Reaction Mechanisms in Organic Chemistry
Reaction Mechanisms in Organic Chemistry
Reaction Mechanisms in Organic Chemistry

Metin Balci
For my Wife Jale.
Contents

Preface xv
About the Author xvii
Abbreviations xix

1 Basic Concepts 1
1.1 Introduction to Reaction Mechanisms 1
1.2 Covalent Bonding and Hybridization 2
1.2.1 sp^3-Hybridization of Carbon 4
1.2.2 sp^2-Hybridization of Carbon 7
1.2.3 sp-Hybridization of Carbon 10
1.2.4 Bond Lengths 12
1.3 Electrophiles and Nucleophiles 13
1.3.1 Electrophiles (Electrophilic Compounds) 14
1.3.2 Nucleophiles (Nucleophilic Compounds) 15
1.4 Inductive and Mesomeric Effects 15
1.4.1 Inductive Effect 15
1.4.2 Mesomeric Effect (Resonance Structures) 18
1.5 Formal Charge and Oxidation Number 24
1.5.1 Formal Charge 24
1.5.2 Oxidation Number 25
1.6 Acids and Bases 28
1.6.1 Arrhenius Acid–Base Theory 29
1.6.2 Bronsted–Lowry Acid–Base Theory 29
1.6.3 Lewis Acid–Base Theory 30
1.6.4 Pearson Hard and Soft Acid–Base Theory 32
1.6.4.1 Hard Acids and Bases 32
1.6.4.2 Soft Acids and Bases 33
1.6.5 pKa Values of Acids 34
1.6.5.1 Factors Affecting the Acidity Strength of Organic Compounds 35
1.6.6 pK_b Values of Bases 38
1.6.7 Factors Affecting the Strengths of Bases in Nitrogen-Containing Compounds 38
1.6.8 Heterocyclic Bases 40
1.7 Reaction Kinetics and Energy Diagrams 41
1.7.1 Thermodynamic vs. Kinetic Control of Reactions 43
1.7.2 Reaction rate 44
Problems 46
References 48

2 Nucleophilic Substitution Reaction 50
2.1 Types of Chemical Reactions 50
Contents

2.1 Polar Reactions 50
 2.1.1 Radical Reactions 50
 2.1.2 Pericyclic Reactions 50
 2.1.3 Relationship Between Nucleophilicity and Basicity 51
 2.1.3.1 Leaving Group 54
2.2 Unimolecular Nucleophilic Substitution Reactions, S_N1 55
 2.2.1 Stereochemistry in S_N1 Reactions 58
 2.2.2 Optical Activity 59
 2.2.3 Other Factors Affecting S_N1 Reactions: Steric Factors 61
2.3 Bimolecular Substitution Reactions, S_N2 62
 2.3.1 Stereochemistry of S_N2 Reactions 64
 2.3.2 Factors Affecting the S_N2 Reaction Mechanism 66
 2.3.2.1 The Structure of the Substrate 66
 2.3.2.2 Solvent Effect 68
 2.3.2.3 Leaving Group Effect 69
 2.3.2.4 Structure of the Nucleophile 70
 2.3.3 Nucleophilic Substitution in Allylic Systems: Allylic Rearrangement 71
 2.3.3.1 Stereochemistry in Allylic Substitution Reactions 73
 2.3.4 Internal Nucleophilic Substitution Reaction, S_Ni 74
 2.3.5 Neighboring Group Participation in Nucleophilic Substitution Reactions 75
 2.3.5.1 Reaction Rate 76
 2.3.5.2 Configuration Retention 77
 2.3.5.3 Molecular Rearrangement 78
 2.3.6 Ambident Nucleophiles 78
 2.3.7 Various Nucleophilic Substitution Reactions 80
 2.3.7.1 Williamson Ether Synthesis 80
 2.3.7.2 Ether Cleavage 81
 2.3.7.3 Reactions of Epoxides 82
 2.3.7.4 Substitution in Unsaturated Systems 83
 Problems 83
 References 85

3 Elimination Reactions 87
 3.1 Unimolecular Elimination Reactions, E1 88
 3.1.1 E1 Reaction Mechanism 88
 3.1.1.1 Dehydration of Alcohols 91
 3.1.2 Factors Affecting the Ratio of E1 and S_N1 92
 3.2 Bimolecular Elimination Reactions, E2 94
 3.2.1 Kinetic Isotope Effect 98
 3.2.2 Stereochemistry in E2 Elimination Reactions 98
 3.2.2.1 Erythro- and Threo-Configurations 100
 3.2.3 E2 Elimination in the Cyclohexane System 105
 3.2.3.1 Conformation and Configuration in Cyclohexane 105
 3.2.3.2 syn-Elimination (cis-Elimination) 112
 3.3 Unimolecular Conjugate Base Elimination, E1cb 112
 3.4 Elimination Reaction in Synthesis 114
 3.4.1 Halogen Elimination 114
 3.4.2 Hofmann Elimination: Quaternary Ammonium Salts 116
 3.4.3 Pyrolytic Elimination: Intramolecular cis-Elimination Reactions 119
 3.4.4 Elimination at the Bridgehead: Bredt’s Rule 123
 3.4.5 Grob Fragmentation 126
 Problems 129
 References 131
4 Addition Reactions to Alkenes 133
4.1 Halogen Addition to Alkenes: Halogenation 133
4.1.1 Stereochemistry of Halogen Addition 136
4.2 Addition of Hydrogen Halides to Alkenes: Markovnikov’s Rule 138
4.2.1 Anti-Markovnikov Addition of Hydrogen Halides to Alkenes 141
4.3 Addition of Water and Alcohols to Alkenes 143
4.3.1 Hydration 143
4.3.2 Alkoxylation 144
4.3.3 Formation of Halohydrins 145
4.4 Hydration of Alkenes: Oxymercuration and Demercuration 146
4.5 Hydroboration of Alkenes: anti-Markovnikov Hydration 148
4.6 Oxidation of Alkenes 152
4.6.1 Epoxidation 152
4.6.2 Dioxirane 156
4.6.3 Epoxide Ring-Opening Reactions 157
4.6.4 Vicinal cis-Dihydroxylation 159
4.6.5 Dihydroxylation via PIFA 161
4.6.6 Enzymatic Dihydroxylation 162
4.6.7 Ozonolysis: Oxidative Cleavage of Alkenes 162
4.7 Reduction of Alkenes 165
4.7.1 Heterogeneous Catalytic Reduction 166
4.7.2 Homogeneous Catalytic Reduction 168
4.8 Addition to Conjugated Dienes 171

Problems 176
References 177

5 Carbonyl Compounds 181
5.1 Reactivity of the Carbonyl Group 181
5.1.1 Structure–Reactivity Relationships 183
5.2 Reactions of Carbonyl Compounds: Addition Reactions 186
5.2.1 Hydration: Addition of Water to Carbonyl Groups 187
5.2.2 Hemiacetal Formation: Addition of Alcohols to Carbonyl Groups 190
5.2.2.1 Cyclic Acetals and Their Synthetic Application 191
5.2.2.2 What is the Protecting Group? 192
5.2.2.3 Protection of Diols 193
5.2.2.4 Formation of Thioacetals and Their Synthetic Application 193
5.2.2.5 Umpolung: Polarity Inversion of the Aldehyde Carbonyl Group 195
5.2.3 Reactions of Aldehydes and Ketones with Amines 196
5.2.3.1 Oximes 199
5.2.3.2 Hydrazones 199
5.3 Reduction of Carbonyl Groups 200
5.3.1 Wolff–Kishner Reduction (Under Basic Conditions) 200
5.3.2 Clemmensen Reduction (Under Acidic Conditions) 201
5.3.3 Metal Hydride Reduction of the Carbonyl Groups 201
5.3.3.1 Diisobutyl Aluminum Hydride (DIBAL) Reduction 203
5.3.3.2 Sodium Borohydride (NaBH₄) Reduction 203
5.3.3.3 Reduction of Carboxylic Acids 205
5.3.3.4 Meerwein–Ponndorf–Verley Reduction and Oppenauer Oxidation 209
5.4 Reaction of Carbonyl Groups with Organometallic Compounds 210
5.4.1 Grignard Reagents 210
5.4.2 Reactions with Active Hydrogen-Containing Compounds 213
5.4.3 Reactions with Carbonyl Compounds 213
5.4.4 Stereochemistry 214
5.4.5 Reaction with Esters 215
5.4.6 Reactions with Different Functional Groups 215
5.5 Reaction of Carbonyl Groups with Ylides 218
5.5.1 Phosphonium Ylides and Wittig Reactions 219
5.5.2 Reaction Mechanism 219
5.5.3 Stable Ylides 220
5.5.4 Unstable Ylides 220
5.5.5 Wittig–Schlosser Reaction 221
5.5.6 Wittig–Horner Reaction 222
5.5.7 Horner–Wadsworth–Emmons Reaction (HWE Reaction) 223
5.5.8 Sulfur Ylides 224
5.5.9 Julia Olefination 226
5.5.10 Peterson Olefination 227
5.6 Reactivity of α-Carbon Atoms 228
5.6.1 Acidity of α-Hydrogens 228
5.6.2 Keto–Enol Tautomerism 229
5.6.3 Acid-Catalyzed Enolization 232
5.6.4 Base-Catalyzed Enolization 233
5.6.5 Kinetic and Thermodynamic Enolates 234
5.6.6 Enol and Enolate Reactions 235
5.6.6.1 Racemization of Chiral Ketones, α-Epimerization 235
5.6.6.2 α-Halogenation of Aldehydes and Ketones 237
5.6.7 α-Alkylation of Carbonyl Compounds 241
5.6.7.1 Stork Enamine Reaction 243
5.6.7.2 Enolates Derived from 1,3-Dicarbonyl Compounds 245
5.6.7.3 Enolates, Ambident Nucleophiles: C vs. O Alkylation 249
5.7 Condensation Reactions of Carbonyl Compounds 251
5.7.1 Aldol Condensation 252
5.7.2 Crossed Aldol Condensation 254
5.7.3 Robinson Annulation 256
5.7.4 Claisen Ester Condensation 257
5.7.5 Crossed Claisen Ester Condensation 259
5.7.6 Dieckmann Condensation 260
5.7.7 Knoevenagel Condensation 261
5.7.8 Perkin Condensation 264
5.7.9 Stobbe Condensation 265
5.7.10 Role of Condensation Reactions in Synthetic Chemistry 266
5.8 Ester Hydrolysis Reactions 268
5.8.1 Ester Hydrolysis 269
5.8.2 Ester Hydrolysis Under Basic Conditions 270
5.8.3 B_{Al}^{2} Mechanism 271
5.8.4 Ester Hydrolysis Under Acidic Conditions 272
5.8.5 Asymmetric Ester Hydrolysis 273
5.8.6 Transesterification 273
Problems 275
References 278

6 Aromaticity 281
6.1 Aromatic Compounds 281
6.1.1 Discovery and Structure of Benzene 281
6.1.2 Aromatic, Antiaromatic, and Nonaromatic Compounds 284
6.1.2.1 Aromatic Compounds 284
6.9.2 Benzenoid Aromatic Compounds 368
Problems 373
References 375

7 Reactive Intermediates: Carbocations 381
7.1 Structure and Stability of Carbocations 384
7.2 Generation of Carbocations 387
7.2.1 Ionization Mechanism 387
7.2.2 Electrophilic Addition to π Bonds 388
7.3 Detection of Carbocations 388
7.4 Reactions of Carbocations: Rearrangements 389
7.4.1 Reactions with Nucleophiles 389
7.4.2 Double-bond Formation by Proton Elimination 389
7.4.3 Rearrangement 389
7.4.4 Carbocation Rearrangement 390
7.4.5 Ethyl Carbocation 390
7.4.6 Isopropyl Carbocation 390
7.4.7 Cyclopentyl Carbocation 391
7.4.8 The Wagner–Meerwein Rearrangement 391
7.4.9 Pinacol Rearrangement 393
7.4.10 Tiffeneau–Demjanov Rearrangement 395
7.4.11 Dienone–Phenol Rearrangement 398
7.4.12 Neighboring Group Participation in Molecular Rearrangement (Anchimeric Assistance) 398
7.4.13 Nonclassical Carbocations 401
7.4.14 Nametkin Rearrangement 406
7.4.15 Hydride Shift 406
7.4.16 Base-induced Nucleophilic Rearrangements 408
7.4.17 Favorskii Rearrangement 408
7.4.18 Ramberg–Bäcklund Rearrangement 411
7.4.19 Benzil–Benzilic Acid Rearrangement 412
7.5 Rearrangement to Electron-deficient Nitrogen 412
7.5.1 Beckmann Rearrangement 413
7.5.2 Neber Rearrangement 415
7.5.3 Stieglitz Rearrangement 416
7.6 Rearrangement to Electron-deficient Oxygen 416
7.6.1 Baeyer–Villiger Rearrangement (or Oxidation) 417
Problems 419
References 421

8 Reactive Intermediates Carbanions, Carbenes, and Nitrenes 424
8.1 Carbanions: Electrophilic Rearrangements 424
8.1.1 Stevens Rearrangement 425
8.1.2 Sommelet–Hauser Rearrangement 427
8.1.3 Wittig Rearrangement 429
8.2 Carbenes 429
8.2.1 Naming Carbenes 430
8.2.2 Structure and Reactivity of Carbenes 430
8.2.3 Inductive Effect 430
8.2.4 Mesomeric Effect 430
8.2.5 Carbine Generation 431
8.2.5.1 Carbine Precursors: Synthesis of Diazocompounds 432
8.2.5.2 Bamford–Stevens Reaction 432
8.2.5.3 N-Nitrosoalkyl Urea Compounds 433
8.2.5.4 Diazirines 434
8.2.5.5 \(\alpha\)-Elimination Method 435
8.2.5.6 Simmons–Smith Reaction 437
8.2.6 Carbenes 438
8.2.6.1 Carbone Cycloaddition Reactions 439
8.2.6.2 Carbone Insertion Reactions 445
8.2.6.3 Carbone Rearrangements 446
8.3 Azides and Nitrenes 453
8.3.1 Nitrene Synthesis 454
8.3.1.1 Synthesis of Acyl Azides 455
8.3.2 Nitrene Rearrangements 455
8.3.2.1 Curtius Rearrangement 455
8.3.2.2 Schmidt Rearrangement 457
8.3.2.3 Lossen Rearrangement 457
8.3.2.4 Hofmann Rearrangement 458
8.3.3 Nitrene Cycloaddition Reactions 458
8.3.4 Nitrene Insertion Reactions 460

Problems 461
References 465

9 Reactive Intermediates: Radicals and Singlet Oxygen 468
9.1 Structure of Radicals and Their Stability 468
9.1.1 Generation of Radicals 471
9.1.2 Radical Reactions 472
9.1.2.1 Atom-Abstraction Reaction 472
9.1.2.2 Radical Combination and Disproportionation 475
9.1.2.3 Kolbe Electrolysis (Kolbe Reaction) 476
9.1.2.4 Hunsdiecker Reaction 477
9.1.2.5 Radical Addition to Alkenes 478
9.1.2.6 Manganese(III)-Mediated Oxidative Radical Additions to Alkenes 480
9.1.2.7 Birch Reduction 481
9.1.2.8 Di-\(\pi\)-methane Rearrangement 483
9.1.2.9 Diradicals Derived from Diazo Compounds 486
9.2 Singlet Oxygen 487
9.2.1 The Electronic Configuration of the Oxygen Molecule 487
9.2.2 Singlet Oxygen Generation 489
9.2.2.1 Generation of Photosensitized Singlet Oxygen 489
9.2.2.2 Chemical Sources for Singlet Oxygen 490
9.2.3 Reactions of Singlet Oxygen 492
9.2.3.1 Ene Reactions 492
9.2.3.2 [2 + 2] Cycloaddition Reactions 493
9.2.3.3 [4 + 2] Cycloaddition Reactions 495
9.2.3.4 Bicyclic Endoperoxides in Synthesis 496
References 497

10 Pericyclic Reactions 500
10.1 Frontier Molecular Orbitals 502
10.2 Electroyclic Reactions 505
10.2.1 Thermal Electroyclic Reactions 505
10.2.2 Photochemical Electroyclic Reactions 506
10.2.3 Application of the Woodward–Hoffman Rules to Electroyclic Reactions 508
10.2.3.1 Neutral Compounds 508
10.2.3.2 Ionic Compounds 510
Preface

For more than 40 years, I have taught courses on reaction mechanisms in organic chemistry at undergraduate and graduate level throughout my academic career. During my classes, I realized that many students do not like organic chemistry and most believe that it is a lesson to be memorized. I have searched for a way to change this idea. Organic chemistry is a systemic field like mathematics and hence memorizing is not necessary. Students need to know the reaction mechanisms in organic chemistry and understand their many common points. For example, there are many condensation reactions and students usually try to memorize them. However, they all have the same mechanisms and students must learn this. Starting from that point, I decided to write a book about these reaction mechanisms and emphasize the points common to them.

In my lectures, I always tell the students that chemical reactions occur because of a reaction between an acid and a base (a Lewis acid and a Lewis base). Therefore, they should learn the acid/base concepts very well in order to understand chemistry. For this, they need to determine in which part of a molecule the electron density is increased or decreased. They can achieve this by fully understanding the factors that influence electron density. In other words, they should have a firm grasp of the mesomeric effect and the inductive effect. A student who comprehends these concepts can predict what product will be formed as a result of a chemical reaction and will not rely on memorization. Therefore, I included these concepts in the first part of this book. I explained the mesomeric effect and inductive effect through detailed examples.

Another disadvantage faced by students is that most of them cannot perceive organic compounds in a three-dimensional structure. For this, the concept of hybridization needs to be explained clearly and understood fully. Then, the students can imagine the three-dimensional structure and understand how isomers are formed in some reactions. Therefore, I explained hybridization in detail in the introduction part.

A further aspect of organic chemistry that confuses students is oxidation/reduction. For this, they should know oxidation numbers well and not mix them up with formal charges. This subject is examined in detail in the book, along with examples.

After this introduction, the students begin to grasp the reactions quickly. I included substitution, elimination, and addition reactions as the essential ones. A student who has taken a one-semester organic chemistry course can easily comprehend these issues. Then, I examined the reactions derived from the carbonyl group. I emphasized that essential reactions are significant in this subject, which is very broad. With a good grasp of the carbonyl group's polarization and the acidity of the alpha proton, students can understand the carbonyl group and realize how simple condensation reactions are.

In the part on aromaticity, I first explained classical reactions after the concepts of aromaticity. Here too, I tried to find common points mechanistically. After these chapters, I moved on to more advanced topics that both undergraduate and graduate students can follow.

The chemistry of intermediates is extremely important mechanistically. A student who has learned the chemistry of the intermediate well can fully understand organic chemistry. For this reason, I focused extensively on carbocations, carbanions, radicals, and carbenes, which are involved as intermediates during the reactions. A student who can deal with these issues will have a full understanding of all the rearrangements.

The book’s final chapters are devoted to the Woodward–Hoffmann rules and modern C–C couplings. These are subjects written for both undergraduate and graduate students.

In summary, in this book, I tried to discourage students from relying on memorization by drawing attention to reaction mechanisms’ common points. I hope that this book will be useful to both undergraduate and graduate students at any time.

There may be one name on the front cover, but every book is the result of the hard work of many people. I gratefully acknowledge the following professors for their helpful critiques of this book at many stages during its development. They devoted a tremendous amount of time to review this book and made valuable suggestions.
Preface

I would also like to thank the following professors for reviewing the chapters and providing feedback on developing new features. I sincerely appreciate all of their suggestions.

Aliye Altunbaş
İlker Avan
Raşit Çalışkan
Murat Çelik
Yasin Çetinkaya
Arif Daştan
Dilem Doğan
Serdal Kaya
Nurettin Mengeş
Hasan Seçen
Nermin Şimşek Kuş
Meltem Tan
Yavuz Taşkesenligil

Gazi University
Anadolu University
Süleymen Demirel University
Atatürk University
Atatürk University
Atatürk University
Erciyes University
Necmettin Erbakan University
Van Yüzüncü Yıl University
Atatürk University
Mersin University
Van Yüzüncü Yıl University
Atatürk University

The author gratefully acknowledges the critical readings by the students Aslıcan Özdemir, Başak Karagöllü, Fevzi Can İnyurt, Flora Mammadova, Furkan Melih Günsay, İpek Öktem, İpek Savaş, Kübra Erden, and Semin Özsinan, members of Dr. Çağatay Dengiz’s group at the Middle East Technical University. Finally, I thank all my students, at both Middle East Technical University and Atatürk University, for their positive interactions over the years, which have guided me in creating this book. I also thank Mr. Russell Fraser for proofreading.

Although every effort has been made to eliminate all possible errors, it is likely that some typographical mistakes remain in the text. I would welcome comments from the readers, particularly those that point out mistakes so that they can be corrected, as well as suggestions for additions or other changes that will make the book more valuable to the reader.

This book of extensive scope could not have been produced without the excellent support I have had from many people at John Wiley-VCH. I would particularly like to thank the Editorial Director, Dr. Gudrun Walter, and the Executive Commissioning Editor, Dr. Elke Maase. They have been of great assistance at every stage of production. I am deeply grateful to my managing editor, Katherine Wong, who was always ready to do whatever was needed to make this book the best that it could be.

I would also thank Content Refinement Specialist Abisheka Santhoshini, and others involved in the typesetting.

January 2021

Metin Balcı
Ankara, Turkey
About the Author

Metin Balcı was born in Erzurum, Turkey, in 1948. He received his “Diplom Chemiker” degree in 1972, followed by a PhD degree in 1976 from the University of Cologne, where he worked with Professor Emanuel Vogel. He did postdoctoral work with Professors Harald Günther (Siegen, Germany), Waldemar Adam (Puerto Rico), and W. M. Jones (Florida).

In 1980, he joined the Department of Chemistry at Atatürk University and he became a full professor there in 1987. He spent one year (1986) at the University of Cologne and one year (1996–1997) at Auburn University (USA) as a guest professor. In 1997, he moved to Middle East Technical University in Ankara because of its reputation.

Metin Balcı has received several prizes, including the 1983 “Junior Research Prize” and the “Scientific Award” in 1989 from the Scientific and Technical Research Council of Turkey. Furthermore, he was awarded the “Science Prize” by the Science and Technology Foundation in 1990 and the “Chemistry Prize” by the Chemistry Foundation and the “Science Prize” by the Ministry of Culture in 1991. He has received the Best Teacher of the Year Award (2000, 2003, and 2004) and the Distinguished Teaching Award at Middle East Technical University. His name was given to the NMR labs in the Department of Chemistry, Atatürk University, in 2010. He is an elected member of the Turkish Academy of Sciences.

His main research interest involves the synthesis of cyclitols, endoperoxides, cyclic strained compounds, bromine chemistry, and heterocyclic compounds. He has published 280 scientific papers and he retired in 2015. He has also published books entitled Basic \(^1\)H and \(^{13}\)C NMR Spectroscopy (426 pages, Elsevier, January 2005 and Turkish version in 2000 by METU Press). The Reaction Mechanism in Organic Chemistry (in Turkish, 2008) and an autobiography, Science Rising from the East, in 2019 (in Turkish) were published by the Turkish Academy of Sciences.

Metin Balcı has always maintained a strong interest in the great outdoors. He enjoys observing nature, hiking, skiing, and reading, as well as world travel.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-BBN</td>
<td>9-borabicyclo[3.3.1]nonane</td>
</tr>
<tr>
<td>ABCN</td>
<td>1,1-azobis(cyclohexanecarbonitril)</td>
</tr>
<tr>
<td>acac</td>
<td>acetylacetonate</td>
</tr>
<tr>
<td>AIBN</td>
<td>azobisisobutyronitrile</td>
</tr>
<tr>
<td>BH(Sia)₂</td>
<td>disiamylborane</td>
</tr>
<tr>
<td>BINAP</td>
<td>2,2′-bis(diphenylphosphino)-1,1′-binaphthyl</td>
</tr>
<tr>
<td>BINOL</td>
<td>binaphthol</td>
</tr>
<tr>
<td>Boc</td>
<td>t-butyloxycarbonyl</td>
</tr>
<tr>
<td>COD</td>
<td>cyclooctadiene</td>
</tr>
<tr>
<td>COT</td>
<td>cyclooctatetraene</td>
</tr>
<tr>
<td>CSA</td>
<td>camphorsulfonic acid</td>
</tr>
<tr>
<td>DBA</td>
<td>bis(dibenzylideneacetone)</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo-[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutylaluminumhydride</td>
</tr>
<tr>
<td>DIOP</td>
<td>O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane</td>
</tr>
<tr>
<td>DIPT</td>
<td>diisopropyl tartrate</td>
</tr>
<tr>
<td>DMDO</td>
<td>dimethyldioxirane</td>
</tr>
<tr>
<td>DMF</td>
<td>dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulfoxide</td>
</tr>
<tr>
<td>DPPF</td>
<td>[1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)</td>
</tr>
<tr>
<td>DPPP</td>
<td>bis(diphenylphosphino)propane</td>
</tr>
<tr>
<td>EPR</td>
<td>electron spin resonance spectroscopy</td>
</tr>
<tr>
<td>ESCA</td>
<td>electron spectroscopy for chemical analysis</td>
</tr>
<tr>
<td>HBpin</td>
<td>pinacolborane</td>
</tr>
<tr>
<td>HIA</td>
<td>hydride ion affinity</td>
</tr>
<tr>
<td>HMPA</td>
<td>hexamethylphosphoramide</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest occupied molecular orbital</td>
</tr>
<tr>
<td>HSAB</td>
<td>hard and soft acids and bases</td>
</tr>
<tr>
<td>ISC</td>
<td>intersystem crossing</td>
</tr>
<tr>
<td>KHMDS</td>
<td>potassium bistrimethylsilylamide</td>
</tr>
<tr>
<td>LDA</td>
<td>lithium diisopropylamide</td>
</tr>
<tr>
<td>LHMDS</td>
<td>lithium bis(trimethylsilyl)amide</td>
</tr>
<tr>
<td>LTMP</td>
<td>lithium tetramethylpiperidine</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest unoccupied molecular orbital</td>
</tr>
<tr>
<td>m-CPBA</td>
<td>meta-chloroperbenzoic acid</td>
</tr>
<tr>
<td>MMPP</td>
<td>magnesium monoperoxyphthalate</td>
</tr>
<tr>
<td>MNDO</td>
<td>modified neglect of differential overlap</td>
</tr>
<tr>
<td>NBS</td>
<td>N-bromosuccinimide</td>
</tr>
<tr>
<td>n-BuLi</td>
<td>n-butyllithium</td>
</tr>
<tr>
<td>NICS</td>
<td>nucleus-independent chemical shift</td>
</tr>
</tbody>
</table>
Abbreviations

NMO \(N\)-methylmorpholine-\(N\)-oxide
NMP \(N\)-methylpyrrolidone
PEPSI pyridine enhanced precatalyst, preparation, stabilization, and inhibition
PIFA phenyl-iodine(III) bis(trifluoroacetate)
PLE pig liver esterase
PTAD 4-phenyl-1,2,4-triazoline-3,5-dione
RAMP \((R)\)-1-amino-2-methoxymethylpyrrolidine
SAMP \((S)\)-1-amino-2-methoxymethylpyrrolidine
SOMO singly occupied molecular orbital
TASF tris(diethylamino)-sulfonium difluorotrimethylsilicate
TBAF tetrabutylammonium fluoride
TBDMS \(t\)-butyldimethylsilyl
TEBA triethylbenzylammonium salt
TFA trifluoroacetic acid
TFPAA trifluoroperacetic acid
THF tetrahydrofuran
THP tetrahydropyran
TIBSA 2,4,6-triisopropylbenzene sulfonyl azide
TMEDA \(N,N,N',N'\)-tetramethylenediamine
TMSOK potassium trimethylsilanolate
PBDPSCI \(t\)-butyl(chloro)diphenylsilane
TPP tetraphenylporphine
XPS X-ray photoelectron spectroscopy
1

Basic Concepts

1.1 Introduction to Reaction Mechanisms

Chemical reactions are the processes by which chemicals interact to form new chemicals with different compositions. A new compound formed as a result of a chemical reaction does not bear the properties of the starting compounds; it has its own unique properties. In order for a chemical reaction to begin, some conditions (temperature, pressure, catalyst, etc.) must exist. For some compounds, it is sufficient to bring them together to start a chemical reaction. For example, water and sodium (provided they do not come in contact with air) are normally stable. However, a very violent reaction happens when these two come together. Sodium metal reacts rapidly with water to form a colorless solution of sodium hydroxide (NaOH) and releases hydrogen gas.

\[2\text{Na} + 2\text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{H}_2 \]

There is a common point regarding all chemical reactions, namely, transfer of electrons from one reactant to another (electron exchange). Therefore, one of the starting compounds should be capable of denoting electrons, while the other should accept electrons. In order for electron exchange to take place, some reactions require catalysts. A catalyst is a substance that can be added to a reaction to increase the reaction rate without being consumed in the process. The function of catalysts is to facilitate electron transfer by activating bond electrons and to lower activation energies \((E_a) \). As a result of electron transfer, some bonds are broken, some bonds rearrange, and new bonds are formed.

Benzene is an unreactive compound in the presence of halogens (Cl\(_2\), Br\(_2\), or I\(_2\)) because they are not electrophilic enough to attack the benzene ring and disrupt its aromaticity. However, the halogens must be activated by Lewis acid catalysts such as FeBr\(_3\) or AlBr\(_3\). FeBr\(_3\) accepts electron pairs from bromine and makes it much more electrophilic. For a detailed mechanism, see Section 6.6.

Let us roughly analyze the processes that occur during the reaction of sodium with water. We see that the hydrogen atom, which is bonded to oxygen, breaks off from oxygen and forms hydrogen gas by binding to another hydrogen atom; on the other hand, the neutral sodium atom is oxidized by donating an electron and forming an ionic bond with the hydroxyl anion. This reaction appears to be very simple. However, complex processes are involved. We need to understand how products are formed as a result of a reaction. When a reactant turns into a product, we should look at which intermediates are involved during this reaction.

If we have a good understanding of what is going on at the intermediate stages, then we can guess what kind of products are formed as a result of the reaction. The step-by-step sequence of the intermediate stages of a reaction until the product is formed is called the reaction mechanism.

We have to understand what is happening at the intermediate levels. Otherwise, if we try to learn about a chemical reaction by writing reactants on one side of the equation and products on the other side, we will not be able to master organic chemistry. If the reaction mechanism is learned well, then one can see that organic chemistry is as enjoyable and systematic.
as mathematics. This is because, once the reaction mechanism is known, it is possible to predict what reaction will occur between two reactants and what products will be formed. Otherwise, if the reactions are learned without examining the mechanism (a type of learning based on memorizing), it becomes clear that organic chemistry cannot be understood. Then, organic chemistry becomes extremely boring.

Let us go back to the beginning. We emphasized that all chemical reactions occur as a result of electron exchange. To decide whether a compound is an electron donor or not, it is necessary to examine its electronic structure. In other words, it is necessary to examine the bonds between atoms and how the bonds are polarized.

The elements share electrons so that each atom attains a noble gas configuration. For example, two chlorine atoms can each attain a filled second shell by sharing their unpaired valence electrons. A bond formed by sharing electrons is called a covalent bond. Similarly, the hydrogen molecule, H_2, can also form a covalent bond by sharing electrons. The atoms that share the bonding electrons in the $H—H$ and $Cl—Cl$ covalent bonds are identical. Such bonds are called nonpolar covalent bonds. In some compounds, the bonding electrons are shared equally between the atoms.

\[
\begin{align*}
: H^- + : H^- & \longrightarrow : H\cdot H^+ \\
: Cl^- + : Cl^- & \rightarrow : Cl\cdot Cl^+
\end{align*}
\]

In contrast, the bonding electrons between two different atoms are more attracted to one atom than to another because of different electronegativities (the ability of an atom in a molecule to attract electrons toward itself). The symmetrical distribution of the electrons between the two atoms is disrupted. This condition is called bond polarization.

If electrons are attracted more strongly by A, the electron density increases around atom A and decreases around B. Therefore, this polarization makes A and B atoms more reactive. In such a case, groups with high electron density prefer to bind to atom B, while those with low electron density prefer to bind to atom A. In order to understand the reaction mechanism, electron polarization between bonds must be known very well. In this chapter, we first discuss about bonds, and in the next section, we focus on bond polarization. Here, I would like to draw the attention of the reader to two concepts. The first is the inductive effect and the second is the mesomeric effect. For a student who knows and understands these two concepts well, it will be easier and more enjoyable to travel along the paths of organic chemistry that seem to be winding.

One of the other important points in organic chemistry, after learning bonding theory, is to think of molecules in a three-dimensional environment and estimate their true structures. This is an extremely simple thing. However, in order to understand it, it is necessary to work with simple organic models.

1.2 Covalent Bonding and Hybridization

In organic chemistry, unlike in inorganic chemistry, we deal with covalent bonds. Bonds are formed by overlapping of orbitals and the placement of electrons in these orbitals. Let us first look at how a hydrogen molecule is formed. The covalent bond between two hydrogen atoms is formed when the 1s orbital of one hydrogen atom overlaps with the 1s orbital of a second hydrogen atom as shown below. Overlapping orbitals can be pure orbitals as well as hybrid orbitals.

\[
\begin{align*}
H^- + \cdot H^- & \longrightarrow : H\cdot H^+ \\
\end{align*}
\]
We will begin the discussion with the simplest molecule in organic chemistry, methane (CH₄), with only one carbon atom. It is well known that the carbon atom is located in the center of the methane molecule, and it has four covalent C—H bonds. All the four bonds have the same length, and all bond angles are also the same (109.5°). This structure, which forms a smooth tetrahedron, is called a tetrahedral structure.

![Diagram of methane molecule]

In the perspective formula, the hydrogen atoms shown with solid lines and the carbon atom are located in the paper plane. The bond represented as a dashed wedge projects behind the plane of the paper. The bond represented as solid wedge projects out of the paper (toward the viewer). To understand this structure of the methane molecule, it is necessary to first examine the electronic configuration of the carbon atom. The electronic configuration of the carbon atom is as follows:

\[1s^22s^22p_x^12p_y^12p_z^0\]

The atomic orbitals of the carbon atom are shown in Figure 1.1. The 2s orbital is drawn larger than the 1s orbital. Because the 2s orbital is in a location more remote from the core, it covers a larger area than the 1s orbital. The energy levels of these orbitals are different. The energy level of the 2s orbital is lower than that of the p orbitals. The energy levels of the 2p orbitals are equal to each other; in other words, they are degenerated.

![Atomic orbitals of the carbon atom]

Now, this configuration of carbon can form four covalent bonds. If carbon uses an s and three p orbitals to form these four bonds, the bond formed with p orbitals will be different from the bond formed with an s orbital. On the other hand,
we know from spectroscopic studies that methane has a tetrahedral structure and the four C—H bonds in methane are identical. We have to answer the question *How can the carbon atom form four identical bonds by using three p orbitals and one s orbital?* Carbon uses the hybrid orbitals. To be able to generate this geometry, the 2s orbital on carbon is mixed with all the three 2p orbitals to make four equivalent sp³ orbitals with tetrahedral symmetry (Figure 1.3).

Carbon uses the hybrid orbitals. To be able to generate this geometry, the 2s orbital on carbon is mixed with all the three 2p orbitals to make four equivalent sp³ orbitals with tetrahedral symmetry (Figure 1.3).

![Figure 1.3 Electronic configuration of the carbon atom in the ground state and the hybridized state.](image)

1.2.1 sp³-Hybridization of Carbon

Now, we know why the bonds in methane are equal. One s orbital and three p orbitals of the carbon atom combine to form four new orbitals. The concept of combining was proposed by Linus Pauling in 1931. Because the number of combining orbitals is 4, the number of newly formed orbitals is also 4. The phenomenon of orbitals creating new orbitals by combining with each other is called *hybridization*. These new orbitals (hybrid orbitals) are formed by the combination of one s and three p orbitals, and so they are called sp³ hybrid orbitals. The superscript 3 above the letter “p” indicates that three p orbitals were mixed with one s orbital to form hybrid orbitals. These orbitals are expressed as “s-p-three”; “s-p-cubed” is wrong. The hybridization involved is called sp³ hybridization. The energies of these hybrid orbitals are equal. The hybrid orbitals formed create a pyramidal structure (tetrahedral) and the angles between the hybrid orbitals are 109.5° (Figure 1.4). The new sp³ hybrid orbitals consist of two lobes such as the p orbitals. However, the lobes of an sp³ orbital are not the same size. The larger lobe is used in covalent bond formation. Each sp³ orbital has a 75% p character and 25% s character. This ratio is very important. As we explain some reactions later in the book, we will return to the s and p ratios of the hybrid orbitals.

![Figure 1.4 Shape of the sp³ hybrid orbitals.](image)

After explaining hybridization, we can go back to the methane molecule. The bonds between the carbon and hydrogen atoms in the methane molecule are not formed by the combination of pure s or p orbitals. The four sp³ hybrid orbitals of carbon can combine with four hydrogen s orbitals forming in methane (CH₄). Because the sp³ hybrid orbitals are equal, the bonds formed by the carbon atom are also equal, and the methane molecule has a pyramidal structure.
1.2 Covalent Bonding and Hybridization

If two orbitals overlap along the bond axis (i.e. end-to-end overlap of atomic or molecular orbitals), the bond formed is called a σ bond. In saturated carbon compounds, the bonds that connect atoms are σ bonds, and the hybridization of the carbon atom is always sp³. For example, the hybridization of the carbon atom in carbon tetrachloride (CCl₄) is sp³. The structure is a pyramidal structure just like in methane, and all carbon–chlorine bonds are equal. In all compounds given below, the angle between the bonds is 109.5° as the substituents are equivalent.

\[\text{CH}_4, \quad \text{CCl}_4, \quad \text{CBr}_4, \quad \text{C(CH}_3\text{)}_4, \quad \text{C(O)}_4 \]

However, if different substituents are attached to the carbon atom, the hybridization of the carbon atom in saturated systems (tetravalent carbon) does not change, but there are some deviations from the ideal tetrahedral structure. The bond angles of some atoms and bond lengths vary according to the connected groups.

After examining the methane molecule, let us apply hybridization to the ethane molecule. In this case, we need to examine each carbon atom separately. Both carbon atoms in ethane are sp³ hybridized and they are tetrahedral. These hybrid orbitals then combine and form σ-bonds. The ethane molecule has seven σ-bonds. Six of them are σ-bonds that bind hydrogen atoms, and they are formed by overlapping of sp³ hybrid orbitals of carbon atoms with s orbitals of hydrogen atoms. This reveals that σ bonds can also be formed by the combination of different orbitals. The C—C bond is formed by overlapping of one sp³ orbital of one carbon with an sp³ orbital of the other carbon (Figure 1.5).

![Figure 1.5](image)

What sort of orbitals describe the bonding in compounds such as ammonia and water having bonding and nonbonding pairs of electrons? Let us examine hybridization in ammonia (NH₃). The outer shell of the nitrogen atom consists of one s orbital and three p orbitals, as in the carbon atom. Nitrogen has five valence electrons. According to the basic electronic configuration of the nitrogen atom, the nitrogen has three unpaired electrons, which explains why nitrogen is trivalent, as three covalent bonds are needed for octet formation. Three p orbitals can be used for overlapping with the s orbitals of hydrogen atoms, leaving the nonbonding electrons in the 2s orbital. However, this arrangement does not minimize the repulsion between the electrons. The best solution is again sp³-hybridization. During the formation of ammonia, one 2s orbital and three 2p orbitals of nitrogen combine to form four hybrid orbitals having equivalent energy, which is then considered an sp³ type of hybridization just like the carbon atom (Figure 1.6).

![Figure 1.6](image)
Three of the sp\(^3\) orbitals are used to bond the hydrogen atoms. The lone electron pair settles in the remaining fourth sp\(^3\) hybrid orbital. This orbital is called a nonbonding orbital and the electrons in this orbital are called nonbonding electrons. Because the sp\(^3\) hybrid orbitals form a pyramidal structure, the hydrogen atoms attached to the nitrogen atom also form a pyramidal structure. The H—N—H bond angles are 107.3° in ammonia and it has an almost tetrahedral structure. Now, we can understand why ammonia does not have a planar structure (Figure 1.7).

![Figure 1.7](image)

Figure 1.7 Hybridization and bonding in ammonia (NH\(_3\)).

The bonds made by nitrogen with hydrogen atoms are equivalent. While three of the four sp\(^3\) hybrid orbitals of the nitrogen atom are used for N—H bonds, the remaining fourth sp\(^3\) orbital contains the lone pair of electrons. Because the four hybrid orbitals in the ammonia molecule are not used equally as they are used in methane, a small deviation from the pyramidal structure occurs. One would expect this angle (107.3°) to be larger than in methane (109.5°) because of the repulsion between hydrogen atoms. As these nonbonding electrons are not shared, they are relatively close to the nitrogen atom. Therefore, they exert increased repulsion on the N—H bond electrons, thereby leading to bond-angle compression. Such a push brings the hydrogen atoms closer together.

When ammonia is treated with an acid (HCl), ammonia will be protonated and an ammonium salt will be formed. Hybridization of the nitrogen atom does not change. It remains as sp\(^3\). Because four hydrogen atoms are attached to the nitrogen atom, they form a smooth tetrahedron and the angle between the hydrogen atoms changes from 107.3° to 109.5°. When determining hybridization, we need to think of nonbonding electrons like a substituent.

We are faced with a similar situation in the H\(_2\)O molecule. It may be thought that this molecule is linear in the first stage. However, we know from the experimental measurements that the bond angle in water is 104.5°. Let us examine the basic electronic configuration of oxygen first. Two of the six electrons in the outer shell are located in the 2s orbital. The other four electrons are in the three 2p orbitals. Two electrons populate the 2p\(_x\) orbital. Therefore, oxygen has two unpaired electrons in two 2p\(_y\) and 2p\(_z\) orbitals, which reveals why oxygen forms two covalent bonds with other atoms (Figure 1.8).

![Figure 1.8](image)

Figure 1.8 The ground-state electronic configuration of the atomic oxygen atom and the hybridized oxygen atom.

Using the atomic orbitals (p orbitals) directly for bonding is not a good model for describing bonding in water, as the angle between the bonds would be expected to be 90°. As mentioned, we know that is not the case. Again, the best solution is sp\(^3\) hybridization. During the formation of water, one 2s orbital and three 2p orbitals of oxygen combine to form four hybrid orbitals, which is then considered an sp\(^3\) type of hybridization as for the carbon atom. Two sp\(^3\) orbitals are used for
overlapping with the s orbitals of hydrogen atoms, leaving the two pairs of nonbonding electrons in the remaining 2 sp³ hybrid orbitals (Figure 1.8). Because the sp³ hybrid orbitals form a pyramidal structure, the hydrogen atoms attached to the oxygen atom with the nonbonding electrons also form a pyramidal structure. The H—O—H bond angle is 104.5° in water and it has an almost tetrahedral structure. Now, we can understand why water does not have a linear structure (Figure 1.9). The H₂O molecule is not linear but angular. The repulsions between lone pairs and bonding pairs is expected to be greater, causing the H—O—H bond angle to be smaller than the ideal 109.5°.

![Figure 1.9](image-url) Hybridization and bonding in the H₂O molecule.

1.2.2 sp²-Hybridization of Carbon

Before examining sp²-hybridization, let us briefly consider the overlap of the orbitals and how double bonds are formed. Orbitals can overlap in two ways:

1. Head-to-head overlap
2. Side-to-side overlap

So far, we have seen the head-to-head overlap of different orbitals. Head-to-head overlap of atomic orbitals or hybridized orbitals generates σ bonds where the electron density is centered along the internuclear axis. As one can see from Figure 1.10, pure orbitals as well as hybridized orbitals can interfere and form σ bonds. The electrons in these orbitals are called σ electrons.

![Figure 1.10](image-url) Formation of σ bonds by head-to-head overlap of different orbitals.

We have discussed the formation of a σ bond between different elements. The question is: *Is it possible to make a double bond between the carbon atoms and how can we do it?* The two carbon atoms are most easily connected along the axis via σ bonds. Because a σ bond fills the space between the two carbon atoms with electrons, it is not possible to connect these atoms with a second σ bond by head-to-head overlap. Therefore, the two carbon–carbon bonds in a double bond cannot be identical and so the second or third bonds must be different from the σ bond. The second bond of the double bond in ethylene can be constructed from side-to-side overlap of pure p orbitals of each carbon atom. Some elements use their d orbitals to form a bond.

Since there is no d orbital in the carbon atom, we will not examine the overlap with d orbitals here. However, these overlaps are important in inorganic elements having d orbitals such as sulfur and phosphorus. As can be seen in Figure 1.11,
p orbitals can overlap side-to-side to form a new bond above and below the axis that connects atoms. This bond is called a \(\pi \) bond. \(\pi \) Bonds are formed by the overlap of pure p orbitals (unhybridized orbitals). The electrons that make up \(\pi \) bonds are called \(\pi \) electrons.

Figure 1.11 The formation of the second C—C bond by side-to-side overlap of pure p orbitals.

Now, let us try to form a double bond between the two carbon atoms. In organic chemistry, two elements can be connected by single, double, or triple bonds. For these bonds, two, four, and six electrons are needed, respectively. Regardless of the number of bonds, one of these bonds is definitely a \(\sigma \) bond. Because \(\sigma \) bonds are axially connecting the atoms, there cannot be more than one bond on this line. The second and third bonds are formed only through pure p orbitals, and these bonds are \(\pi \) bonds. Thus, we can make the following generalization:

- Single bond \(\sigma \) bond
- Double bond \(\sigma \) bond + \(\pi \) bond
- Triple bond \(\sigma \) bond + 2 \(\pi \) bond

If there is a single bond between the two atoms, this bond is always a \(\sigma \) bond. When there are two bonds, one is a \(\sigma \) bond and the other is a \(\pi \) bond. In triple bonds, the first bond is a \(\sigma \) bond and the other two are \(\pi \) bonds. This rule always holds. Before we create a double bond between two carbon atoms, let us first examine the ethylene molecule, the smallest member of carbon compounds containing a double bond. The angle between the hydrogen atoms is approximately 119° and the angle between the H—C=C atoms is 121°.

Each carbon is bonded to three atoms. As one of the pure p orbitals will be used for the \(\pi \) bond, the remaining orbitals, an s orbital and two of the p orbitals, will hybridize (Figure 1.12).

Figure 1.12 \(sp^2 \)-Hybridization.

Let us examine the orbitals in the second shell of the carbon atom again. They are an s orbital and three p orbitals oriented in the \(x \), \(y \), and \(z \) directions. Now, we remove any of these p orbitals, which will be used for making the double bond, and examine the position of the remaining orbitals. The remaining orbitals (1 s and 2 p orbitals) are located in a plane (Figure 1.13). The s orbital is also in this plane because of its spherical structure. In the ethylene molecule, carbon atoms make three \(\sigma \) bonds apart from the \(\pi \) bond. If carbon uses an s and two p orbitals to form the bonds with carbon and hydrogen atoms, the bond formed with p orbitals will be different from the bond formed with the s orbital. We would expect