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Foreword

This book is a product of the authors’ five decades of combined experiences in the research and
development of power flow control technology. The traditional power grid as we know it is chan-
ging drastically. Mega-sized wind and solar projects are being integrated into the traditional major-
ity carbon-based power grid in order to curb the production of greenhouse gases significantly.
Power systems of today were designed based on central generating stations and transmission and

distribution lines to get the energy to the loads. However, with land-based and off-shore wind plants
and distributed and utility-scale solar plants being connected to the grid, the old paradigm does not
work since the geographic locations of the renewable resources do not in general coincide with the
traditional generating plants. There is a need for the T&D systems to be revisited and modified/
upgraded for the new power flow regimes. The line impedances that were tuned or optimized to
serve certain flow patterns may now hinder delivery of the renewable energy to the desired desti-
nations. The intermittent nature of the renewable energy sources brings additional challenges to
system frequency and voltage control and to adopting the needed dynamic capability and the ability
to control power flows bidirectionally at the right price. This can be mitigated with impedance reg-
ulation in strategically-selected transmission corridors. Furthermore, in many localities there are
no new right-of-ways (ROWs), and rebuilding is limited to existing ones. Even though rebuild could
be inevitable, flow control may help in some scenarios and may be much more economical.
The key to a clean energy transition depends on the electric grid’s ability to generate and distrib-

ute renewable energy through the transmission and distribution system. The intermittency of sup-
ply and bidirectional flows, coupled with the remote locations of solar and wind projects, are
challenging grid planners and operators. Even before we have reached large penetration of renew-
ables, forecasters are factoring renewable curtailment as a major strategy to balance supply and
demand, which adversely impacts the economics of the projects.
The concept of a SMART Power Flow Controller, developed in this book, is based on impedance

management of the transmission line, which will be essential to (1) building the capacity to inte-
grate and expand the use of clean distributed energy resources, (2) pursuing efficient asset utiliza-
tion and reducing system losses, (3) facilitating greater transfer of clean energy from generation
sites to load centers, and (4) improving grid reliability and resiliency. This technology can be cus-
tomized, based on the required range and speed of operation, component non-obsolescence, ease of
relocation, and interoperability.
This book starts with the derivation of the fundamentals of power flow in an AC transmission line

and develops various solutions that can be used to enhance power flow while reducing the losses in
AC transmission lines. The book builds on the evolution of power flow controllers in AC transmis-
sion systems covering the theory, modeling, and various applications. The subject is treated from
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the working engineers’ point of view. After reading the appropriate parts of this book, students,
teachers, and practicing engineers will be able to conduct studies of power system networks to
mitigate their unique power flow problems.
The book’s unique contribution is that it

• provides the basic theory and the step-by-step explanation of various power flow controllers;

• offers modeling techniques that are essential to electric utilities when conducting the needed
studies and analysis;

• provides computer codes in the most widely-used Electro-Magnetic Transients Program (EMTP)
formats;

• describes a new class of power flow controllers, based on the transformers/Load Tap Changers
(LTCs) technology, developed by the authors and named the Sen Transformer (ST).

It is important to emphasize that the ST offers the equivalent control features of two devices –
Phase Angle Regulator (PAR) and Voltage Regulator (VR) – for almost the price of one. If one pur-
chases a PAR, which offers the phase angle or active power flow control only, the ST offers the
added voltage or reactive power flow control capability with perhaps a small additional cost.
The low-cost power flow control technology, such as ST, is of interest to utilities because of its
simplicity, compared to power electronics inverter-based Unified Power Flow Controller.
I believe that the Sens’ inventions are fundamental contributions toward the advancement of

low-cost electric power flow control technology. A simulation model of the ST has already been
developed in PSS/E, the most widely used load flow software, and the report is given in
Appendix C. As an application example exercising the PSS/E model, it was verified that the ST per-
formed as the most suitable candidate for power flow enhancement in a segment of the Chilean
network. Also, a distribution-level Chinese demonstration of a 10-kV unit of ST confirmed the
anticipated performance of the ST.
The topic of power flow control is of great interest to many power engineering professionals, util-

ity engineers, large power equipment manufacturers, university professors, and students. The spe-
cialty of the book is that it develops the modern power flow control theories from the basics and
supplements the theory with relevant computer models using the most widely used simulation
software – EMTP and PSS/E. This book expands upon what the authors had presented in their last
book, titled Introduction to FACTS Controllers – Theory, Modeling, and Applications.
In summary, the subject of power flow control cannot be overstressed; it is a very important topic

to the electric power industry and electric utilities, particularly in today’s environment. Due to the
current need for integrating renewable energy sources into the grid reliably to reduce the carbon-
based generation, electric utilities are seriously considering all available technical solutions. This is
a timely book that gives the reader clear instructions on how to model, design, build, and evaluate
power flow controllers. It supplements nicely the very few existing books. I realize that this book is
practical, hands-on, and a true guide for the practicing engineers. The book gives significant
amounts of detail in modeling and presentation that will be much appreciated by researchers/engi-
neers in the field.
Since the 1990s, I have been interacting with Dr. Kalyan Sen on Flexible Alternating Current

Transmission Systems (FACTS)-related projects. As the Lead Simulation Engineer at Westing-
house, Dr. Sen developed the FACTS models, which were essential for performing the feasibility
study of the Convertible Static Compensator (CSC) FACTS project before its installation at the
New York Power Authority (NYPA) Marcy 345 kV substation in central NY.
I have read this book with great interest. It is a work of love, written by two spouses who spent

their entire careers in developing a much-needed power flow control technology that can help
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utilities worldwide to plan and operate their power grids. The specialty of the Sens’ book is that it
is coauthored by an engineer who actually designed and commissioned a number of power
electronics-based FACTS controllers at Westinghouse since their inceptions in the 1990s. There-
fore, the book includes a flavor of practical relevance. This book is going to aid the transformational
change that is taking place in the electric utility industry worldwide.

White Plains, New York Bruce B. Fardanesh Ph.D.,
IEEE Life Fellow

Vice President, System Planning & Analysis
New York Power Authority
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Nomenclature

β Relative phase angle of the series-compensating voltage with respect to the
sending-end voltage

δs Phase angle of the voltage at the sending end of a line
δr Phase angle of the voltage at the receiving end of a line
δ Power angle (difference of phase angles of the voltages at the two ends of a line)
δ Modified power angle (difference of phase angles of the voltages at the two

ends of a line after compensation)
δ l Lowest modified power angle
δ h Highest modified power angle
ε Least error of the calculated voltage and actually-tapped voltage in the Sen

Transformer
θ Phase-locked loop (PLL) angle
θI Phase angle of the line current
θVX Phase angle of the voltage across the line reactance
ο Degree
φ Power factor angle
ϕ Phase angle between the voltage across the line reactance and the voltage

difference between the sending and receiving ends
ω Angular frequency
ψ Phase-shift angle of the modified sending-end voltage with respect to the

sending-end voltage
Ω Unit of resistance, reactance, and impedance
a1-b1-c1 Series-compensating windings in the A phase of ST
a2-b2-c2 Series-compensating windings in the B phase of ST
a3-b3-c3 Series-compensating windings in the C phase of ST
A-B-C Exciter windings of ST
A1-B1-C1 Shunt-compensating windings in the A phase of ST
A2-B2-C2 Shunt-compensating windings in the B phase of ST
A3-B3-C3 Shunt-compensating windings in the C phase of ST
A Ampere (unit of current)
AC Alternating Current
ANSI American National Standards Institute
apr Instantaneous apparent power rating
APR Apparent Power Rating
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ATC Available Transfer Capability
b Multiplier of VXn from 0 to 1
BPS Bulk Power System
BTB-SSSC Back-To-Back SSSC
BTB-STATCOM Back-To-Back STATCOM
BYPBRK Bypass breaker
C Capacitance
cos(φ) Power factor
cp Compensating points of the Sen Transformer
CSC Convertible Static Compensator
cr, cs , cse Intercept
d Duty cycle
DC Direct Current
DCLS DC Link Switch
E Shunt- or series-connected voltage
EHV Extra High Voltage
ES Electronic Switch
F Farad (unit of capacitance)
FACTS Flexible Alternating Current Transmission Systems
FC Fixed Capacitor
GaN Gallium Nitride
GHG Green-House Gas
GPFC Generalized Power Flow Controller
GST Generalized Sen Transformer
GTO Gate-Turn Off
H Henry (unit of inductance)
HV High Voltage
Hz Hertz (unit of frequency)
i Instantaneous current, such as line current (i), exciting current (iex), sending-

end current (is), source current (isrc), and so on
I Line current magnitude
I Line current
IBR Inverter-Based Resource
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
Iex Exciter current through the primary winding of the Sen Transformer
IPFC Interline Power Flow Controller
In Natural line current magnitude
IR Impedance Regulator
Is Current at the sending end of the line
Isrc Source current
ITCR Current through Thyristor-Controlled Reactor
k Number of TCSC sections
kHz Kilo Hertz (unit of frequency)
kR Factor, representing the ratio of line resistance, R, when line current is I and

the line resistance, Rn, when line current is In.
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L Inductance
LTC Load Tap Changer
LV Low Voltage
MC Magnetic Circuit
mr, ms , mse Slope
ms Millisecond
MST Multiline Sen Transformer
Mvar Mega VAR (unit of reactive power)

n (subscript) Natural
NC Normally-Closed
NERC North American Electric Reliability Corporation
NO Normally-Open
p Three-phase instantaneous active power
P Active power
PAR Phase Angle Regulator
Plinen Power loss in the natural or uncompensated line
Plink Active power on the common link
Pr Active power at the receiving end of the line
Prh Highest active power at the receiving end of the line
Prl Lowest active power at the receiving end of the line
Prn Natural active power at the receiving end of the line
Ps Active power at the sending end of the line
Pse Exchanged active power by a Series Unit
Psh Exchanged active power by a Shunt Unit
Psn Natural active power at the sending end of the line
Psrc Active power at the source
Ps Active power at the modified sending end of the line
PFC Power Flow Controller
POC Point of Connection to the utility
PST Phase-Shifting Transformer
pu Per unit
q Three-phase instantaneous quadrature power
Q Quality factor
Q Reactive power
QB Quadrature Booster
Qlinen Reactive power absorbed by the natural or uncompensated line
Qlink Reactive power on the common link
Qr Reactive power at the receiving end of the line
Qrh Highest reactive power at the receiving end of the line
Qrl Lowest reactive power at the receiving end of the line
Qrn Natural reactive power at the receiving end of the line
Qs Reactive power at the sending end of the line
Qse Exchanged reactive power by a Series Unit
Qsh Exchanged reactive power by a Shunt Unit
Qsn Natural reactive power at the sending end of the line
Qsrc Reactive power at the source
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Qs Reactive power at the modified sending end of the line
rk Voltage error at a possible kth operating point in the Sen Transformer
R Line resistance
R Resistance of a section of a line
Reff Effective line resistance
ROM Rough-Order Magnitude
RMS Root Mean Square
RR Reactance Regulator
Rse Series-compensating resistance
Rsh Shunt-compensating resistance
s Second
S Apparent power
SiC Silicon Carbide
SMART Specific, Measurable, Attainable, Relevant, and Time-bound
SPFC SMART Power Flow Controller
Sr Apparent power at the receiving end of the line
Ss Apparent power at the sending end of the line

se (subscript) Series-exchanged, i.e. cse, mse, Pse, Rse, Xse, Qse, Zse

Sse Exchanged apparent power by a Series Unit

sh (subscript) Shunt-exchanged, i.e. Psh, Rsh, Xsh, Qsh, Zsh

Ssh Exchanged apparent power by a Shunt Unit
SSSC Static Synchronous Series Compensator
Ss Apparent power at the modified sending end of the line
ST Sen Transformer
STATCOM STATic synchronous COMpensator
SVC Static Var Compensator
SynCon Synchronous Condenser
t Time
TCR Thyristor-Controlled Reactor
THD Total Harmonic Distortion
TNA Transients Network Analyzer
TSC Thyristor-Switched Capacitor
TSR Thyristor-Switched Reactor
TTC Transmission Transfer Capability
UHV Ultra High Voltage
UPFC Unified Power Flow Controller
UPS Uninterruptible Power Supply
v Instantaneous voltage
V Phase voltage magnitude
V Phasor voltage
V Volt (unit of voltage)
va volt-ampere (unit of instantaneous apparent power)
VA Volt-Ampere (unit of apparent power)
VAR Volt-Ampere Reactive (unit of reactive power)
VR Voltage Regulator
VRT Voltage-Regulating Transformer
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VSC Voltage-Sourced Converter
Vd Voltage across the compensating resistance
Vdq Voltage across the compensating impedance
Vq Voltage across the compensating reactance
Vr Voltage at the receiving end of the line
Vs Voltage at the sending end of the line
Vs Voltage at the modified sending end of the line
Vs h Highest voltage at the modified sending end of the line
Vs l Lowest voltage at the modified sending end of the line
Vs s Series-compensating voltage
VR Voltage across the line resistance
VRn Natural voltage across the line resistance
VR,X Voltage across the line impedance Z = R + jX
VRn,Xn Natural voltage across the line impedance Z = R + jX
VX Voltage across the line reactance
VXn Natural voltage across the line reactance
W Watt (unit of active power)
WECC Western Electricity Coordinating Council
X Line reactance (total)
X C Capacitive reactance of a section of a line
Xeff Effective line reactance
X L Inductive reactance of a section of a line
Xse Series-compensating reactance
Xsh Shunt-compensating reactance
Zse Series-compensating impedance
Zsh Shunt-compensating impedance
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Preface

Both authors have been involved in exploring various power flow controllers since the early 1990s.
Kalyan Sen developed power electronics inverter-based Flexible Alternating Current Transmission
Systems (FACTS) models while working at Westinghouse where pioneering development of
FACTS products took place. Note that a forced-commutated inverter with a DC link capacitor is
also referred to as a Voltage-Sourced Converter (VSC). Being an active contributor through patents,
publications, design, and commissioning of much-advertised FACTS controllers since its inception
in the 1990s, Kalyan has a first-hand knowledge of specific applications where the inverter-based
controllers are the desirable solutions and where these solutions are not suitable at all. He has writ-
ten an award-winning technical committee paper on the modeling of Unified Power Flow Control-
ler (UPFC) in the IEEE Transactions on Power Delivery. Mey Ling Sen explored an alternate
approach to the VSC-based FACTS Controllers that is cost effective while meeting functional
requirements for most utility applications. This effort led to the concept of the Sen Transformer
(ST). The ST is fundamentally different from the conventional transformer, in a sense that it uses
three primary windings and nine secondary windings to create a compensating voltage that modi-
fies the line voltage to be a specific magnitude and phase angle, whereas the conventional trans-
former only modifies the magnitude of the line voltage. As a result, by using an ST, the active and
reactive power flows in the line can be regulated independently to maximize the revenue-
generating active power flow and minimize the reactive power flow while maintaining the stability
of the line voltage.
Since 2002, Kalyan has traveled around the world as an IEEE Distinguished Lecturer and lec-

tured in more than 150 places in 15 countries. When he gives a presentation on power flow con-
trollers, his approach is to start from the basics and lead up to the advanced concept of VSC-based
FACTS Controllers and ST. His emphasis is based on real-world experience in modeling, simula-
tion, design, and commissioning. He was requested in many places to compile his lecture material
in the form of a book, which resulted in the publication of Introduction to FACTS Controllers: The-
ory, Modeling, and Applications in 2009. At the inception of the FACTS development in the 1990s,
the main concerns were the high installation and operating costs of the FACTS Controllers. Over
the decades, the list of drawbacks has expanded to include component obsolescence, costly main-
tenance, lack of trained-labor, impracticability of relocation and lack of interoperability. A desired
feature of a Power Flow Controller (PFC) is that it is easily relocatable to wherever it is needed the
most, since the need for power flow control may change with time due to new generation, load, and
so on. Interoperability is desired so that components from various suppliers can be used, resulting
in a global manufacturing standard, ease of maintenance, and ultimately lower cost to consumers.
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The utilities are searching for a suitable power flow controller that offers its inherent features:
simplicity, operational reliability, cost-effectiveness, component non-obsolescence, high efficiency,
low maintenance, ease of relocation, and interoperability to meet their immediate needs to relieve
grid congestion due to overload, peak load demand, and integration of renewable energy sources
into the grid. The ST combines the best features of the FACTS controllers in terms of the ability to
independently control active and reactive power flows while using time-tested and reliable trans-
former/Load Tap Changers (LTCs) technology that are familiar to the utilities worldwide for
almost a century. More on LTCs can be found in the book, titled On-Load Tap-Changers For Power
Transformers: Operation, Principles, Applications and Selection, by A. Krämer, Maschinenfabrik
Reinhausen, 2000.
Power transformers are the workhorses that make transmission and distribution of AC electric

power possible. Transformers step up the generator voltage (e.g. 25 kV) to the transmission level
(e.g. 345 kV) and step down to distribution level (e.g. 13.8 kV) and, finally, to household utilization
voltage (e.g. 120/240 V). With the addition of an LTC under load, transformers can easily regulate
voltage. Specialty transformers, such as Phase Angle Regulators (PARs), can also regulate phase
angle of the line voltage. The ST can regulate both the voltage magnitude and the phase angle
simultaneously; as a result, the active and reactive power flows through the line can be controlled
independently as desired.
The primary goal of this book is to present the fundamentals so that readers can retain the infor-

mation clearly in their minds and provide a meaningful input in the selection process of adopting a
particular solution. The book describes various concepts that are applicable to electric power indus-
tries. The concepts can be applied using traditional non-power electronics-based solutions and
modern power electronics-based solutions or some hybrid of traditional-modern solutions. The rea-
son for the primary goal is that a particular solution becomes obsolete as time progresses; however,
the fundamental concepts remain the same.
Early power flow controllers employed basic technologies, such as transformers, capacitors, and

reactors for the compensating voltage injection into the line. Later designs used power electronics to
achieve much greater flexibility and optimization through an independent control of active and
reactive power flows. When the first generation of power flow controllers, based on power electron-
ics VSCs, were built in the 1990s, the Gate-Turn-Off thyristor (GTO) was the forced-commutated
semiconductor switch of choice because of its availability in high power rating (4500 V, 4000 A) and
its low forward voltage that resulted in low conduction loss. Early FACTS Controllers used VSCs
with GTOs, switching once-per-cycle that resulted in the lowest switching loss and the lowest over-
all loss of about 1% of the rating of the VSC. These VSCs used special transformers to employ har-
monic-neutralized techniques and produced high-quality AC waveforms without using filters. The
inherent nature of a GTO is its relatively longer turn-on and turn-off times. More commonly used
modern Pulse Width Modulation (PWM) techniques are based on instantaneous turn-on and turn-
off of a switch. A voltage waveform that is created with a PWM technique consists of a fundamental
component of interest and harmonic components, the dominant of which is related to the ratio of
the switching and the fundamental frequencies. A higher switching frequency is desirable, because
the higher dominant frequency requires a reduced-sized filter. To keep the sum of turn-on and
turn-off times of a GTO to be less than 1% of the switching period, it would result in only several
hundred Hz of switching frequency. This would require a fairly large-sized output filter to eliminate
the unwanted low-order harmonic components, generated by a force-commutated inverter.
About a decade later, the VSC of choice started to use Insulated Gate Bipolar Transistor (IGBT)-

based PWM techniques. An IGBT offers shorter turn-on and turn-off times, which is less than 1% of
the switching period that results in a switching frequency of several kHz. A lower switching period
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means a higher switching frequency and higher order harmonic components that are not of signif-
icant interest, since they do not generate significant amount of harmonic currents for two reasons;
first, higher order voltage harmonic components are lower in magnitudes and second, the higher
order voltage harmonic components “see” higher reactances for a given inductance. However,
some filtering may still be needed, since switching frequency could not be increased to the desired
level in some cases due to generation of excessive losses (3–4% of the rating of the VSC) as a function
of the increased switching frequency. Another decade later, the topology of choice has becomemul-
tilevel VSCs that do not need any harmonic filtering. While the topologies of VSCs are changing, so
are the semiconductor switching devices. The upcoming switches are based on silicon carbide (SiC)
and gallium nitride (GaN) for desirable reasons, such as high-speed operation, which results in
lower turn-on and turn-off times, thus lower switching loss, high-temperature operation, lower
cooling requirement, and smaller circuits for the gate drive and the snubber. A higher switching
frequency creates a higher Electro-Magnetic Interference (EMI), which requires the use of an addi-
tional EMI filter. The fact is that with various advances in the power electronics technology and
semiconductor switches, the FACTS controllers become obsolete in a relatively few years and as
a result, a one-to-one component replacement becomes impossible in 10–15 years. In the utility
world where 45–50 years of equipment life is the norm, this means the entire power electronics
inverter-based FACTS installation may need to be replaced several times in those 45- to 50-year
period. In addition, simple maintenance requires highly skilled personnel that are not readily avail-
able. The global standard and interoperability do not exist due to a limited number of manufac-
turers. This is a highly expensive proposition perhaps two orders of magnitude more than a
long-lived and easily maintained transformer/LTCs-based technology, such as ST.
Today’s power grid has evolved into integration of inverter-based, renewable-sourced, electricity

generation from solar and wind farms, which are intermittent in nature. Therefore, traditional
steady-state power flow controllers, such as series-connected reactor/capacitor concepts, need to
be updated with an improved dynamic response. Additionally, increasing installation of roof-top
solar and its integration into a low-voltage distribution network has altered the traditional voltage
profile in the distribution network and increased the need for a bidirectional power flow controller
when the renewable generation is not available. Therefore, all available solutions need to be con-
sidered for future needs, which has led to the concept of SMART Controllers.
A considerable amount of effort has been put into modeling various controllers. Modeling is the

only approach, before any hardware construction, for the verification of the performance of any
concept. The book includes models of many controllers, developed using a freely available Elec-
tro-Magnetic Transients Program (EMTP) software package.
The book is divided into six chapters and three appendices. Chapter 1 presents the origin of power

flow controllers and guides the reader to the selection process of a SMART Power Flow Control-
ler (SPFC).
Chapter 2 is for anyone who would like to become familiar with the subject. It discusses various

topics of the book in simple electrical engineering terms and corroborates the theory with relevant
mathematics. The characteristic equations of various power flow controllers, including their equiv-
alent compensating impedances, are developed. Using these equations, a set of example problems is
given, which gives a quick back-of-the-envelope calculation results without much effort. A figure of
merit, called Sen Index, is defined for all the Power Flow Controllers (PFCs).
Chapter 3 presents the fundamentals of modeling in EMTP and explains the basic differences of

modeling various PFCs, such as the Voltage-Regulating Transformer (VRT), Phase Angle Regulator
(PAR), Unified Power Flow Controller (UPFC), and Sen Transformer (ST). Following the Rough-
Order Magnitude (ROM) calculations performed in Chapter 2, using simple equations to
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characterize a power flow solution, the ROM results may need to be refined by employing the mod-
eling techniques developed in Chapter 3. An example simulation of a series-compensating voltage is
shown to emulate a VRT, a PAR, and an Impedance Regulator (IR).
Chapter 4 presents the transformer-based PFCs and gives some baseline examples for comparison

with other PFCs in the following chapters. It is shown how a VRT and a PAR may be modeled by
using a series-compensating voltage.
Chapter 5 presents some early PFCs that usemechanical switches and set some baselines for com-

parison in the following chapters. It is shown how tomodel a virtual impedance that is equivalent to
shunt-connected and/or series-connected inductive and/or capacitive compensators.
Chapter 6 presents the evolution of an ST and its wide variety of applications. Themost up-to-date

advancements in ST are described in this chapter. This includes various forms of two-core designs.
Also included is a new factory-test method under full power.
Appendix A describes the operation of various items, such as (1) three-phase balanced and unbal-

anced voltage, current, and power; (2) symmetrical components; (3) d-q transformation; and (4)
Fourier analysis. The reader will find it useful to see the industry techniques and the relevance
of the theory and applications.
Appendix B presents the power flow control equations in a lossy line and compares the derived

results from those in Chapter 2 for lossless lines. Simpler versions of these equations are derived in
Chapter 2, considering the line resistance (R) is zero. These examples will be used as future refer-
ences for those involved with PFCs. For the readers to recognize the importance of the equations
and example solutions presented in Chapter 2, a list of all the “Examples” is placed at the end of
Appendix B. Using the information received from Supervisory Control And Data Acquisition
(SCADA) about the sending- and receiving-end voltages (Vs and Vr) and active and reactive power
flows (Pr and Qr), other power flow variables, such as the power angle (δ), can be calculated for a
known line impedance (Z = R+ jX).
Appendix C presents a load flow study of the Chilean network, integrated with Sen Transformer,

performed by Siemens PTI and sponsored by New York Power Authority.

Pittsburgh, Pennsylvania Kalyan K. Sen
Mey Ling Sen
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