining momentum. Orleans has the
ability to provide hyper-scalable interactive services that support high throughput and
availability with low latency in the cloud and local systems. Existing actor frameworks
fulfill the technical needs; however, the additional overhead of knowledge, experience,
and complex initial coding can be challenging to accomplish. Attempting to satisfy these
requirements with a traditional three-tier service design is challenging as well. Orleans
combines the common coding structures of three-tier development and .NET Core
libraries, reducing entry barriers.

In addition to cloud development, it has been used for backend development of
video games, such as the blockbusters Halo 4, 5 and Gears of War 4. Cloud computing
is extremely helpful in hosting and running distributed services for a global audience,
such as gaming. Before cloud computing, the World Wide Web grew from its infancy,
where servers were not readily globally distributed for businesses’ applications, and
clients accepted latency as a part of the Internet. I recall waiting for images to download
arow or two at a time when using a 33.6k dial-up modem. Overtime, companies have
risen to global entities, and cloud architecture creates the ability to cater to these clients
in a distributed and real-time-like capacity. These changes lead to several new patterns
emerging based on lessons learned, leading to Orleans’ creation. To understand this
process, we will discuss the development of services in a high-level perspective where
we cover monolithic services, microservices, and Orleans.



CHAPTER 1  APRIMER ON MICROSOFT ORLEANS AND THE ACTOR MODEL

Initially, monolithic applications were used to conduct multiple scopes of work.

For instance, an application may house business logic server items, such as account,

order, and shipping. Housing these together is necessarily a bad option, as each item
depends on a single team. It allows the ability to walk through a single application for
debugging and traceability. Unfortunately, this ability is associated with cons as well.

Monolithic applications have a large footprint. Since their scope maintains several
items in the business, it is likely supported by several teams. Housing multiple large
workflows together, a single application can get large and possibly unmaintainable
overtime, if it is not watched closely. The larger the application, the more hardware it will
require to support it, which can be costly in hosting hardware and perhaps startup time
when needed on demand by consumers.

The application is usually tightly coupled and requires the teams to work and maintain
open communication. This can hinder deployment as it is difficult, if not impossible, to
deploy without all of the items being implemented. Feature flags can toggle various logic.
However, strict discipline is required for the teams to stay within scope and communicate the
changes internally; otherwise, it will delay deployment until all the work has been completed.

Overtime, microservices - a term coined by Dr. Peter Rogers - emerged to create
granularly scoped applications that interact with one another to complete a holistic
action(s). Microservice is a general term that refers to the scope of work of the application
that is loosely coupled and generally uses standards such as REST, XML, JSON, and
HTTP. Based on the preceding monolithic example, each logically scoped item that we
mentioned - account, order, and shipping - is separated into its own service. Decoupling
removes the need for multiple teams to maintain a single application and reduces
complexity, thus facilitating communication and possibly on-time code completion
to meet deployment deadlines. The footprints are a portion of what we would use for
monolithic applications, which leads to the ability to scale out on demand.

Also, decoupling allows complex and extensive systems to be built, tested, and
deployed individually. This adds value in an Minimal Viable Product (MVP) manner
by being able to proceed with testing and deployment before the entire application
completed whereas, the legacy application cannot move forward until all of the
dependent work has been completed. Feature flags can be implemented however, the
teams need to implement and maintain. When we refer to microservices in further
chapters, we will be referring to a three-tier architecture (client, back end, database).

I have worked with monolithic services and microservices in several companies.

I have gone through several transformation processes of converting monolithic
applications to microservices. Microservice patterns are a solid choice for many of the
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current business needs and are supported easily by cloud computing. Cloud computing
monitors the applications on set triggers to determine health and the need for scaling,
among additional items.

I have moved between companies that had engineering teams of 40 to a few
hundred to thousands. Each move to a larger company solidified --to me-- the need for
maintainable services as cross-team communication was harder to sustain. This
was/is due to members constantly moving or leaving within the teams, which removed
the oversight and communication needed to maintain larger, monolithic applications.
Again, this depends on the company structure, as the smaller teams made monolithic
applications acceptable to work within.

This book will not debate the legitimacy of microservice vs. monolithic architectures
but will discuss how the Orleans implementation can enhance applications and when
Orleans is a good fit. Ultimately, the application needs and company structure should
determine the design and technology that are chosen. The common goal of applications
is to be a robust, extensible, and available system for consumers. For instance, a project
might be required to implement a cloud hosting’s concurrency and distribution as well
as its dynamic and interactive in nature, which allows actor frameworks to flourish
(Bernstein. P., Bykov, S.). Orleans was created, in part, to take advantage of these native
cloud architecture abilities. The solution should be a negotiation between company
ability and consumer needs.

To take full advantage of cloud computing, we can use Orleans, which is a
production-ready - and battle-tested by supporting projects, like AAA video
games and smart home IoT devices - framework written in C# and .NET Core and
distributed in NuGet (New Get) packages with version 2.0+, which creates cloud-
agnostic solutions. This allows .NET developers to extend their applications within
an already familiar ecosystem. Orchestration overhead is reduced through the
framework’s ability to maintain lifecycles and elasticity and harness the actor model’s
concurrency. The actor model uses actors, which are fine-grained isolated objects that
receive and send asynchronous messages with the ability to create additional actors
(Bernstein & Bykov, 2016).

Actor frameworks can be complicated for developers to understand since they
can be complex and are not commonly taught in universities. It usually takes a team
or teams of advanced engineers to create and maintain a system. Orleans came into
existence to help reduce the overhead and barriers and take advantage of the actor
model’s capabilities. In 2015, Microsoft chose to open-source Orleans, which resulted in



