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Preface

This book is conceived for engineers and technicians operating in various industrial fields. It is also
for students of mechanical, production, and other related disciplines in engineering to facilitate
understanding of fundamentals of measurements, instruments and governing rules followed by
learning various shop-floor required measurement techniques.

The book introduces basic needs from math, statistics, and measurement principles. It discusses
errors and their sources in manufacturing while describing the various measurement instruments.
Simple physical parameters such as force, torque, strain, temperature, and pressure are explained.
The subsequent chapters cover tolerance stack-ups, GD&T, calibration principles in various aspects
of manufacturing, and quality standards. ASME and ISO are cited according to needs and to cor-
responding knowledge throughout the book. Each chapter ends with a set of MCQs with answer
tables to help prepare technicians and engineers for various qualification diplomas and certificates.
The book adopts an illustrative approach to explain the concepts with solved examples to support
understanding.

Chapter 1 of the book introduces the fundamental units and constants needed in metrology sup-
ported by the international vocabulary of metrology and international standards.

Chapter 2 emphasizes metrology that covers all scales, starting from nanoscale to large scale. Dif-
ferences and relationships between scales are introduced to understand the differences and possible
complementarity, while Chapter 3 introduces basic math and science background mainly to refresh
memories and be a reference in case there is a need to check information. Math and science are of
great importance when dealing with measurement since the inception of humanity.

Chapter 4 defines the error and its various possible sources: how error propagates in measure-
ment, errors associated with motion, error classification, and error elimination. An estimation of
error, or uncertainty analysis, is a tool for determining the performance capability of machine tools
and highlighting potential areas for performance and cost improvement.

In Chapter 5, the measurement and quantification are the fundamental concepts of metrology,
including the measurement system characteristics. This considers explicit and internationally
accepted definitions, principles, and standards. The purpose of any measurement system is to
provide the user with a numerical value corresponding to the variable being measured by the
system. What are the international related standards? Examples of length measurement, parts,
and machine inspection with reverse engineering are provided.

One of the most significant chapters is Chapter 6 as it introduces the tolerance stacks analy-
sis methods. This chapter establishes uniform practices for stating and interpreting dimensioning,
tolerancing, and related requirements for use on engineering drawings and in related documents
under ASME Y14.5.1. A brief introduction to geometric dimension and tolerancing is followed by
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tolerance stacks. This is to assign the right tolerances and to make sure that no unnecessary tight
tolerance is selected, leading to costly manufacturing.

Chapter 7 introduces the principles and fundamentals of calibration under the international stan-
dards definitions and agreements. It tackles real calibration of machines and instruments in detail
for understanding of the process.

Chapter 8 discusses the uncertainty based on the international standards and recent develop-
ments followed by the propagation of error with real-world examples. The doubt surrounding this
measurement is the uncertainty of measurement. The background and fundamental definition of
uncertainty and error will be discussed later based on international standards with all aspects in
general practice.

Mechanical measurement for length and others are discussed in two chapters.
Chapter 9 covers some of the instruments used for displacement and length measurements. From

length measurement and calibration of instruments such as micrometers, calipers, gages, or tape
measures, to high-tech optics-based scales and comparators. The industrial leading dimensional
instrument calibration capabilities are available and well designed to reduce risk and inaccuracy
in measurements. Chapter 10 covers mechanical instruments measuring other than length mea-
surands. The chapter discusses calibration-related techniques. These are fundamental basis instru-
ments that may be needed by any engineer at any time.

Thermodynamic properties of any material or solution are treated in Chapter 11. They are valu-
able not only for estimating the usefulness of the material or the feasibility of reactions in solution,
but they also provide one of the best methods for investigating theoretical aspects related to the
material or solution structure. Thermal properties of materials can be measured directly or indi-
rectly. This includes temperature, developed pressure, calorimetry, and thermal conductivity.

Chapter 12 covers quality management and metrology since they are important components in
metrology labs and manufacturing enterprises. This chapter introduces the definition of most com-
ponents of quality with the related international standards with an overall organization of the lab
requirement.

Contemporary digital metrology is discussed in Chapter 13. Digital metrology and its relationship
to manufacturing and I4.0 are introduced. This chapter covers the digitalization, automation, and
measurements that are becoming extremely important in this era of digital manufacturing and dig-
ital twins metrology (DTM). The measurement system is a combination of real-time control system
and system for data transmission. Digital computing is the tool for data processing. The technology
readiness for most measurement instrumentation exists together with virtual instruments capable
of building further the DTM. Since several apps for smart phones have been developed, the last
appendix gives a short presentation of 38 apps.

About the Website Materials

This book has an online appendices extension covering smart phone Apps related to various metrol-
ogy aspects discussed in the book and found in Appendix A, and a technical terms glossary in
Appendix B. The link is www.wiley.com\go\mekid\metrologyandinstrumentation.

http://www.wiley.com/go/mekid/metrologyandinstrumentation
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Fundamental Units and Constants in Metrology

“When you can measure what you are speaking about and express it in numbers, you know
something about it.”

—Lord Kelvin (1883). Source: Public Domain.

1.1 Introduction

Metrology is the science of measurement with various applications. It is derived from the Greek
words metro – measurement and Logy – science. The BIMP (Bureau of Weights and Measures in
France) defines metrology as “the science of measurement embracing both experimental and the-
oretical determinations at any level of uncertainty in any field of science and technology.”

Five pivots define the functions of metrology:

1) To establish the units of measurements;
2) To replicate these units as standards;
3) To guarantee the measurement uniformity;
4) To develop measurement methods;
5) To investigate the accuracy of methods-related errors.

Based on this, the objectives of metrology are:

1) Selection of proper measuring instrument;
2) Proper measuring standards;
3) Minimizing inspection cost;
4) Defining process capabilities;
5) Standardization;
6) Maintaining accuracy and precision during inspection or as component of an instrument over

time of use [1].

Therefore, two types of metrology exist:

1) Deterministic, or industrial, metrology.
2) Legal, or scientific, metrology.

Measurement is the process of revealing a single or multiple values to the characteristics of an
object or property by conducting experiments to determine the value of this particular property.
These properties may be physical, mechanical, or chemical, such as length, weight, force, strain,
volume, angle, and molls.
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Figure 1.1 Simplified methodology producing measurement results.

Metrology also includes precision, repeatability, and accuracy, which refers to how accurate
the measured value is. It establishes a well-known understanding of the measuring process
and the related units that are critical in connecting various human activities and ensures that
these measurements are linked to reference standards, which is commonly referred to as trace-
ability. For as long as civilization has existed, measurements have been taken. It is necessary for
a country’s economic and social development. It provides precise measurements that have an
impact on the economy, health, safety, and general well-being. It could also be a legal problem.
As a result, the topic is always in demand.

This chapter will introduce the fundamental units and constants in metrology through conver-
sions between units and systems. To put measurements into context, a complete methodology of
the act of measurement beginning with the object to measure and ending with the result that con-
stitutes the information needed for the object is required. The complete process is summarized in
Figure 1.1. The figure depicts a simplified methodology for producing measurement results with
minimal conditions such as the units to be known, the calibration of the measurement instruments,
and the uncertainty of such measurements. This is to cast the majority of the aspects that engineers
conducting measurements must be aware of. A dimension is a non-numerical measure of a physical
variable. The unit is used to associate a quantity or measurement with a dimension.

Example 1.1 The mass of an object is a primary dimension, while 15 kg is associated with the
quantity 15 of mass with the unit of kg. We need a comparison with some precise unit value to
measure the quantity of anything. Body parts (Figure 1.2) and natural surroundings were used by
early humans to provide suitable measuring instruments. Elementary measures became essential
in the primitive human societies for tasks such as building dwellings, making clothing, bartering
for food, and exchanging raw materials.
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Figure 1.2 Vitruvian man by Leonardo da Vinci showing nine historical units of measurement.
Source: Wikimedia Commons

– According to early Babylonian and Egyptian transcripts, length was first measured with the fore-
arm (cubit), hand (palm and span), and finger (digit).

– The cycles of the celestial bodies such as the sun, moon, and others were used for time measure-
ments.

– Plant seeds were used for the sake of establishing volume measurement, while with the expan-
sion of scales for weighing, seeds and stones became standards. As sample, the carob seed was
the base measure for the carat, which is still used as a mass unit in the gemstone industry.

As trade and commerce expanded, it became necessary to standardize measurement systems
across many countries. This decreased the possibility of disagreements arising from measurement
system misunderstandings.

The international system of units, known as the SI (from French “Système International”) unit
system, distinguishes physical units into two classes as shown below:

1) Base or primary units; and
2) Derived units.

These two categories cover the most commonly used units, such as time, temperature, length,
mass, pressure, and flow rate. The National Institute of Standards and Technology (NIST) [2] intro-
duced the SI units, which can be found at this hyperlink: SI units (https://physics.nist.gov/cuu/
Units/). For more information on the SI units, visit the website of the international standards orga-
nization known as the Bureau International des Poids et Mesures (BIPM).

https://physics.nist.gov/cuu/Units/
https://physics.nist.gov/cuu/Units/
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Table 1.1 Primary units.

Measurement Units Symbol Description

Unit of length meter m One meter is equal to the length of the path travelled by light
in vacuum during a time interval of 1/299792458 of a second.

Unit of mass kilogram kg One kilogram is equal to the unit of mass presented by the
international prototype of the kilogram in Figure 1.2. Since
2019, the new definition based on Planck’s constant has
been used.

Unit of time second s One second is equal to the duration of 9192631770 periods of
the radiation corresponding to the transition between the two
hyperfine levels of the ground state of the cesium-133 atom.

Unit of electric current ampere A One ampere is defined as follows: the constant current if
maintained in two straight parallel conductors of infinite
length, of negligible circular cross-section, and placed 1 meter
apart in vacuum, will produce between these conductors a
force equal to 2 × 10−7 newton per meter of length.

Unit of thermodynamic
temperature

kelvin K One kelvin is the fraction 1/273.16 of the thermodynamic
temperature of the triple point of water.

Unit of amount of
substance

mole mol One mole is the amount of substance of a system containing
as many elementary entities as there are atoms in 0.012
kilogram of carbon-12.
When the mole is used, the elementary entities must be
specified and may be atoms, molecules, ions, electrons, other
particles, or specified groups of such particles.

Unit of luminous
intensity

candela cd One candela is the luminous intensity within one direction, of
a source that emits monochromatic radiation of frequency
540 × 1012 hertz and having a radiant intensity of 1/683 watt
per steradian in that direction.

As will be demonstrated later, each measurement unit has a primary quantity that is used by
convention. Each primary quantity has only one primary unit. As a result, every primary unit can
be decomposed or recomposed further. Table 1.1 shows primary units of different kinds of physical
quantities, symbols, and their descriptions. Figure 1.3 depicts the kilogram prototype safely con-
served in Paris as a reference unit of kg kept constant in quantity for comparison. The following
section discusses derived units, which are shown in Table 1.2.

Figure 1.3 The standard kilogram for mass.
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Table 1.2 Derived units.

Derived quantity Si derived new unit Symbol SI units SI base units

Force newton N mkgs−2

Pressure, stress pascal Pa N/m2 m-1kgs−2

Energy, work,
quantity of heat

joule J Nm m2kgs−2

Power watt W J/s m2kgs−2

Electric charge coulomb C sA
Electromotive force volt V m2kgs−3A−1

Electric capacitance farad F C/V m−2kg−1s4A2

Electric resistance ohm Ω V/A m2kgs−3A−2

Electric conductance siemens S A/V m−2kg−1s3A2

Velocity meter per second m/s
Angular velocity radian per second 1/s
Mass flow rate kilogram per second kg/s
Flow rate liter per second l/s

Figure 1.4 The platinum-iridium meter bar reference. Source: Wikimedia Commons
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6 1 Fundamental Units and Constants in Metrology

The International Prototype Meter bar, shown in Figure 1.4, is made of 90% platinum and
10% iridium alloy and served as the SI (metric system) standard of length from 1889 until 1960,
when the SI system switched to a new definition of length based on the wavelength of light emitted
by krypton-86. The practical length of the meter was defined by the distance between two fine lines
ruled on the central rib of the bar near the ends measured at the freezing temperature of water.

The bar was given an X (Tresca) cross-sectional shape to increase its stiffness-to-weight ratio and
improve its thermal accommodation time so the graduation lines could be located on the “neutral”
axis of the bar where the change in length with flexure is minimum. The prototype was made in
1889, its length made equal to the previous French standard “Meter of the Archives.” At the same
time, twenty-nine identical copies were made, which were calibrated against the prototype and
distributed to nations to serve as national standards and possibly for comparison after a few years.

1.2 Current Definitions of the Main SI Units

The current definition of the base and primary units are shown in Table 1.1.

1.3 New Definition of Seven Base Units of the SI

Seven base units of the SI are known to be the second, meter, kilogram, ampere, kelvin, mole, and
candela. Some have been based on physical constants for a long time. Since 1983, the meter has
been defined as the length of the path traveled by light in vacuum over a time interval of 1/299
792 458 s. However, the four that metrologists have agreed to redefine recently were previously
based on something—i.e., an object, experiment, or phenomenon—implying that their value is
not universal.

As a result of this decision [3], all seven SI units are currently defined in terms of physical con-
stants.

The meter, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value
of the speed of light in vacuum, c, to be 299792458 when expressed in the unit m•s−1, where the
second is defined in terms of the cesium frequency Δ𝜈Cs. The meter may be expressed directly in
terms of the defining constants (Eq.(1.1)):

1 m = 9 192 631 770
299 792 458

c
ΔvCs

(1.1)

Previously, one meter was defined as the length traveled by light in 3.335641 × 10−9 s (based on
the speed of light in a vacuum). It was also defined as 1,650,763.73 wavelengths in vacuum of the
orange red line of the spectrum of krypton-86.

Most affected is the kilogram, which is currently fixed by a 143-year-old platinum alloy cylinder
known as the “Le Grand K” and kept at the International Bureau of Weights and Measures (BIPM)
in Paris. The kilogram is now defined by Planck’s constant, h, recently measured with extraordinary
precision. Its agreed value is set at 6.626 070 15 × 10−34 kg m2 s−1 when expressed in the unit J s,
which is equal to kg m2 s−1, the meter and second being defined in terms of c and Δν. This means
that the kilogram is defined in terms of Planck’s constant instead of the mass of a cylinder of metal
called International Prototype Kilogram.

Meanwhile, the ampere is determined by the elementary electric charge, e, which is given as
1.602 176 634× 10−19 when expressed in coulombs. The kelvin is determined by the fixed numerical
value of Boltzmann’s constant, k, which is 1.380 649 × 10−23 when expressed in units of J K−1, and
the mole is determined by Avogadro’s constant (NA), which contains exactly 6.02 214 076 × 1023
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atoms or molecules. This number is the fixed numerical value of the Avogadro constant, NA, when
expressed in units of mol−1.

1.4 Derived International System (SI) Units

A derived SI unit is a measurement unit that is devised for a derived quantity different from primary
units shown previously. Derived units combine different base units as described in Table 1.2. These
derived units are obtained by simple mathematical transformations.

The Imperial unit system now includes the customary units of the United States in North Amer-
ica. The British Weights and Measures Act of 1824 established the Imperial unit system. Following
that, the system was made official throughout the United Kingdom. It should be noted that some
units are used in the United States but not in the United Kingdom, and vice versa. The differences
are found in the following:

i) British fluid ounce = 0.961 US fluid ounce;
ii) US fluid ounce = 1.041 British fluid ounces;

iii) British Imperial gallon = 1.201 US gallons;
iv) US gallon = 0.833 British Imperial gallon.

1.5 SI Conversion

Converting SI units is very common when considering the SI unit and its related prefix described
in Table 1.3.

This system comprises 7 base quantities (common) and 16 prefixes that designate the amount.
The base unit and prefixes can be combined to produce the desired result.

Example 1.2 A car’s weight can be written as 2000 kg, but it is better expressed in tons. It is no
longer appropriate to write the results in grams. The possibilities for combining are limitless. It is

Table 1.3 SI Units and prefixes.

Prefix Abbreviation Meaning Example

tera T 1012 1 terameter (Tm) = 1012 m
giga G 109 1 gigameter (Gm) = 109 m
mega M 106 1 megameter (Mm) = 106 m
kilo k 103 1 kilometer (km) = 103 m
deci d 10−1 1 decimeter (dm) = 10−1 m
centi c 10−2 1 centimeter (cm) = 10−2 m
milli m 10−3 1 millimeter (mm) = 10−3 m
micro μ 10−6 1 micrometer (μm) = 10−6 m
nano n 10−9 1 nanometer (nm) = 10−9 m
angstrom Å 10−10 1 angstrom (Å) = 10−10m
pico p 10-12 1 picometer (pm) = 10−12 m
femto f 10-15 1 femtometer (fm) = 10−15 m
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8 1 Fundamental Units and Constants in Metrology

critical to present the measurement results in a clear and easy-to-understand figure. Based on the
previous table:

1 g = 0.001 kg, which can be better presented as 1 g = 10−3 kg;
1 nm = 0,000000001 m, which can be better written as 1 nm = 10−9 m.

Or 1 000 000 mm = 1 km.
When converting using SI units, the prefix is very important if the user knows the ranking

right away.

Example 1.3

567 m = 0.567 km (dividing by 1000 since 1 km = 1000 m)
30 s = 0.5 min (since 1 min = 60 s).

1.6 Fundamental Constants

As a general definition, a fundamental constant refers to a dimensionless physical constant. They
are usually assumed to be universal and have constant quantitative values. The numbers are con-
stant and do not involve any physical measurement.

a) The gravitation constant
This is an empirical constant involving gravitational effects and used in Newton’s law of univer-
sal gravitation, which states that all objects attract each other with a force that is proportional
to the product of their masses (m1 and m2) and inversely proportional to the square of their
distance, as shown in Eq.(1.2).

F1 = F2 = G (m1 × m2)∕r2. (1.2)

Where G = 6.67430(15) × 10−11 with the unit m3 kg−1 s−2 in SI units.
b) The speed of light

The speed of light is a constant, denoted by c, and is equal to 299 792 458 m/s (approximately
300,000 km/s, or 186,000 mi/s) in vacuum. It is defined as a universal physical constant that is
important in many areas of physics. This constant is exact since the international agreement on
the meter was defined as the length of the path traveled by light in the vacuum during a time
interval of 1/299 792 458 s. This constant also features in Einstein’s equation of mass-energy
equivalence, E = mc2.

c) Planck’s constant
Planck’s constant, h, can be found in problems classified as quantum physics. It is a physical
constant representing the quantum of electromagnetic action, relating the energy carried by
a photon to its frequency. The product of Planck’s constant by the frequency of a photon gives
its energy.
In quantum mechanics, Planck’s constant is of fundamental importance. It serves to define
the kilogram in metrology. The value of Planck’s constant is exact, with no uncertainty and is
given as h = 6.626 070 × 10−34 J s (or J Hz−1). Planck’s constant may be used in the SI unit
of frequency, and hence the so-called reduced Planck’s constant is used instead, defined as
ℏ = h/2π (ℏ is pronounced “h-bar”).
The Planck length, denoted 𝓁P, is a unit of length describing the distance traveled by light in
one unit of Planck time in a perfect vacuum. The Planck length 𝓁P is defined as 𝓁P = sqrt
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1.7 Common Measurements 9

(ℏG/c3). This has been considered as the approximate equivalent value of this unit with respect
to the meter:

𝓁P = 1.616229(38) × 10−35m, (1.3)

where c is the speed of light in a vacuum, G is the gravitational constant, h is the reduced
Planck’s constant, and the two digits enclosed by parentheses are the standard uncertainty.
This length is about 10−20 times the diameter of a proton.
The Planck mass, denoted by mP, is the unit of mass in the system of natural units of Planck
units. It is roughly equivalent to 0.021 milligrams (mg). For example, it is roughly the size of a
flea egg. It is of the order of 1015 (a quadrillion) times larger than the highest energy available to
contemporary particle accelerators. It is defined as: mp = sqrt (ℏ c/G), where c is the speed of
light in a vacuum, G is the gravitational constant, and ℏ is the reduced Planck’s constant.

1 mp = 2.176435(24) × 10−8 kg. (1.4)

The Planck time (tP) is the unit of time in the system of Planck units in quantum mechanics
as expressed in Equation 1.4. A Planck time unit is the time needed for light to travel a distance
of one Planck length in a vacuum. This time is approximated as 5.39 × 10−44 s.

tp = sqrt (ℏ.G∕c5), (1.5)

Where ℏ = h/2π is the reduced Planck’s constant (sometimes h is used instead of ℏ in the
definition), G = gravitational constant, and c = speed of light in vacuum.
Many other fundamental constants are discussed in their related areas toward the end of
this book.

d) The standard acceleration for gravity
The standard acceleration for gravity, known as g, varies depending on location and is equal to
9.809 m s−2 in USA.

e) Avogadro’s number
Avogadro’s number refers to the number of units in one mole of any substance, which is also
known as the molecular weight in grams. It is defined as L = 6.02214199 × 1023. The unit of this
depends on the nature of the substance. It can be electrons, atoms, or molecules.

1.7 Common Measurements

The International System of units (SI) is used as a comparison framework for the most commonly
used measurements in inspection and testing. It establishes seven fundamental units:

i) Meter [m] - length;
ii) Second [s] – time;

iii) Kilogram [kg] - mass;
iv) Ampere [A] - current;
v) Candela [cd] - light;

vi) Kelvin [K] - temperature;
vii) Mole [mole] – amount of substance.

Measurements are carried out in laboratories, outdoor and in situ in plants. Proper equipment is
used to measure with a condition that has been previously calibrated.
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Indirect measurements can be carried out using equations, with the outcomes being the results
of the execution of these equations.

Example 1.4

– voltage [V] = resistance [ohm] × current [A]; hence, current = voltage/resistance.
– area [m2]= length [m] × length [m]
– pressure [Pa] = force [N] / area [m2].

Accuracy in measurements is required in many fields, and because all measurements are close
approximations, great care must be taken when taking measurements.

Example 1.5 When calibrating, you must generate a known amount of the variable to be mea-
sured as well as the SI unit under test.

1.8 Principles and Practices of Traceability

The objective as introduced in this book is to learn and understand measurements and their
related calibration and standards, as well as principles and practice of traceability. This is a short
introduction.

1.8.1 Definition of Traceability

It is defined as the ability to link the results of the calibration and measurements to the related
standard and/or reference through an unbroken chain of comparisons.

The international vocabulary of metrology (VIM) defines traceability as the property of the result
of a measurement or the value of a standard that can be related to stated references, usually national
or international standards, by an unbroken chain of comparisons, all with stated uncertainties [4].
The unbroken chain of comparisons is called the “traceability chain.”

The latter is composed of a number of instruments linked together to supply measurement.
The competence and uncertainty are essential elements in the traceability according to ISO 17025
section 5.6.

Because there is always a difference in measurement between the output of the instrument and
the true value of the measurand, measurement uncertainty is used to evaluate a quantitative sta-
tistical estimate of the limits of that difference. This will be discussed in chapters 3 and 4. VIM
defines the measurement uncertainty as a parameter associated with the results of a measurement
that characterizes the dispersion of the values that could reasonably be attributed to the measurand.

The calibration is typically performed by measuring a test unit against a known standard or
reference. National measurement institutes across countries are typically a source of official
approvals and verification for the work performed of various types of measurements, such as NIST
(USA), NPL (UK), and BNM (France). The traceability has three essential components described
as follows:

– Traceable calibration requiring comparisons with traceable standards or reference materials;
– Traceable calibrations can be performed only by competent laboratories with accreditation to

ISO 17025;
– A traceable calibration certificate must contain an estimate of the uncertainty associated with

the calibration.


