Beginning gRP
with ASP.NET Core 6

Build Applications using ASPNET
Core Razor Pages, Angular,
and Best Practices in .NET 6

Anthony Giretti

Beginning gRPC with
ASPNET Core 6

Build Applications using ASPNET
Core Razor Pages, Angular, and Best
Practices in .NET 6

Anthony Giretti

Apress’

Beginning gRPC with ASP.NET Core 6: Build Applications using ASP.NET Core Razor
Pages, Angular, and Best Practices in .NET 6

Anthony Giretti
La Salle, QC, Canada

ISBN-13 (pbk): 978-1-4842-8007-2 ISBN-13 (electronic): 978-1-4842-8008-9
https://doi.org/10.1007/978-1-4842-8008-9

Copyright © 2022 by Anthony Giretti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Copyeditor: Bill McManus

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza,
Suite 4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at https://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page at https://github.com/Apress/beg-grpc-w-asp.net-core-6.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8008-9

Table of Contents

About the AUtROKceeeeeisrrrrrrrssssssss s sssssss s r s e s s s s sssnnsssssssesnssnnnnnnsnnsnsennnsnnnnnnnnnnns ix
About the Technical REVIEWETccussrerrmmsssssssssssssssssssssnssssssssssssssnsnssssssssssssssnnnnnsnnns Xi
AcknNoWIedgmentscccuuseemnimssssnnnmssssssnnmssssssnnesssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnssssnnns Xiii
00 [T (] XV
Part I: Getting Started with .NET 6...........ccusceemmmmmmmnsssmmnmmmmssssssnnmmmssssssnnnsssnssnns 1
Chapter 1: Welcome to Modern .NETcccoumsssmmnmmmsssnnnsmsssssnssssssssnssssssssssnssssssnnnsssss 3
A Brief HiStOry Of INET.......cccoiiriierrninene s s sss s e sssssssssssessssssssssssssssessssssenns 3
I T 1 1= L 4

1 0 5

1 S = 10 o 6
Modern .NET: A Unified PlatfOrmcccvieiiinirinsiisensessessessesssesssesssesssesssesssesssesssesssssssesssesssesssens 7
(0 Lo T2 T4 Lo B0 0 =T 0 X 8

.NET Schedule and WHat It MBANSc.ccvveeririirmisseissesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssesssens 9
HOW 10 EXPIOre .NET B......ooceriieieririiriie e nere s e s s s sae s s sa e s s s se s sne s s s s sa e sae s 9
NET 5 and 6 IMProvemMENtsccccevervriinneniriersie e s see e se s s s s sesssessessesssssssaesaesnens 10

Get Started With JNET 6c.cceieeieeieeseriesse s se s s e sess e sresaess s s e sresassssssessesassnssnsesnesnsanes 11
Recap of C# 9 and Introduction t0 C# 10 ..o 17
ETe Yo Lo 0 OO 17
INTrOUCTION 10 CH 10 ...eiiee i s s s e se s se s e e s e e sar s sae s e s sre e s re e aeesaeesaeesneasnesnneennesns 29
1] 11 4= OSSR RSSO 31
Chapter 2: Introducing ASP.NET COre 6........ccussseenmmssssnnnssssssnnnssssssnnnssssssnnnssssssnnnsssss 33
ASP.NET Core FUNAAMENTAIS.......coeiiieeeieeerie e isseesssesssse e ssse e ssssessssssss s ssseesssssssssessnsesansesensessnessn 34
ASP.INET COIE WED APLL....cceeeeeriiiieceresresessessessesssssssssessessssssssesaesnssssessesassnssssessessenssssessessennsnns 42
ASPINET COFE IMVCc.veiiiieseeesesesssssessessesssssessessssssssesaesassssessesaesnssssessessssnssssessessennssssessessensnans 53

iii

TABLE OF CONTENTS

ASP.INET COre RAzZOr PAQES......coeieriersereersrsersersessssessessessessssessessesssssssessesssssssessessssssssssessessessssessens 59
ASP.INET COrE BIAZOKcoveueueeeerereressesesesesessssssesesesesssssssssssessssssssssssssssssssssssesssssssssssssssssssasssens 64
ASP.NET COre SIgnalRcccoooeireerereresesesese e se e se e s ses e ssssessesssessssessssessnses 72
ASP.NET COre gRPC ..o s s s se s s senss s s nennis 76
ASP.NET Core Minimal APIS........cuccuienerrnsesrnesesssessssesssssssssssessssessssssesssssssssesssssssssssssessssssssssssnnes 77
1] 04 RS 81
Part II: gRPC Fundamentals.........c.ccocccmrnssnmmmmsssennmnsssssmmsssssnmsssssssssssssssssssnsenss 83
Chapter 3: Understanding the gRPC Specificationc.cccennssemnnmnsssnnnnnsssssnnnns 85
Introduction to Remote Procedure Callsccoceeeererneneneserennesesesesesssesese e sessssesenes 85

0 Lo 0T T 87
ProOtOCOI BUFTEIS......ceeeeceerceree s e 87
GRPC CRANNEL ... bbb e e 88
TYPES Of GRPC SEIVICES ...cuevviirirerir st e e s s e 91
L L £ PP RTR 93
GRPC STALUS......eiviieirere st e e e e e e b e e R R e e nne s 94
Deadline and CanCellation.............ccovecerermrencrnsese s 95
gRPC Requests and Responses oVer HTTP/2 ... vrecrnrenncnne e sesesse e sessesens 95
Introduction to the HTTP/2 ProtoCol ... s 97
TR 1T o 98
Compression and Binary Data Transport ... ssesessessessens 99

0 0] 1 99
ST T gl 1T 99
Benefits, Drawbacks, and USE CASES........ccvvererierverrerrserersesseessessessessssssessessessssssessesssssssssessessees 99
32T T3 11 TS 100

D U 72 TS 100

USE CASES ...c.veuererseerreesreesesesessesesss e ses e e sa e ses e sss e sse e sen e s ssssesse e sessesenss e sse e nsnsssnssnessanes 101
SUMIMAIY....eitierreesese s e e e e e s R e R e ne e R e e R e e e e e nRe e R e e ne e e e nns 102
Chapter 4: Protobufs......cccceeemmmmmmmmmmmssssssssmmmsmmmssnne 103
About ProtoCol BUFfEIS ..o s 103
Individual DECIArations.........c.cocorererererrrererese e 104

iv

TABLE OF CONTENTS

Services DECIAratioN...........cuccceererennssse s 108
MesSages DeClaration...........covcvcrirennsncne s e 111
SCAlAr TYPE VAIUES......ccveeerecerirerire sttt 113

L00] 1T (0] O 113
ENUMEIALIONS ... 119
Lo Ey (=0] LS 122
1] 010 o] TS 122

Any, Value, Struct, Wrappers, Dates, and Times (Well-Known TYPES)......ccevrrerrerererserserseres 123
3O 137

L0) O 141
EMPLY MESSAUESvererirrrerirerser et ssessse s saese s s s sae s s s s s s e s s sae s s e e saesaessessassaesaensnns 147
(0011111 O 149

£ 1T 1117 OO 151
Part lll: gRPC and ASP.NET COKeccceurrsssssnnnnssssssssnnnnsssssssnnnnnnssssssnnnnnsssnns 153
Chapter 5: Creating an ASP.NET Core gRPC Applicationccussemmrnsssnnnssssssnnnnss 155
Create an ASP.NET Core gRPC ApPliCAtioNccervererenernsesisesesese s ses e e senns 155
Create and Compile ProtobUf FileS........ccucvierrrniniennsrsrie s ses s e s s ssesessessesnes 160
Write, Configure, and EXP0SE gRPC SEIVICESvcevrevrrrersererseserseressessssessessesssssssessessesssssssessees 165
Test Using gRPCurl and gRPCUI TOOIScccvererinnernieninesisse s sesse e e sessesessenens 180
0131 o1 RS 180
03] o PSPPI 189

TLS COrIfICALEScucerererrireesererrsseeese e e p s se s 195
Manage Errors, Handle Responses, and Perform Logging........cccvvinninnniennsnsessesessssensenaens 196
Perform Message Validationcoococevennenerenernsesessesese s se s sessesenns 214
Support of ASP.NET Core gRPG on MicroSoft AZUr€........cccevevvininenssinsenie s sessesnes 219
11T 111 1T o OSSOSO 221
Chapter 6: API VerSioning......ccccsuuussssnnsssssssnsssssssssssssssnnsnssssssnnsssssssnnssssssnnnssssssnnnnss 223
VErSion GRPC SEIVICESuiveiereruertererserersessssessessessessssessessessessssessessesssssssessessesssssnsessessssssensessens 223
Expose the Versions of Your Protobuf with ASPNET Core Minimal APIS............ccoceeevrecerencennn. 232
£ T 237

TABLE OF CONTENTS

Chapter 7: Create a gRPC Clientcccceuveemnrnsssnnnmmssssssnmsssssssnssssssssssssssssssssssssnnnss 239
Create @ Console APPlCALIONccoeevereerererr e 240
Compile Protobuf Files and Generate gRPC Clentsc.cccvvvnvninnnnsnnniess s sessennns 244
Consume gRPC Services With .NET B.........cccccrrrrerrenmrenrnsesese s sessesenns 252
Optimize PErfOrMANCEccccovviririrerin st e nae 268

Take Advantage 0f COMPIESSIONcvccererernsesesesesese s s sessessssenens 268
Define a Limit 10 MESSAQE SiZEcccevvrerrriererenersse s seanis 272
Keep HTTP/2 Connections OPENccccverivinrinienenn st sesse s e sessessesesssssessesnes 273
Increase HTTP/2 Maximum CONNECHIONS.......c.cuccvrenerenernsesesese s 277
Get Message Validation Errors from the SErver ... sesesenns 278
L1134 R 281

Chapter 8: From WCF t0o gRPCcccivvsinemmnmmsssnnnmmsssssssssssssssssssssssnssssssssnssssssnnnnss 283
Differences and Similarities Between WCF and gRPCccoovvrinriesrnccrncsene e 283
What and What Not to Migrate from WCF to gRPC..........cccrirvrinirrrrnn s 286
BT 1117 o S 298

Chapter 9: Import and Display Data with ASP.NET Core Razor Pages, Hosted

Services, and gRPCccccuuseemmmssssnnnmmssssssnmmsssssnsssssssssnssssssnsssssssnnnsnsss 299

SCenario EXPIanationcccecvirerienennensessessnsessese e ssssesessessssessessessssesessessessssessesaesaesesnennesnes 300
Create and Layer the ASPNET Core gRPC Applicationcccceernncrnienenenennsenensesesssesessesenns 301
Set Up a SQL Server Database and Use Entity Framework Core to Access Data...................... 310
Set Up @ SQL Server DAtabaseccveeveverrerrerierenessersesesssssssessessessssessessesssssssessesssssssessessens 310
Using Entity Framework Core to Access Dataccccvevrvncnnnsnsnic s 311
Write the Business Logic and Expose the Country gRPC MiCroSErvicec.cooeeerererensesenenens 330
Write the Business Logic into the CountryService.BLL Layercccocvveenerenernscrensesenenens 330
Write the Country gRPC SEIVICEcccvererercrrrererese s e sessenessenens 332
Create and Layer the ASPNET Core Razor Application..........cccccevvrinnnnnniniennsnsensenesensesennns 341
Create the Application SKEIETON ... s 342
Define Contracts and Domain ODJECES........c.cccverernscrnressnese e 343
Implement the Data Access Layer with the gRPC Clientccoovevvvennienesesesnsenesenenennes 348

TABLE OF CONTENTS

Implement the BuSingss LOGIC LAYET........ccccerivverrnreniniennienessesses e sesses e sesesssssaessensens 353
Configure the ASP.NET Core Razor Pages Applicationccecvvevererverieresensensesessssensessenns 358
Upload a Data File with a Form, Display and Manage Data on Razor Pagescccceevreriennens 367
SUMIMANY ..t b e e e e b e e e e e e AR e b e e e Re e Re R e e e e e AR e e e e e aenns 385
Part IV: gRPC-web and ASP.NET COrecusceeemmmmsssssnmnnmsssssssnnnsnssssssnnnssnssnns 387
Chapter 10: The gRPC-web Specification..........cccccnsemmmmmssssnmnmmsssssnnmnssssssmnssssn 389
History and Specification of gRPC-WEDcccevernirnicnncs e 389
HiStOry Of QRPC-WEDcoveeiriceircseree e 389
The gRPC-web SPeCifiCationc.cucvverernnernsesrnesess s s sessessssenens 391
The gRPC-web JavaScript LIDraries........ccvvvrvreniennsriene e sesesse s e ssesse e sessessessenes 392
GRPC-WED VS. REST APIS.......ccooeiuiircrarsnsnsisssssssisssssese e e sessss s sssssssssssssssssssssssssssssssssssssnenes 393
31111117 OO S 394
Chapter 11: Create a gRPC-web service from a gRPC-service with
ASP.NET COFe....corsensssussssnssssnsssasssssssssnsssasssssssssnsssansssnssssnssssnsssnnsssnnnnas 395
Working with gRPC-web and the .NET ECOSYSIEM........ccccccrivrnienncner e s 396
gRPC-web and ASP.NET COIE B........cccvrvererrenerrnsessssessssesessssessssssesssssssssssssssssssssessssssssssnsssanes 396
gRPC-web and All .NET ClIENES.........ccovrerernnmrnsmsrnesessse s sessssssssse e sessssessssessnses 399
gRPC-web and ASP.NET Core 3+ ClientSccoovvvrrrerenesernsesssesesssesessesssssssssssesssssssssssessnss 402
Reworking the CountryService gRPC service for BroWSer APPS.....ccccvvververersesessessessessssessessens 404
Support of ASP.NET Core gRPC-web on MICroSOft AZUIEccveeervererrerenserseressssensessessesessessenses 416
£ 1§14 7 417
Chapter 12: Import and Display Data with Angular 12 and gRPC-web 419
INTrOAUCTEION 10 SPAS........coeecercere e 419
Generate TypeScript Stubs With Protoc..........ccccviniinininssnrn s 421
Download the Correct Version of Protoc and Protobuf Well-Known Typesc.ccccovrvrerennes 422
Download the ts-protoc-gen PlUg-in ... e 426
Download Improbable’s gRPC-web Library and Google Protobufs Library............c.coceeerene. 426
Executing the Protoc COMmMAaNdccovcvrieirenrns e 426

vii

TABLE OF CONTENTS

Write Data Access with Improbable’s gRPC-web Client..........cccccvvevevvvnveniensnensensesesessessensenns 430
Upload a Data File and Display Data with TypeScript, a Web Worker, and gRPC-web............... 440
Manage Data with TypeScript and gRPC-WeD........cccoovvrvrininnsrr s 450

£ 111 T TS 456
Part V: SECUNitY....ccuuseemmmmmmssssnmnnmmmsssssnnnnmmsssssssssnnssssssssnnsesssssnnnnnesssssnnnnnnessnns 457
Chapter 13: Secure Your Application with Openld Connect...........ccccussnemnrrnssannnnns 459
Introduction to Openld CONNECTccvevirenrrrrre e eae s 459
CONFIGUIE ASP.INET COTE ..vevevveerersersesessessersesssssssessessesssssssessesssssssessesssssssessessesssssssesssssessssessesses 462
Use gRPCurl and gRPCUI With @ JWT ... sessesens 469
0] 1 4 T OO 469
011 0 471

Use @ C# Client With @ JWT ..o 473
Use a gRPC-web Client With @ JWT ... 476
Get User [dentity SErver Sidecovurrnsrnenesesessse s s sessssenns 478

£ 1134 R 478
INO@X uueniissnnnsssnnnsssnnnsssanssssanssssanssssanssssansssssnsssssnsssssnnssssnnssssnnssssnnssssnnssssnnssssnnnsssnns 481

viil

About the Author

Anthony Giretti is a senior lead software developer at OneOcean in Montreal, Canada.
He is a technical leader and four-time Microsoft MVP award recipient. Anthony
specializes in web technologies (17 years’ experience) and .NET. His expertise in
technology and IT, and a heartfelt desire to share his knowledge, motivates him to dive
into and embrace any web project, complex or otherwise, in order to help developers
achieve their project goals. He invites challenges such as performance constraints, high
availability, and optimization with open arms. He is a certified MCSD who is passionate
about his craft and always game for learning new technologies.

ix

About the Technical Reviewer

Fiodar Sazanavets is an experienced full-stack lead software
engineer who mainly works with the Microsoft software
development stack. The main areas of his expertise include
ASP.NET (Framework and Core), SQL Server, Azure, Docker,
Internet of Things (IoT), microservices architecture, and
various front-end technologies.

Fiodar has built his software engineering experience

while working in a variety of industries, including water

engineering, financial, retail, railway, and defense. He has
played a leading role in various projects and, as well as
building software, his duties have included performing architectural and design tasks.
He has also performed a variety of technical duties on clients’ sites, such as in-house
software development and deployment of both software and IoT hardware.

Fiodar is passionate about teaching other people programming skills. He has
published a number of programming courses on various online platforms.
Fiodar regularly writes about software development on his personal website,
https://scientificprogrammer.net. He has also published a number of articles on
other websites.

https://scientificprogrammer.net

Acknowledgments

The completion of this book could not have been possible without the participation and
assistance of many people and I would like to express my special thanks to them.

First, thanks to Camille Viot, my boss, for accommodating me so that I could
overcome this immense challenge.

Next, [would like to thank my friend Dave Brock (Madison, Wisconsin) for both
his moral but technical support; he was a great help when I felt overwhelmed by the
magnitude of the task. I also thank him for reviewing my chapters one by one—many
thanks for his contribution! Thanks also to Damien Vande Kerckhove for his technical
support, which allowed me to adjust the shot when I was not going in the right direction.
He was also an essential asset for ensuring this book was able to see the light of day.

I also thank all my family for their unwavering support. Finally, I would like to thank
a special member of my family that I unfortunately lost recently; he was there every night
next to me when I was writing my lines. Thank you, Ulysse, you helped me so much and

kept me company.

xiii

Introduction

Take a new technological turn with gRPC and ASP.NET Core while discovering .NET 6,
the latest release of the Microsoft .NET platform, and C# 10.

gRPC has become more and more famous because of its performance compared to
JSON/XML APIs. In this book, you'll discover how to develop ASP.NET Core APIs with
the gRPC specification, and gRPC will no longer be mysterious to you.

After you discover how gRPC works, you'll learn how to use it to build high-
performance web applications with the best development standards. You'll use gRPC
with various ASP.NET Core 6 project types such as Razor Pages and minimal APIs. You'll
also discover gRPC-web and the great mix it does with Angular 12.

For Windows Communication Foundation (WCF) developers, you will learn how to
migrate from WCF to gRPC by comparing the similarities and differences between the
two frameworks.

We'll also explore using gRPC and gRPC-web with Openld Connect authentication
and authorization to secure your applications.

Let’s go!

PART |

Getting Started with .NET 6

CHAPTER 1

Welcome to Modern .NET

.NET is 20 years old, having been introduced in 2002 with the release of the .NET
Framework, .NET 1. Since then, it has evolved with the needs of the computing industry
to become even faster, lightweight, and cross-platform. As I write this book, we are

at a crossroads, if you will, of the original .NET Framework and the newer .NET Core
framework coming together under one new .NET. Microsoft has recently released .NET 5
and .NET 6 in November 2021, and with it, you can build powerful web applications with
ASP.NET Core 6.

For those of you who are already .NET developers, feel free to skip this chapter. For
the rest of you, this chapter is designed to give you just enough history and background
to provide some foundation for your learning moving forward. We’'ll cover the
following topics:

e Abrief history of NET

e Modern .NET, a unified platform
e .NET schedule and what it means
e Howto explore .NET 6

e Recap of C#9 and introduction to C# 10

A Brief History of .NET

A .NET application is developed for and runs in one or more implementations of .NET.
Implementations include the .NET Framework, .NET Core, Mono, .NET 5 and now
.NET 6. There is an API specification common to several implementations of .NET,
called .NET Standard. This section introduces these concepts.

© Anthony Giretti 2022
A. Giretti, Beginning gRPC with ASP.NET Core 6, https://doi.org/10.1007/978-1-4842-8008-9_1

https://doi.org/10.1007/978-1-4842-8008-9_1

CHAPTER 1 WELCOME TO MODERN .NET

.NET Framework

Since Microsoft’s release of .NET 1, there have been nine releases of the .NET
Framework, with seven of them released with a new version of Visual Studio. Two

of these releases, .NET Framework 2.0 and .NET Framework 4.0, have upgraded the
Common Language Runtime (CLR), which runs .NET applications. When the CLR
version is the same, new versions of the .NET Framework replace older versions. .NET
Framework 4.8 is the latest version of the .NET Framework. Table 1-1 shows .NET
Framework releases from .NET 1 to .NET 4.8.

Table 1-1. All .NET Framework Versions Released

Version Release Date Visual Studio Version
1.0 (major version) 2/13/2002 VS.NET

1.1 (minor version) 4/24/2003 VS.NET 2003
2.0 (major version) 11/7/2005 VS 2005

3.0 (major version) 11/6/2006 VS 2005

3.5 (major version) 11/19/2007 VS 2008

4.0 (major version) 4/12/2010 VS 2010

4.5 (major version) 8/15/2012 VS 2012
4.5.1 (minor version) 10/17/2013 VS 2013
4.5.2 (minor version) 5/5/2014 VS 2015

4.6 (major version) 7/20/2015 VS 2015
4.6.1 (minor version) 11/30/2015 VS 2015
4.6.2 (minor version) 8/2/2016 VS 2017

4.7 (major version) 4/5/2017 VS 2017
4.7.1 (minor version) 10/17/2017 VS 2017
4.7.2 (minor version) 4/30/2018 VS 2017

4.8 (major version) 4/18/2019 VS 2019

CHAPTER 1 WELCOME TO MODERN .NET

The .NET Framework was designed to develop Windows-only applications, as

Windows is heavily reliant on the .NET Framework. Its successor, .NET Core, changed

that by becoming open source software and providing cross-platform support.

.NET Core

In June 2016, Microsoft announced the .NET Core project, an open source, cross-

platform successor with compatibility for Windows, macOS, and Linux. Since then,
Microsoft has released two significant versions, .NET Core 2.0 and .NET Core 3.0, both
of which have minor releases associated with them. .NET Core 3.1 is the latest version of
.NET Core and will be supported until December 2022. Table 1-2 shows the .NET Core

releases since 2016.

Table 1-2. All .NET Core Versions Released

Version

Release Date

Visual Studio Version

.NET Core 1.0 (major version)
.NET Core 1.1 (minor version)
.NET Core 2 (major version)
.NET Core 2.1 (minor version)
.NET Core 2.2 (minor version)
.NET Core 3.0 (major version)
()

.NET Core 3.1 (minor version

6/27/2016
11/16/2016
8/14/2017
5/30/2018
12/4/2018
9/23/2019
12/3/2019

VS 2015
VS 2017
VS 2017
VS 2017
VS 2019
VS 2019
VS 2019

In addition to .NET Core and .NET Framework, Microsoft also maintains the Mono

project, an open source implementation of Microsoft’s .NET Framework. Launched in

2004 to allow developers to create cross-platform applications easily, it’s based on the
European Computer Manufacturers Association (ECMA) standards for C# and the CLR.

Note ECMA is a European nonprofit organization responsible for defining IT
standards, both for hardware and software (programming languages), ECMAScript
being the most famous standard developed by this organization. ECMA is also
known for having developed the Near Field Communication (NFC) standard.

CHAPTER 1 WELCOME TO MODERN .NET

When it comes to API surface area, .NET Core 3 is not as robust as .NET Framework
4.8, a mature platform with a 15-year head start. However, Microsoft has added about
50,000 .NET APIs to the .NET Core platform to date. To continue closing this gap, Microsoft
has built on the efforts made with .NET Core and taken the best of Mono to create a unique
platform that you can use for all your .NET programs: .NET 5 and so on with .NET 6.

Microsoft has named this new version simply .NET 5 (and then .NET 6) so as not to
confuse developers, because it’s not the successor to .NET Framework 4.8.

.NET Standard

In 2011, Microsoft released the Portable Class Libraries (PCL), which are binaries that are
compatible with many frameworks. PCLs were a significant improvement because they
were supported by several runtimes such as Mono, Universal Windows Platform (UWP),
and .NET. In the meantime, it was hard to find information on what APIs were available
or not. To help with this confusion, .NET Standard was born.

.NET Standard is a bunch of APIs implemented by the Base Class Library (BCL).
It’s a specification of .NET APIs that proposes a unified set of contracts that you can
compile in your compatible projects. These contracts are implemented in several
.NET implementations. Various .NET implementations target specific versions of .NET
Standard. Table 1-3 shows the minimum implementation versions that support each
.NET Standard version.

Table 1-3. All.Net Standard Versions Supported by .NET Implementations

.NET Standard Versions 1.0 1.1 1.2 1.3 14 1.5 1.6 2.0 2.1

NET Core 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.1
NET Framework 4.5 4.5 451 46 461 46.1 461 461 NA
Mono 4.6 4.6 4.6 4.6 4.6 4.6 4.6 54 6.4
Xamarin.ioS 100 100 10.0 100 100 100 10.0 10.14 12.16
Xamarin.Mac 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.8 5.16
Xamarin.Android 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.0 10.0
uwp 10.0 100 10.0 10.0 10.0 10.0x 10.0x 10.0x N/A
Unity 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 2018.1 N/A

CHAPTER 1 WELCOME TO MODERN .NET

.NET 6 implements .NET Standard 2.1 (and earlier), which is not deprecated, but
.NET 6 (unified across platforms) is the new Microsoft implementation of .NET to share
code between .NET projects.

Modern .NET: A Unified Platform

Released in November 2020, .NET 5 is the next major evolution of .NET after .NET Core.
The later has been followed by .NET 6 released in November 2022. You can now create
various applications with the same runtime, allowing uniformity in the execution behaviors
of your .NET applications, all with a homogeneous development experience (single code
base). Therefore, code in your applications and your project files will look similar regardless
of the type of your project. To make all this possible, .NET 5 & NET 6 combines the best of
.NET Core and Mono. Figure 1-1 shows the unified ecosystem of .NET 5. In November 2021,
.NET 6 has came and offers everything that has been brought by .NET 5 plus huge features
like Multi-platform App UI (MAUI) and ahead-of-time (AOT) compilation.

NET — A unified platform

TOOLS

&

DESKTOP MOBILE

Xamarin MLMNET VISUAL STUDIO

NET for
Apache Spark

VISUAL STUDIO FOR MAC

3)

VISUAL 5TUDIO CODE

INFRASTRUCTURE

Figure 1-1. .NET 5/6 unified ecosystem (source: Microsoft)

Note .NET 5 was released after this diagram was released. Since then, Microsoft
pushed the launch of Xamarin in the .NET unified platform to .NET 6.

CHAPTER 1 WELCOME TO MODERN .NET

Mono and CoreCLR

We'll discuss two different development experiences with .NET: .NET with Mono and
.NET with CoreCLR.

Differences and Commonalities

Mono is the cross-platform implementation of .NET. It started as an open source
alternative to the .NET Framework and made the transition to targeting mobile devices
like iOS and Android much easier. Mono is the runtime used to run Xamarin. Mono
allows developers to run .NET applications cross-platform (even older game consoles
such as PlayStation 3 and Xbox 360) and provides powerful development tools for Linux.
Core Common Language Runtime (CoreCLR) is the runtime used as part of .NET Core.

.NET Core and Mono have a lot of similarities but also many differences. As a
developer, you have the capability to select the desired development experience you
want while making the switch from one to the other as straightforward as possible.

JIT

Since the beginning of .NET, .NET was based on a just-in-time (JIT) compiler to translate
Intermediate Language (IL) code into optimized code. Microsoft built an efficient,
high-performance runtime that made programming easy and efficient.

The default experience for most .NET 6 applications will use the JIT-based CoreCLR
runtime, but there are exceptions: Xamarin and Blazor WebAssembly. Microsoft delivers
AOT compilation for both projects in .NET 6.

Note AOT support has been planned for .NET 5 but finally postponed to .NET 6.

AOT

The Mono compiler is an AOT compiler that allows you to compile native code that can
be executed everywhere. The Blazor project uses Mono AOT compilation since .NET 6.
However, AOT compilation is required for Xamarin (Android/iOS) and gaming consoles
(Unity). AOT compilation is mostly intended for applications that need a quick start and
a small footprint.

https://en.wikipedia.org/wiki/Cross-platform

CHAPTER 1 WELCOME TO MODERN .NET

The Best of Both Worlds

Microsoft will invest effort in improving throughput and reliability in CoreCLR while
working further to improve bootability and memory consumption with the Mono AOT
compiler.

Since the effort is not identical in these aspects, this doesn’t mean that the
investment in others will be different. For example, the diagnostic capabilities must be
the same on .NET 6 for all kinds of diagnostics.

Finally, all .NET 6 applications will also build with the .NET command-line interface
(.NET CLI), providing developers the same command-line tools.

.NET Schedule and What It Means

.NET 6 will be supported in the long term (LTS release), unlike .NET 5, which is why many
companies have waited for .NET 6 instead of jumping on .NET 5. Only even-numbered
versions will be supported in the long term. Finally, Microsoft plans to release no (or
few) minor versions, and instead intends to release a major version of .NET once a year.

Figure 1-2 shows Microsoft’s .NET release cadence.

AR

Dec 2019 Nov 2020 Nov 2021 Nov 2022 Nov 2023
.NET Core 3.1 NET 5.0 NET 6.0 NET 7.0 NET 80
LTS Current LTS Current LTS

Figure 1-2. .NET release cadence (source: Microsoft)

To stay informed about upcoming releases, support information, and .NET release
schedules, visit the Microsoft page “NET and .NET Core Support Policy”: https://
dotnet.microsoft.com/platform/support/policy/dotnet-core.

How to Explore .NET 6

While this chapter aims to introduce you to .NET 6, this book will not cover this
framework in detail. The primary focus of this book is to help you learn how to begin
using gRPC and ASP.NET Core 6. However, I will list some notable improvements made

https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://dotnet.microsoft.com/platform/support/policy/dotnet-core

CHAPTER 1 WELCOME TO MODERN .NET

since .NET Core 3.1 and explain why they are so good, then show you how to install .NET
6 so you can take full advantage. Because .NET 5 is a lightweight version of .NET 6, I will
recap what .NET 5 introduced so that you understand why .NET 6 and its improvements
make it a modern .NET platform.

.NET 5 and 6 Improvements

Before .NET 5, Microsoft was responsible for maintaining about 100 repositories
between ASP.NET Core, .NET Core, and Entity Framework Core—making things quite
difficult. Microsoft has significantly simplified this by offering three consolidated
repositories; if you want to find out more about .NET 6 (or even contribute to the open
source projects), you can visit the following repositories, which will make it easier for you
to understand what'’s going on and what you can do if you want to contribute:

¢ The runtime, which combines the previous repositories dotnet/
corefx, dotnet/coreclr, and dotnet/core-setup (https://github.com/
dotnet/runtime)

e ASP.NET Core, which combines several repositories from the ASP.
NET organization (https://github.com/dotnet/aspnetcore)

e The .NET SDK, which combines the previous repositories dotnet/sdk
and dotnet/cli (https://github.com/dotnet/sdk)

In terms of performance, .NET 5 has several huge improvements, which makes .NET
6 (and 5) significantly faster:

e Much more efficient machine code generated by the JIT compiler.
While I can’t list them all here, the following is the GitHub repository
if you want to know more: https://github.com/dotnet/runtime

o Many improvements to the garbage collector (GC).
e Improved HTTP/1.1 and HTTP/2 performance.

o Improved performance of extensions on strings (two to five times
faster).

e Performance improvement for ARM64-type processors.

e Reduction in the size of container images such as Docker.

10

https://github.com/dotnet/runtime
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/sdk
https://github.com/dotnet/runtime

CHAPTER 1 WELCOME TO MODERN .NET

The list of other improvements is too extensive to include here. However, you can
check out the interesting links on Microsoft’s blog detailing their announcements as the
previews were released: https://devblogs.microsoft.com/dotnet/.

Regarding .NET 6 specifically, here is what it offers:

e Support of HTTP/3, which offers development opportunities in the

web world

o Unification of Xamarin through MAUI, which provides a unified .NET

experience across many devices

e AOT compilation in MAUI and Blazor, which makes applications
faster because the code is not compiled at the first application

execution (which can cause slowness)

o Hotreload, which allows you to modify your code without restarting

your app, making the development experience faster

Get Started with .NET 6

Now let’s take a quick tour of .NET. Before we get started, you will want to set up
your environment. If you haven’t already done so, go ahead and download Visual Studio
2022 from here: https://visualstudio.microsoft.com/vs/. The latter included all
what you need to get started, even the .NET 6 SDK.

Now that you have your environment set up, let’s begin by looking at the templates
you can use in Visual Studio 2022. Figure 1-3 shows the main Visual Studio project

creation window with all available project types.

11

https://devblogs.microsoft.com/dotnet/
https://visualstudio.microsoft.com/vs/

CHAPTER 1 WELCOME TO MODERN .NET

Create a new project

Recent project templates Al langusges = Al platforms

emplates will be
an empty 50

Other

Figure 1-3. Visual Studio 2022 main project creation window

Visual Studio 2022 introduced a great context menu to choose the language,
the project type, and the platform you want to use for your new project, as shown in
Figure 1-4.

12

CHAPTER 1 WELCOME TO MODERN .NET

All languages < Windows

All languages

Angular p

G creating an ASP.NET Core application with example ASP.NET
C++

S cOS Windows Cloud Service Web

JavaScript
Python App
Query Language creating a Blazor app that runs on WebAssembly and is

React n ASP.NET Core app. This template can be used for web apps

T rinterfaces (Uls).

Visual Basic c0S Windows Cloud Web
Vue
XAML

Figure 1-4. Visual Studio’s 2022 context menu

If you prefer, you can also use the .NET CLI to get the same information by opening a
terminal window and entering the following:

dotnet new --list

The output of this command is shown in Figure 1-5.

13

CHAPTER 1

B Admin: CAWINDOWS\system32 - Pow

WELCOME TO MODERN .NET

Shell 5.1 (52272)

C:\WINDOWS\system32> dotnet new --
These templates matched your input:

Template Name

Empty

gRPC Service
Core Web API

Core Web App

Core Web App (Model-View-Controller)
Core with Angular
ASP.NET Core with React.js
ASP.NET Core with React.js and Redux
Blazor Server App

Blazor WebAssembly App

Class Library

Console Application

dotnet gitignore file

Dotnet local tocl manifest file
EditorConfig file
global.json file

MSTest Test Project

MVC ViewImports

MVC ViewStart

NuGet Config

NUnit 3 Test Item

NUnit 3 Test Project

Protocol Buffer File

Razor Class Library

Razor Component

Razor Page

Solution File

Web Config

Windows Forms App

Windows Forms Class Library
Windows Forms Control Library
Worker Service

WPF Application

WPF Class library

WPF Custom Control Library
WPF User Control Library
xUnit Test Project

ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET
ASP.NET

C:\WINDOWS\system32>

Short Name

webapi

webapp, razor
mvc

angular

react
reactredux
blazorserver
blazorwasm
classlib
console
gitignore
tool-manifest
editorconfig
globaljson
mstest
viewimports
viewstart
nugetconfig
nunit-test
nunit

proto
razorclasslib
razorcomponent
page

s1ln

webconfig
winforms
winformslib
winformscontrollib
worker

wpf

wpflib
wpfcustomcontrollib
wpfusercontrollib
xunit

Language
(calFe
[c#)
[C#],F#
[c#]
[C#],F#
[C#)

[c#)

[C#)

[c#]

[C#)
[C#],F#,VB
[C#],F#,VE

[C#],F#,VE
[c#)
[c#)

[C#],F#,VB
[C#1,F#,VB

[C#]
[C#]
[C#]

[C#],VB
[C#],VE
[c#],VB
[C#],F#
[c#1,VB
[C#],VB
[c#],VB
[C#1,VB
[C#],F#,VB

Web/Empty
Web/gRPC
Web/WebAPL
Web/HVC/Razor Pages
HWeb/HVC
Web/MVC/SPA
Web/HMVC/SPA
Web/MVC/SPA
Web/Blazor
Web/Blazor/WebAssembly/PHA
Common/Library
Common/Console
Config

Config

Config

Config
Test/M5Test
Web/ASP.NET
Web/ASP.NET
Config

Test/Nunit
Test/NUnit
Heb/gRPC
Web/Razor/Library/Razor Class Library
Web/ASP.NET
HWeb/ASP.NET
Solution

Config
Common/WinForms
Commen/WinForms
Common/WinForms
Common/Worker/Web
Common /WPF
Common/WPF

Common /WPF
Common/WPF
Test/xUnit

Figure 1-5. All available project types and languages from the command line

Personally, I like both ways to create a project. Both are simple. Let’s now create a

new project named MyMVCApp, where -0 allows to specify the project name (and its

folder name), which uses an ASPNET MVC template with the command as seen here:

dotnet new mvc -o MyMVCApp

The command output is shown in Figure 1-6.

14

CHAPTER 1 WELCOME TO MODERN .NET

B E\Apps ~ PowerShell 5.1.18352.1110 64-bit (14800)

1 \Apps: dotnet new mvc -1 MyMVICApp
The tempidie “AsSP.NET Core wel app (Model-View-Controller)"” was created successfully.

This template contains technologies from parties other than Microsoft, see https://aka.ms/aspnetcore/5.0-third-par
ty-notices for details.

Processing post-creation actions...

Running 'dotnet restore’ on MyMVCApp\MyMVCApp.csproj...
Determining projects to restore..

Restored E:\#ppS\MyMVCApp\MWVCpr.cspr'oj (in 61 ms).
Restore succeeded.

E:\Apps>

Figure 1-6. The output generated after creating a new project with the .NET CLI

To confirm your project is set up to use .NET 6, you can build it by running the
following command:

dotnet build

Or, if you want to build and run your project, you can use the following command:

dotnet run

You can integrate the new Windows Terminal with Visual Studio. To enable it in

Visual Studio 2022, click the View menu and choose Terminal, as shown in Figure 1-7.

15

CHAPTER 1 WELCOME TO MODERN .NET

View Git Project Build Debug Test Anal
™1 Solution Explorer Ctrl+W, S
Git Changes Ctrl+0, Ctrl+G
Git Repository Ctrl+0, Ctrl+5
Team Explorer Ctrl+\, Ctrl+M
Server Explorer Ctrl+W, L
Cloud Explorer Ctrl+\, Ctrl+X
SQL Server Object Explorer Ctrl+\, Ctrl+S
Test Explorer Ctrl+E, T

Call Hierarchy Ctrl+W, K
Class View Ctrl+W, C
Code Definition Window Ctrl+W, D
Object Browser Ctrl+W, J
Error List Ctrl+W, E
Output Ctrl+W, O
Task List Ctrl+W, T
Toolbox Ctrl+W, X
Notifications Ctrl+\. Ctrl+N
Terminal Ctrl+"
Other Windows

Toolbars
Full Screen Shift+Alt+Enter

Navigate Backward

Next Task

Previous Task

Properties Window Ctrl+W, P
Property Pages Shift+F4

Figure 1-7. Enabling the new Windows Terminal in Visual Studio 2022

Once completed, the terminal window appears in the bottom panel. Then, you'll be
able to run any command you want—such as PowerShell, Git, and CLI commands, as
shown in Figure 1-8.

16

CHAPTER 1 WELCOME TO MODERN .NET

Developer PowerShell

+ Developer PowerShell ~ [} [&

e e R T E T s

** Visual Studio 2022 Developer PowerShell v17.0.0

** Copyright (c) 2021 Microsoft Corporation

EEEEEXXEER XXX EE R R R R R R R R R XX R F R R R AR R R XX R R XXX R R R KRR R R R RRREREKE
C:\Users\antho\source\repos> cd MyMVCApp
C:\Users\antho\source\repos\MyMVCApp> dotnet run

Figure 1-8. Running a command in the terminal window

It's is my favorite feature because I don’t need to open a new window on my
computer. I don’t know about you, but I find it a bit annoying to deal with multiple
windows. On Visual Studio, no problem! The Terminal is integrated into the existing
menu, positioned by default at the bottom of the menu, and you can easily drag it and
drop it elsewhere!

Recap of C# 9 and Introduction to C# 10

We can’t discuss the C# language without mentioning the latest updates with C# 9 and
C# 10. Although this isn’t a C# programming book, I'll help you discover the new features
because most of my examples use C# 9 and C# 10 features. Going into detail about each
version of C# is beyond the scope of this book, so I strongly recommend that you visit
this web page that describes all the C# versions and their main features: https://docs.
microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history.

Recap of C# 9

Here are the most important improvements introduced in C# 9:
o Init-only properties
e Records

o Improved pattern matching

17

https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history

CHAPTER 1 WELCOME TO MODERN .NET

o Improved target typing
¢ Covariant returns

e Static anonymous functions

Init-Only Properties

C#9introduced an init accessor, a variant of the set accessor. This accessor allows
properties to be assigned once during object initialization. If you apply this accessor to
all the properties of your object, it makes the object immutable. If you try to reassign a
property initialized with this accessor, the compiler will warn you of an error. Listing 1-1
shows an example of a Product class with its immutable CategoryId property; this code
could be created in any C# project.

Listing 1-1. Product Class with CategoryId Property and Its init Accessor

using System;
namespace CSharp9Demo.Models

{
public class Product
{
public string Name { get; set; }
public int CategoryId { get; init; }
}
}
Records

C# 9 added a new record keyword. A record makes it possible to create an immutable
reference type object (either with the init accessor or a primary constructor) and give it
a value type object for comparison. Listing 1-2 shows an immutable record with init-
only properties, and Listing 1-3 shows an immutable record with a primary constructor.

18

