Introducing
Microsoft
Orleans

Implementing Cloud-Native Services
with a Virtual Actor Framework

Thomas Nelson

Apresse

Introducing
Microsoft Orleans

Implementing Cloud-Native Services
with a Virtual Actor Framework

Thomas Nelson

Apress’

Introducing Microsoft Orleans: Implementing Cloud-Native Services with a Virtual
Actor Framework

Thomas Nelson
Louisville, KY, USA

ISBN-13 (pbk): 978-1-4842-8013-3 ISBN-13 (electronic): 978-1-4842-8014-0
https://doi.org/10.1007/978-1-4842-8014-0

Copyright © 2022 by Thomas Nelson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8014-0

As with every journey, it is never made alone.
Twould like to thank those who have encouraged me to reach several
goals, including authoring this book that I now share with you.

Mom (Roxanne Lucas), you have cheered for me since day one.
You have always pushed me to better myself with love and support.
Thank you for everything. Without you,

TI'would not have been the person I am today.

Aaron Lucas, MDD, your advice has never led me astray.
“This too shall pass,” and it has. You took me in as your own and
taught me much. I am grateful for your counsel.

Dad (Vincent Nelson Jr.), without you, I would not be where I am
today. No matter the seriousness of a problem, you always find the
silver lining through humor and kindness.

Leo and Cora, my wonderful fur-kids, I treasure every day
we have together.

Cynthia E C. Hill, PhD, you have single-handedly reconstructed my
writing. This book would not have come to fruition without your
guidance. You helped better my life.

Corey, Britney, Knox, Roscoe Cooley, you are my second family.
You have been my rock during difficult times and accepted me as
family. I always look forward to working on the next game dev jam.

Joan Murray and Jill Balzano, thank you for working with me
on this book. It has been a pleasure. This book would never have
happened without you both.

Micheal Kelly and Reece Schwegman, great friends, great advice, and
great times. You guys are irreplaceable.

Phuong Pham, Kevin Turner, Alex Olson, we are lifetime friends.
We have urged each other to do our best, sharing strength and calm.

My work friends: Dat Trinh, Karuna Byrd, Lorenzo Castro,
Barry Chase, Keith Meyers, Hussein Rashid, and many others.
Thank you for giving me the opportunity to fulfill my dream as a
software architect. You each have taught me so much, which has
helped me learn and expand to better myself. I am grateful for your
time, support, and critical evaluations.

Mei Ying Tan, my counterpart in class, you have become a great
[riend and have brought out my academic competitive side. You make
the classes exciting, and I am grateful we have met.

Lydia Pearce, Amy Rawson, Kiera, HBomb, Angel Ortiz,

Dean Dusk, BunchiJumpi, Ha Nguyen, and Marissa Pelchat,
thank you for your time, unwavering support, and wonderful
friendship. The pandemic has been horrible; however, it did bring us
together, and I am grateful to have each one of you in my life.

Table of Contents

About the AUtROrccvcmiimmmsmnesms s ———————— Xi
About the Technical REVIEWETcucuisseemsmsssssnnnmsssssnsnssssssnsssssssssnnsssssssnsssssssnnnsssssnns xiii
Acknowledgments.......cccuuuusssssmsnnnmmmmsssssssssssnnnmmssssssssssnsnnnnesssssssssnnnnnnnsssssssssnnnnnnnnnnss XV
L1 T0 L T T | Xvii
Chapter 1: A Primer on Microsoft Orleans and the Actor Modelcccerrrssnnnnnensns 1
Origins Of OMIBANScceeeecrerere s se e e e re e e e nnnnn s 1
Origins and Use Cases 0f OFBANSccceercrrecrernenmreseresese s 2
Actor Model EXPIAINEQ..........ccoririninirrrcnens s ss s s st s s s s 5
Actor Model Infused With OFlEaNS..........cccvivrernrereresre s 7

C T 1L I (=0 SRS 9
SIiNGIE DEVEIOPETcveveereeererseesrese s e e se e se s e e se s e s s e sre e s e e sss e nesseenns 10
Production Uses and HiSTOry.........ccccuvevnennnsnncsnsesessse s s sssssss s ssssessns 12

E 1] 4= RS 14
Chapter 2: Introducing Microsoft Orleansccccusseemmmsssssnnmmssssssnssssssssssssssssnnsenss 17
What Can Orleans Do fOr US?........cccovrinnnrnseessse s sesssssssssssssssssns 17
Cloud-Native, Elastic, Highly AVailablecccccrrerrieninesrnsc s sessenens 17
Common Use Cases for Actor Model Frameworks...........coocoeeerrrcnenenerescressesese e 18
Microsoft Orleans Base Libraries, Community, and Included Technologiesc.cuceverererenserenn 20
Create and Maintain an Orleans Application as a Single Developer..........ccocvvnirievniniennens 20
Community and Constant AdVaNCEMENTES..........ccoeeerrrermrrenerese s 22
Multiple Hosting Solutions Are SUPPOMEd.........ccviiririnennsn e 23
Resource Management and EXPANSIONcccveriininieniennsinse s sessessessssessesse s 23
Failure Handlingcovveenerenerescsnesese s s s s ssans 24
ST 14111 T 25

TABLE OF CONTENTS

PEISISIBNCE......ccececer e s 26
11T 111 T OSSP 26
Chapter 3: LIfeCYCIES .uuvuurrrrmmrmssmnmsssnnsmssanssssanssssansssssnsesssnsesssnsesssnnesssnnesssnnssssnnssssnnss 29
LC T UL I (= - TSR 29
Grain REENIIANCYcoveeeereecrercre s e se s e e e nre e e e 32
External Tasks @and Grainsccovrecrerenerrencrensesesese e ses s sesse e e sssesesssessssessnns 33
GFAIN SEIVICES ...veueeeueerreereeesessese s e es e s sesse e se e e s e se e s e e se e nesae e sse e e e e e e ne e nse e ne e e senns 33
Stateless WOrKEr Grainscoeeecererereneresesesesesese s sesse s ses e ssssesesesessssesessesenns 33
(€T UL T L T 34

£][0 PSSR 34
(€T UL T (0] T 36
MESSAGE Path ..o s 37
Development SETUP ..o ——————— 38
Typical ConfigUIationccoveerrcereresere e e nnn e 38
Silo CONFIGUIALIONcvieeeriseseee e s r e ne s 39

0 1 - SR 41
Silo MEMDEISNIP ...cviviiirere e e e e e e 41
MUII-CIUSTES.......cociretc e 42
0TS oI g (0] (0 o RS 43
JOUMNAIEA GFAINS ...vvvcccere bbb 44
EVeNtUal CONSISTENCY.....ccevviieriirere e 44
HEterogenEoUS SIl0S......c.eviirrrrierierin s s e sa e a s e e e e e e 45

£ 11114 R 46
Chapter 4: Enhancing Current DeSIgNSccccussseensmssssssnsssssssssssssssssssssssssssssssssnnnssnss 49
LT SRR 49
GENEral COMPAIISON......cicerririiir et e e e s e e e e R b e e e e ne s 51
Elasticity and Availability COmMPAriSONS........c.cccvverrienennsernesens s sens 55
BuSINESS LOGIC COMPIEXITY ..covevvriererrerirrireressesessessesesessesessessssesessesessessessessesssssssessessessssensesaes 59
DEPIOYMENT..... .o e e e R ae s 63
£ 1114 7 64

TABLE OF CONTENTS

Chapter 5: Starting Developmentccccrvnnemnmmnnssnnmnmssssmmsssssnsssss——————mm" 67
L0112 TP 67
COMPOSITION ... e s b e e e R e e s e R e e e e R e 67
Building Our First ApPlCAioN........ccccoiviiirirr s s 68
CT T I (oSSR 72
L€ 1 72
£ L 73
L T | P 75
Grain CoOMMUNICALION.........ccoveeereeeree e nne e 82
6310111 SR 88

Chapter 6: Timers and RemiNderscoummsmsmsmsmsmsssmsssmsnsssssssssnsssssssssssssssssssasasases 91
OVEBIVIBW ...t sre st e e R A e e R e R e A e e e R e R e e e e e Cl
{08 LT o T T T R 92
RUNNING the TIMEE ... cieecercer e r e s e e e a e s a e s ae e n 95
Creating @ REMINUEN ..ot s et 97
Setting Up an AZUre TaDIE ... s 100
Running the REMINGET ..o s 107
B 10T 111 T o OSSO 110

Chapter 7: Unit TestS.......ccucmmimmmsmmmmsmmmssmmsssmmsssssssmssssssssssssssssssssssssssssssssssnsssnssnsass 113
UNit TEST SUMMAIY ..ot s s e s s a e e s s ae e s saesaese e e s e nnens 113
Orleans Unit TESTING OVEIVIBWcovverrerrerererrerseresesessessessessssessessesssssssessessessssessessesssssssessesses 114
Creating Our Unit TESt GraiNcccccvivevnienenincrne e s st 116
Setting Up Our TEST CIUSTENcoceie e s 117
RUNNING ThE TES(S) ..vuvrreuerreererereresesre s 120

Adding the CallingGrain TEST.........cucorrererrerrrsererese e 121
RUN The UNt TESTS....ceierecrrcrereser s 122
Additional TESTINGcovevriiiriereririr s s 123
B30T 111 T o SRS 124

vii

TABLE OF CONTENTS

Chapter 8: The Orleans Dashboardccccvnssmmmnmmssssnsnmssssssnsessssssnsesssssssssssssnnnnss 125
OVEBIVIBWecceresseseee e e se s se s ne e e ne e e ne e R e e R e e e e pnne s 125
Adding the Orlean Dashboard to Qur SOIULION ... 125
Running the DAShDOAIccoveemrencrrerreses s 128
Additional OPLIONS.....coeiiviiirere e e nae s 135
Expanding the Dashboard ... st sessesaens 136
£ 11134 7R 137

Chapter 9: Deploymentcccccnrnnnmmmnmmssssnnmmmssssnnmssssssssessssssssessssssnssssssnnsssesssnnnnss 139
COMPALIDIE GFAINS.....c.ccceueerererere e se e e a e e s e e e b et e e e e e e 139
Database Handling (DeploymMENt).........ccoueerermrencrnsererere e 141
Cluster Management..........covcerenernseressesese e s s 141
CI/CD QVEIVIBW ...vveereeerseesessesessesesssessssesessssessssesssssssssssessssesssssssssssssssssssssansssssssssssssnsansssanssnns 142

Common Deployment SCENANIOScoouvrerrenernseresesesrese s e ssesesesssssssssessases 145
Setting Up the Azure ENVIFONMENTccocrievininiene s se e s ssssese s ssesessesaesnes 145
Walk-Through to Create a CI/CD PIPElINE.......ccccvvereverrerrerernsensere e sessesse e ssssessessessesessessessees 146

1T (= L= (1o 146
Creating Resources With AZUIE CLI........ccccvievererrerierinsesrereresessessesessesesessessessssessessessssessessenaes 147
ProviSioning SCHPLSccvviiiiiririe s s s r e p e 148

Pwsh_resource_provision.ps1 Code (POWErShell)coceeeereccrniennencnnsernsesesesesseserennes 149

Bash_resource_provision.sh Code (Command LiNe)........cccceveeernrererenerenerensesensesessesesennes 150

Provision SCHPt SUMMAIY ..o s 151
DEPIOYMENT FIlES ..o s 152

D01 (= T 152

DOCKEITIE COUEcoeeeeereecrerereree e s e se e e nne e 153

Dockerfile SUMMAY ... s e 153

DeployMENL.YAML........cccoiriirrere e e 154

Deployment.yaml COUE.........ccuvveriirnirre e s 154

Deployment.yaml File SUMMArY.........cccviriininininsne s se s ssesessessesnes 157

viil

https://doi.org/10.1007/978-1-4842-8014-0_9#Sec9812
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec1331
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec12144
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec12145
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec12344
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec5655
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec177744
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec129944
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec188144
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec622144
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec99144

TABLE OF CONTENTS

Continuous Integration and Continuous Delivery Pipeline Creation.........c.ccoeevvververierenrersensenens 158
Continuous-INtegration.yamlccccvererrnrieriene s s s saesr e e s sne s 159
Continuous-Integration.yaml COUEcvrvrerverererenrerierie s sere e s sse e s ssessessssessesnees 159
Continuous-Integration.yaml SUMMAIY........ccccvcervrrrrieriennsersesesesessese e ssssessessessssessessees 161
ContinUOUS-AElIVEIY.YAMIcceeirereriereresee s e a e e sae e s e s sne s e e sseenees 161
Continuous-delivery.yaml COUEccucevevrererrererererseresesessessessesse s ssesaesessessessessssessesneses 162
Continuous-delivery.yaml SUMMAIY........cocuvvverierenenserseressssessesesss e ssesssssssessesssssssesseses 164

File Structure Validation.............cccovviienmnnnecsess s s 165
Folders and FileS Aded ..o s 165

Secrets for DEploYMENt ... s 166
Service Principle Name (SPN) ..ot ses e 167
SUDSCHPLION ID ..t e e e e e 168
L] 1T L R 168

Adding Secrets t0 GItHUD ... ———— 169

Automated DeplOYMENT..........cc oo e 170
Trigger the PrOCESS.co v nne s 170
View AKS Status on Azure POMaL...........ccoeerneenenenereseressesesse s sessesessenens 171
AKS L0OAU BAIANCETc.ceueereeereeeresesesseessssesesesessesessesesessssesssssssssssssssssssssssssnsssssessssssssssnnes 172
D72 TS 1 1072 (o TS 173
D= o1 0T 173
Additional Orleans Troubleshooting INformation............ccecoeeeererrscnrcerrese s 173

£ 10T 1117 o S 174

Chapter 10: CONCIUSION.......cuutieimmmssssssnsssssmmssssssssssssssssssssssssssnsnsssssssssssssnnnnnnssssssssss 177

L0 0O 177
Introduction of MicroSoft Orlansccoreiererre e 178
[T L= 178
COMPANISONS ...cueierieirere et d e e e e b e e e e e e R e b e e et e Re b e e e e e aennn 179
ProjECt SIIUCIUIE......cceeec e 181
Timers and REMINGEIS..........coiuienmrerissssse s 182

ix

https://doi.org/10.1007/978-1-4842-8014-0_9#Sec7701
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec7705
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec7708
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec7707
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec7101
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec7201
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec9701
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec97011
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec97012
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec97014
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec6701
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec6702
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec6703
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec6704
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec6705
https://doi.org/10.1007/978-1-4842-8014-0_9#Sec6706

TABLE OF CONTENTS

T [183
0 [T TR TR F= s 11T (o 184
DEPIOYMENT ... e p e ne 186
FUTUPE ASPECLSeeiecrectc ettt bbb nne 187
[(] 1L 189
IO X eeueeenssnrsnssssnnmssssssssnsssssnsssssssssnsssssnsnnssssssssnssssnnnnssssssnsnssssnnnnnsssnssensnsnnnnnnnnnnnnnnnns 193

About the Author

Thomas Nelson, Lead Cloud Architect and Microsoft
Certified Azure Solutions Architect Expert, has worked in
several technical fields spanning from the graphic design of
websites to development and architecture. During his 10+
years of backend development, his interest has gravitated
toward DevSecOps and automation. He is involved in core
automation for cloud development and infrastructure for
enterprises. He enjoys teaching others and is often found at
local meetups presenting various technologies, patterns, and
software examples. He is thrilled to be using Orleans and

considers it one of those wonderful and valuable frameworks
that should be in the tool kit of every architect and backend
developer. Also, he is pleased to have extensive experience with monolithic and
microservice systems to build cloud-native solutions, including actor framework back
ends. He has an associate’s degree in graphic design and bachelor’s degree in computer
information systems and is currently attending Harvard Extension School pursuing his
master’s degree in information management systems.

About the Technical Reviewer

Carsten Thomsen is a backend developer primarily

but working with smaller frontend bits as well. He has
authored and reviewed a number of books and created
numerous Microsoft Learn courses, all to do with software
development. He works as a freelancer/contractor in
various countries in Europe, with Azure, Visual Studio,
Azure DevOps, and GitHub as some of his tools. Being an
exceptional troubleshooter, asking the right questions,
including the less logical ones, in a most logical to least

logical fashion, he also enjoys working with architecture,
research, analysis, development, testing, and bug fixing.
Carsten is a very good communicator with great mentoring and team-lead skills and
great skills researching and presenting new material.

xiii

Acknowledgments

Thank you Joshua Grimaud for your contributions to Chapter 9. Without your expertise,
the chapter could not have been completed. Josh is an expert in programming and
specifically DevSecOps. He is a creative thinker and a solution-oriented person. Also, he
is a great friend and has an extreme passion for learning tech and creating music.

Introduction

This book was written to introduce the Microsoft Orleans framework and to provide an
understanding of why it was created and how it can advance your current and potential
applications. Actor model frameworks are not widely taught or known in mainstream
development. Since the frameworks are not common knowledge, this book was written
with beginners and intermediate developers in mind. An overview of Orleans is provided
concerning topics such as how it can enhance projects, and how to get started in the
code base.

First, we cover the origins of Orleans which was established in 2010. This book
explains what it was built to accomplish and examples that showcase its successes in
production. Next, we look at how Orleans works concerting lifecycles, which removes
a massive amount of overhead from developers. Lifecycles are emphasized since they
play a significant role in what makes Orleans unique by abstracting the work from the
developers and making projects faster and more maintainable, compared with previous
actor model frameworks. Next, we dive into commonly used architectures - monolithic
and microservices - to show how Orleans can possibly enhance them. New and
existing developers can benefit by learning how Orleans can extend their monolithic or
microservice patterns.

The remainder of this book is hands-on coding where we set up a project and walk
through adding features to it such as

¢ Timers and reminders
e Unit tests
e Dashboard

Then we walk through deploying Orleans to AKS. What good is our work if we
cannot deploy for others to use it? I believe that all development books should have a
deployment section so that the applications can be treated as real work. It allows you to
deploy as we would in a business. We walk the setup of an app, code it, and deploy it. The
pipeline will trigger when there is a commit and deploy if it meets the standards.

xvii

INTRODUCTION

Finally, we conclude by summarizing what we have covered. We discuss where you
can go next to further your journey with Orleans. I would treat this book as a strong
starting point. It provides a strong understanding of what Orleans can do for you, how
coding differs, resource requirements, and next steps.

xviii

CHAPTER 1

A Primer on Microsoft

Orleans and the
Actor Model

Origins of Orleans

Microsoft Orleans is an open source project, which provides the developer with a simple
programming model enabling them to build software, which can scale from a single
machine to hundreds of servers.

You can think of Orleans as a distributed runtime, allowing the .NET developer to
easily build software capable of processing high volumes of data and deployable to the
cloud or on-premises.

Orleans is a “batteries included” framework, which ships with many of the features
required for distributed systems built in.

First, what is an actor model? An actor model is defined as “a mathematical model
of concurrent computation that treats 'actor’ as the universal primitive of concurrent
computation” (Patent Issued for Actor Model Programming (USPTO 10,768,902),
2020). Actor model frameworks use the model as a basis on which the frameworks
pass messages between actors, and actors are created on a needed basis. Actor model
frameworks are able to take advantage of concurrency through multicore computers
and software abstraction. This means that actor model frameworks are able to process
millions and billions of messages in real time or near-real time. We will cover this more
in this chapter and throughout the book.

© Thomas Nelson 2022
T. Nelson, Introducing Microsoft Orleans, https://doi.org/10.1007/978-1-4842-8014-0_1

https://doi.org/10.1007/978-1-4842-8014-0_1#DOI

CHAPTER 1 APRIMER ON MICROSOFT ORLEANS AND THE ACTOR MODEL

Orleans, created in 2010 by Microsoft Research, is an actor framework that
harnesses the inert capabilities of cloud architecture (Orleans - Virtual Actors, 2018).
The framework helps distribution experts and novices by using prebuilt libraries to
create globally distributed, highly available, highly elastic robust solutions. The libraries
remove many complexities -such as lifecycles - while using a common programming
language. Ultimately, Orleans allows a single developer to create an extremely scalable
application without being an expert in distributed system development. Other actor
model frameworks require the developer to determine how to handle the life span
of each actor and monitor and check health. Also, Orleans is a production-proven -
through the use of IoT applications and game studios - and open source framework for
Microsoft’s internal and external flagship applications.

Origins and Use Cases of Orleans

Initially, Orleans was created to help expand cloud computing to a larger developer
audience when cloud computing was new and gaining momentum. Orleans has the
ability to provide hyper-scalable interactive services that support high throughput and
availability with low latency in the cloud and local systems. Existing actor frameworks
fulfill the technical needs; however, the additional overhead of knowledge, experience,
and complex initial coding can be challenging to accomplish. Attempting to satisfy these
requirements with a traditional three-tier service design is challenging as well. Orleans
combines the common coding structures of three-tier development and .NET Core
libraries, reducing entry barriers.

In addition to cloud development, it has been used for backend development of
video games, such as the blockbusters Halo 4, 5 and Gears of War 4. Cloud computing
is extremely helpful in hosting and running distributed services for a global audience,
such as gaming. Before cloud computing, the World Wide Web grew from its infancy,
where servers were not readily globally distributed for businesses’ applications, and
clients accepted latency as a part of the Internet. I recall waiting for images to download
arow or two at a time when using a 33.6k dial-up modem. Overtime, companies have
risen to global entities, and cloud architecture creates the ability to cater to these clients
in a distributed and real-time-like capacity. These changes lead to several new patterns
emerging based on lessons learned, leading to Orleans’ creation. To understand this
process, we will discuss the development of services in a high-level perspective where
we cover monolithic services, microservices, and Orleans.

CHAPTER 1 APRIMER ON MICROSOFT ORLEANS AND THE ACTOR MODEL

Initially, monolithic applications were used to conduct multiple scopes of work.

For instance, an application may house business logic server items, such as account,

order, and shipping. Housing these together is necessarily a bad option, as each item
depends on a single team. It allows the ability to walk through a single application for
debugging and traceability. Unfortunately, this ability is associated with cons as well.

Monolithic applications have a large footprint. Since their scope maintains several
items in the business, it is likely supported by several teams. Housing multiple large
workflows together, a single application can get large and possibly unmaintainable
overtime, if it is not watched closely. The larger the application, the more hardware it will
require to support it, which can be costly in hosting hardware and perhaps startup time
when needed on demand by consumers.

The application is usually tightly coupled and requires the teams to work and maintain
open communication. This can hinder deployment as it is difficult, if not impossible, to
deploy without all of the items being implemented. Feature flags can toggle various logic.
However, strict discipline is required for the teams to stay within scope and communicate the
changes internally; otherwise, it will delay deployment until all the work has been completed.

Overtime, microservices - a term coined by Dr. Peter Rogers - emerged to create
granularly scoped applications that interact with one another to complete a holistic
action(s). Microservice is a general term that refers to the scope of work of the application
that is loosely coupled and generally uses standards such as REST, XML, JSON, and
HTTP. Based on the preceding monolithic example, each logically scoped item that we
mentioned - account, order, and shipping - is separated into its own service. Decoupling
removes the need for multiple teams to maintain a single application and reduces
complexity, thus facilitating communication and possibly on-time code completion
to meet deployment deadlines. The footprints are a portion of what we would use for
monolithic applications, which leads to the ability to scale out on demand.

Also, decoupling allows complex and extensive systems to be built, tested, and
deployed individually. This adds value in an Minimal Viable Product (MVP) manner
by being able to proceed with testing and deployment before the entire application
completed whereas, the legacy application cannot move forward until all of the
dependent work has been completed. Feature flags can be implemented however, the
teams need to implement and maintain. When we refer to microservices in further
chapters, we will be referring to a three-tier architecture (client, back end, database).

I have worked with monolithic services and microservices in several companies.

I have gone through several transformation processes of converting monolithic
applications to microservices. Microservice patterns are a solid choice for many of the

CHAPTER 1 APRIMER ON MICROSOFT ORLEANS AND THE ACTOR MODEL

current business needs and are supported easily by cloud computing. Cloud computing
monitors the applications on set triggers to determine health and the need for scaling,
among additional items.

I have moved between companies that had engineering teams of 40 to a few
hundred to thousands. Each move to a larger company solidified --to me-- the need for
maintainable services as cross-team communication was harder to sustain. This
was/is due to members constantly moving or leaving within the teams, which removed
the oversight and communication needed to maintain larger, monolithic applications.
Again, this depends on the company structure, as the smaller teams made monolithic
applications acceptable to work within.

This book will not debate the legitimacy of microservice vs. monolithic architectures
but will discuss how the Orleans implementation can enhance applications and when
Orleans is a good fit. Ultimately, the application needs and company structure should
determine the design and technology that are chosen. The common goal of applications
is to be a robust, extensible, and available system for consumers. For instance, a project
might be required to implement a cloud hosting’s concurrency and distribution as well
as its dynamic and interactive in nature, which allows actor frameworks to flourish
(Bernstein. P., Bykov, S.). Orleans was created, in part, to take advantage of these native
cloud architecture abilities. The solution should be a negotiation between company
ability and consumer needs.

To take full advantage of cloud computing, we can use Orleans, which is a
production-ready - and battle-tested by supporting projects, like AAA video
games and smart home IoT devices - framework written in C# and .NET Core and
distributed in NuGet (New Get) packages with version 2.0+, which creates cloud-
agnostic solutions. This allows .NET developers to extend their applications within
an already familiar ecosystem. Orchestration overhead is reduced through the
framework’s ability to maintain lifecycles and elasticity and harness the actor model’s
concurrency. The actor model uses actors, which are fine-grained isolated objects that
receive and send asynchronous messages with the ability to create additional actors
(Bernstein & Bykov, 2016).

Actor frameworks can be complicated for developers to understand since they
can be complex and are not commonly taught in universities. It usually takes a team
or teams of advanced engineers to create and maintain a system. Orleans came into
existence to help reduce the overhead and barriers and take advantage of the actor
model’s capabilities. In 2015, Microsoft chose to open-source Orleans, which resulted in

