Lecture Notes in Networks and Systems 389

Michael E. Auer Hanno Hortsch Oliver Michler Thomas Köhler *Editors*

Mobility for Smart Cities and Regional Development - Challenges for Higher Education

Proceedings of the 24th International Conference on Interactive Collaborative Learning (ICL2021), Volume 1

Lecture Notes in Networks and Systems

Volume 389

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA, School of Electrical and Computer Engineering—FEEC, University of Campinas— UNICAMP, São Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering, Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, USA

Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of Alberta, Alberta, Canada

Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering, KIOS Research Center for Intelligent Systems and Networks, University of Cyprus, Nicosia, Cyprus

Imre J. Rudas, Óbuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong

The series "Lecture Notes in Networks and Systems" publishes the latest developments in Networks and Systems—quickly, informally and with high quality. Original research reported in proceedings and post-proceedings represents the core of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks, spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other. Of particular value to both the contributors and the readership are the short publication timeframe and the world-wide distribution and exposure which enable both a wide and rapid dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art and future developments relevant to systems and networks, decision making, control, complex processes and related areas, as embedded in the fields of interdisciplinary and applied sciences, engineering, computer science, physics, economics, social, and life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.

All books published in the series are submitted for consideration in Web of Science.

More information about this series at https://link.springer.com/bookseries/15179

Michael E. Auer · Hanno Hortsch · Oliver Michler · Thomas Köhler Editors

Mobility for Smart Cities and Regional Development -Challenges for Higher Education

Proceedings of the 24th International Conference on Interactive Collaborative Learning (ICL2021), Volume 1

Editors Michael E. Auer CTI Global Frankfurt am Main, Germany

Oliver Michler Technische Universität Dresden Dresden, Sachsen, Germany Hanno Hortsch Technische Universität Dresden Dresden, Sachsen, Germany

Thomas Köhler Technische Universität Dresden Dresden, Sachsen, Germany

ISSN 2367-3370 ISSN 2367-3389 (electronic) Lecture Notes in Networks and Systems ISBN 978-3-030-93903-8 ISBN 978-3-030-93904-5 (eBook) https://doi.org/10.1007/978-3-030-93904-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

ICL2021 was the 24th edition of the International Conference on Interactive Collaborative Learning and the 50th edition of the IGIP International Conference on Engineering Pedagogy.

This interdisciplinary conference aims to focus on the exchange of relevant trends and research results as well as the presentation of practical experiences in Interactive Collaborative Learning and Engineering Pedagogy.

ICL2021 has been organized by Technische Universität Dresden and University of Applied Science Dresden, Germany, from September 22 to 24, 2021, as a hybrid event.

This year's theme of the conference was "Mobility for Smart Cities and Regional Development – Challenges for Higher Education".

Again, outstanding scientists from around the world accepted the invitation for keynote speeches:

• Gyeung Ho Choi, Professor at Daegu Gyeongbuk Institute of Science and Technology, Korea.

Speech title: Challenges for Future Mobility

- **Thoralf Knote**, Head of Department, Fraunhofer Institute IVI, Germany. Speech title: *Involvement of Students in the Project Work at Fraunhofer IVI*
- Krishna Vedula, Founder and Executive Director of IUCEE, India. Speech title: Addressing the Challenges of Engineering Pedagogy in India
- Stefan Odenbach, Dean of Studies for Mechanical Engineering at TU Dresden, Germany

Speech title: Practical Courses without Presence – is this possible?

- **David Guralnick,** Kaleidoscope Learning, USA Speech title: *Successful Learning Experiences Design*
- Lars Seiffert, Board Member, Verkehrsbetriebe AG Dresden, Germany Speech title: *Priority for Public Transport Fair and Green*
- Ulrike Stopka, Professor for Communications Economics and Management at TU Dresden, Germany

Speech title: Challenges and Opportunities for a Transport Sciences-Oriented Study Program

The following very interesting workshops have been held:

• Modern Vehicle Engineering Training up to Connected and Automated Driving Facilitators: Oliver Michler, Professor for Traffic Telematics at TU Dresden,

Germany, and Toralf Trautmann, Professor for Mechatronics at University of Applied Sciences Dresden, Germany

• From Face-to-Face to Hybrid Events – Experiences with the Digital Transformation of a Conference Series Dealing with Online Network Research

Facilitator: Thomas Köhler, Professor for Media Technology at TU Dresden and Director of the Center for Open Digital Innovation and Participation at TU Dresden

We would like to thank the organizers of the following Special Sessions:

- Games in Engineering Education (GinEE)
 Chair: Matthias C. Utesch, FOS/BOS Technik München, Germany
- Entrepreneurship in Engineering Education 2020" (EiEE'20) Chair: Jürgen Jantschgi, HTL Wolfsberg, Austria
- Engineering Education for "Smart Work" and "Smart Life" (IPW) Chair: **Steffen Kersten**, TU Dresden, Germany
- Assessing and Enhancing Student online Participation and Engagement Chair: M. Samir Abou El-Seoud, The British University in Egypt
- Smart Education of Digital Era Chair: Irirna Victorovna Makarova, Kazan Federal University, Russia

Since its beginning, this conference is devoted to new approaches in learning with a focus to collaborative learning and engineering education. We are currently witnessing a significant transformation in the development of education. There are at least three essential and challenging elements of this transformation process that have to be tackled in education:

- the impact of globalization and digitalization on all areas of human life,
- the exponential acceleration of the developments in technology as well as of the global markets and the necessity of flexibility and agility in education,
- the new generation of students, who are always online and don't know live without Internet.

Therefore, the following main themes have been discussed in detail:

- Collaborative Learning
- Mobility and Smart Cities
- New Learning Models and Applications
- Project-Based Learning

Preface

- Game-Based Education
- Educational Virtual Environments
- Computer-Aided Language Learning (CALL)
- Teaching Best Practices
- Engineering Pedagogy Education
- Public-Private Partnership and Entrepreneurship Education
- Research in Engineering Pedagogy
- Evaluation and Outcomes Assessment
- Internet of Things and Online Laboratories
- IT and Knowledge Management in Education
- Approaches of Online Teaching
- Virtual and Augmented Learning
- Mobile Learning Applications
- Connection between Universities and the Labor Market
- Further Education for Engineering Educators

As submission types have been accepted:

- Full Paper, Short Paper
- Work in Progress, Poster
- Special Sessions
- Workshops, Tutorials.

All contributions were subject to a double-blind review. The review process was very competitive. We had to review more than 500 submissions. A team of about 240 reviewers did this terrific job. Our special thanks go to all of them.

Due to the time and conference schedule restrictions, we could finally accept only the best 156 submissions for presentation.

The conference had more than 250 online and on-site participants from 42 countries from all continents.

Our special thank goes to **Prof. Dr. Thomas Köhler and his team** of Technische Universität Dresden, Germany, who made the hybrid conference a reality. We thank **Sebastian Schreiter** for the technical editing of this proceedings.

ICL2022 will be held in Vienna, Austria.

Michael E. Auer ICL General Chair Hanno Hortsch ICL2021 Chair

Committees

General Chair

Michael E. Auer C	CTI, Frankfurt/Main, Germany
-------------------	------------------------------

ICL2021 Conference Chair

наппо нопесн
manno monsen
manno monisch
fiamo fiorisen
rianno rioresen

Dresden University of Technology, Dresden, Germany

International Chairs

Samir A. El-Seoud	The British University in Egypt (Africa)
Neelakshi Chandrasena	University of Kelaniya, Sri Lanka (Asia)
Premawardhena	
Alexander Kist	University of Southern Queensland
	(Australia/Oceania)
Alaa Ashmawy	American University, Dubai (Middle East)
David Guralnick	Kaleidoscope Learning New York, USA
	(North America)
Uriel Cukierman	UTN, Buenos Aires, Argentina (Latin America)

Honorary Advisors

Hans J. Hoyer Panarit Sethakul Hans Müller-Steinhagen Roland Stenzel Viacheslav Prikhodko IFEES/GEDC General Secretary KMUTNB, Thailand TUDAG Dresden University of Technology, Germany Moscow Technical University, Russia

Technical Program Chairs

Dresden University of Technology, Dresden,	
Germany	
University of Applied Sciences Dresden,	
Germany	
IAOE, France	

Workshop and Tutorial Chairs

Barbara Kerr	Ottawa University, Canada
Manuela Niethammer	Dresden University of Technology, Dresden,
	Germany
Claudio Teneiro Leivo	University of Talca, Chile

Special Sessions Chair

Thomas Köhler	Dresden University of Technology, Dresden,
	Germany

Publication Chairs

Steffen Kersten	Dresden University of Technology, Dresden,
	Germany
Sebastian Schreiter	IAOE, France

Awards Chairs

Stephan Abele	Dresden University of Technology, Dresden,
	Germany
Tiia Rüütmann	Tallinn University of Technology, Estonia

Local Arrangement Chair

Friedrich Funke	Dresden University of Technology, Dresden,
	Germany

Senior Program Committee Members

Andreas Pester	The British University in Egypt
Axel Zafoschnig	Ministry of Education, Austria
Cornel Samoila	Transylvania University of Brasov, Romania
Doru Ursutiu	University of Brasov, Romania
Eleonore Lickl	College for Chemical Industry, Vienna, Austria
George Ioannidis	University of Patras, Greece

Tatiana Polyakova	Moscow State Technical University, Russia
Tiia Rüütmann	Technical University Tallinn, Estonia

Program Committee Members

Alexander Soloviev	Russia
Buri Triyono	Yogyokarta State University, Indonesia
Christian Guetl	Graz University of Technology, Graz, Austria
Demetrios Sampson	University of Piraeus, Piraeus, Greece
Despo Ktoridou	University of Nicosia, Nicosia, Cyprus
Hants Kipper	Tallinn University of Technology, Tallinn, Estonia
Herwig Rehatschek	Medical University of Graz, Graz, Austria
Igor Verner	Technion, Haifa, Israel
Istvan Simonics	Obuda University, Budapest, Hungary
Ivana Simonova	University of Hradec Kralove, Hradec Kralove, Czech Republic
James Wolfer	Indiana University South Bend, IN, USA
Jürgen Mottok	OTH Regensburg, Regensburg, Germany
Martin Bilek	University of Hradec Kralove, Hradec Kralove, Czech Republic
Matthias Utesch	Technical University of Munich, Munich, Germany
Monica Divitini	NTNU, Gløshaugen, Norway
Nael Barakat	University of Texas at Tyler (UT-Tyler), TX, USA
Pavel Andres	Czech Technical University in Prague, Czech Republic
Rauno Pirinen	Laurea Universities of Applied Sciences, Vantaa, Finland
Santi Caballé	Universitat Oberta de Catalunya, Barcelona, Spain
Teresa Restivo	Universidade de Porto, Porto, Portugal
Stavros Nikou	University of Strathclyde, Glasgow, UK
Stamatios Papadakis	The University of Crete, Greece
-	•

Local Organizing Committee Members

Sven Eckelmann	Dresden University of Technology, Dresden,
	Germany
Dirk Engert	University of Applied Sciences Dresden,
	Germany

Jörg Neumann	Dresden University of Technology, Dresden,
	Germany
Jacob Romankiewicz	Dresden University of Technology, Dresden,
	Germany

Contents

Collaborative Learning

Adapting Materials for Diverse Contexts to Help Faculty AdoptProcess Oriented Guided Inquiry Learning (POGIL)Clif Kussmaul	3
Characteristics of Team Dynamics Influencing Success in Engineering Student Teams Anna Maliashova, Dilbar Sultanova, and Phillip A. Sanger	13
Where Are we with Inclusive Digital Further Education? AccessibilityThrough DigitalizationMeinhardt Branig, Christin Engel, Jan Schmalfuß-Schwarz,Emma Franziska Müller, and Gerhard Weber	21
Critical Teaching-Learning Situations in Higher Education and Vocational Education – A Qualitative Analysis of the Use of Digital Approaches and Tools in Virtual Collaborative Learning Environment Dörte Görl-Rottstädt, Maik Arnold, Michael Heinrich-Zehm, Marcel Köhler, and Vera Hähnlein	34
Internationalization in Microbiology and Bioengineering Courses: Experiences Between Mexico and Ecuador José F. Álvarez-Barreto, Jorge Membrillo Hernández, Gloria A. Chapa-Guillén, Fernando Larrea, and Rebeca García-García	46
Innovative Capacity of Faculty Development Programs Olga Y. Khatsrinova, Anna V. Serezhkina, Inna M. Gorodetskaya, and Elina I. Murtazina	54
The Role of Inter-institutional Cooperation in Engineering Training Svetlana Karstina	67

Linguistic Personality: Requirements to a Modern Textbook Elena Volkova, Olga Y. Khatsrinova, and Mansur Galikhanov	75
Acceptance of ICT in Institutional Collaboration in Vocational Education. Empirical Findings Based on Unified Theory of Acceptance and Use of Technology (UTAUT)	85
Designing an Architecture for Structuring Didactic Concepts, Methods and Tools Veronika Thurner and Axel Böttcher	95
Exploring Pre-service Computer Science Teachers' Perception of Collaborative Learning in Online Teaching from a TPK Perspective Bernhard Standl and Nadine Schlomske-Bodenstein	107
A Review: Status Quo and Current Trends in E-Learning Ontologies Sudath Rohitha Heiyanthuduwage	114
Design of a Vehicle for Modern Mobilities in Metropolitan Areas Dan Centea and Seshasai Srinivasan	126
How to Overcome the Difficulties Emerged When Applying Student-Centered Approach?	134
Smart Pedestrian Crossing - An EPS@ISEP 2020 Project Bárbara Cruz Caruso, Charlie Stenstkie, David van Duivenboden, Jan Starosta, Jens Hoernschemeyer, Solenne Peytard, Benedita Malheiro, Cristina Ribeiro, Jorge Justo, Manuel F. Silva, Paulo Ferreira, and Pedro Guedes	141
Foldable Disaster Shelter - An EPS@ISEP 2020 Project Daniela-Andreea Popescu, Eduardo Pereira, Gabriel Givanovitch, Jelte Bakker, Lore Pauwels, Vladimir Dukoski, Benedita Malheiro, Cristina Ribeiro, Jorge Justo, Manuel F. Silva, Paulo Ferreira, and Pedro Guedes	153
Floating Trash Collector - An EPS@ISEP 2020 Project Andrea-Bianca Serafia, António Santos, Davide Caddia, Evelien Zeeman, Laura Castaner, Benedita Malheiro, Cristina Ribeiro, Jorge Justo, Manuel F. Silva, Paulo Ferreira, and Pedro Guedes	165
Does Gender Gap in Confidence Explain Gender Gap in Academic Achievement? Yasmine Guemouria, Ivan Acebo, Maria Jose Rosales-Lopez, and Samira Hosseini	177

Contents

Bonding in Times of Pandemia—A Concept for Purely Virtual Kick-off Days to the Student Entry Phase	190
A Collaborative Approach to Scaffold Group Discussion Skills Using Video Recorded Feedback Dipali Dilip Awasekar and Shashikant Annarao Halkude	200
Material Demo Lab - Selection Criteria for Methods TrainingBusiness Model Generation and Design Prototyping with MaterialScientists.Jasmin Schöne, Florian Sägebrecht, Lenard Opeskin,Anne-Katrin Leopold, Jens Krzywinski, Stefan Schwurack, Martin Kunath,and Peter Schmiedgen	209
POSTER: Education for Sustainable Development in the H2- InnoCampus TUD	220
Educational Virtual Environments	
Differentiated Approach When Studying "English for SpecialPurpose" Online in Technological UniversityEkaterina Tsareva, Elena Yurievna Semushina, and Roza Bogoudinova	229
ADVANCED EDU-AR-VIZ: a Framework for Selecting Appropriate Visual Augmentations in STEM Education Isabel Lesjak, Christian Guetl, Johanna Pirker, and David Lowe	237
Virtual Environment Smart House for Hybrid Laboratory GOLDi Yevhenii Yaremchenko, Johannes Nau, Detlef Streitferdt, Karsten Henke, and Anzhelika Parkhomenko	250
Code-Switching in EFL Virtual Lessons: Ambato Case Study Josué Arévalo-Peralta, Ruth Infante-Paredes, Cristina Páez-Quinde, and Wilma Suárez-Mosquera	258
Technological University Faculty ICT Barriers Duringthe PandemicGulnara F. Khasanova, Farida T. Shageeva, and Natalia V. Kraysman	266
Network Simulator Software Utilization as a Teaching Method for Distance Learning Dimitrios Magetos, Ioannis Sarlis, Dimitrios Kotsifakos, and Christos Douligeris	274
Legal Aspects of Using Artificial Intelligence in Higher Education Timofej G. Makarov, Kamil M. Arslanov, Elena V. Kobchikova, Elena G. Opyhtina, and Svetlana V. Barabanova	286

Communicative Competence in Virtual Environments	
Code-Switching. Carlos Mayorga-Gaona, Ruth Infante-Paredes, Mayorie Chimbo-Cáceres, and Wilma Suárez-Mosquera	296
Online Stories from the Moth to Improve the Speaking Skill:	
Ambato Case Yadira Gallardo-Niacato, Ruth Infante-Paredes, Wilma Suárez-Mosquera, and Mayorie Chimbo-Cáceres	303
Internationalization of Teacher Education During COVID-19 Aleksandra Lazareva, Irina Ivashenko Amdal, Kjerstin Breistein Danielsen, and Eli-Marie Danbolt Drange	311
Learning Analytics of the Results of Faculty Further Education Gulnara F. Khasanova and Alsu I. Samsutdinova	322
Digital Tools for Competitive Engineering Training Marina Zhuravleva, Galina Klimentova, Roza Tagasheva, Elvira Valeeva, and Olga Y. Khatsrinova	329
Problems and Prospects of Using Remote Educational Technologies in the Context of Engineers' Digital Training Irina Makarova, Larisa Fatikhova, Polina Buyvol, and Gleb Parsin	337
Development of a Virtual Reality Laboratory to Increase Student Motivation in the Era of Digital Education	349
Conceptual Maps Applied to Remote/Virtual Laboratories for	
Active Learning	361
Learning to be Together Again! – Using Virtual Breakout	
Rooms to Fill the Communication and Cognitive Gap in Online Classrooms	370
Cross-Border Projects in Digital Education Ecosystems Carsten Wolff, Galyna Tabunshchyk, Peter Arras, Jose Ramon Otegi, Sergey Bushuyev, Olena Verenych, Anatoly Sachenko, Christian Reimann, Bassam Hussein, Elena Vitkauskaite, Ekaterina Mikhaylova, Areej Aldaghamin, Anna Badasian, Olha Mikhieieva, Nargiza Mikhridinova, Natalya Myronova, Jasmin Hemmer, and Thorsten Ruben	382

Suddenly Online: Active Learning Implementation Strategies DuringRemote Teaching of a Software Engineering CourseSimona Vasilache	395
E-Teaching in Higher Education: An Analysis of Teachers' Challenges Facing E-Learning in Mozambique Domingos Rhongo and Bonifácio da Piedade	403
Evaluation and Outcomes Assessment	
COVID-19's Impact on the Quality of Educational Process and the Academic Performance as Viewed by IT Students: A Case Study in Text Mining	417
Students' Readiness to Distance Learning: Results of Research in the Institutions of Higher Education	426
International Collaborative Research Center Criteria Assessment Sukanjana Lekapat, Panarit Sethakul, and Matheepot Phattanasak	435
Smooth Transition from Text-Based Exams to Multiple-choice Gerhard Jahn	448
A Community-Approach to Item Calibration for Testing Math-Skills in Engineering	454
Assessment of Digital Skills in the Context of Social Media Xhelal Jashari, Bekim Fetaji, and Christian Guetl	467
Real-Time Summative Assessment - A Case Study of Computer Science Course in Engineering Education for Agronomy Saloua Bensiali	480
Problem-Based Learning Contribution to Master's Studies inLogistics and Supply Chain ManagementJelizaveta Janno and Kati Kõrbe Kaare	492
Work-in-Progress: Evaluation in Hungarian Education: EvaluationKnowledge and Reflections on Engineering and TechnicalTeacher StudentsIbolya Tomory	504
Work-in-Progress: Multi-stage Students' Self-control Realizationat Minimum Teachers' SupportVladlen Shapo and Valeriy Volovshchykov	512

New Learning Models and Applications

Outline of Possible Synchronous Solutions and Experiences in Order to Supply Large Groups of Students with Learning Content in Classroom and Mixed Classroom/Distance Scenarios	523
Augmented Reality in Engineering Education in Austrian HigherVocational Education from the Students' PerspectiveReinhard Bernsteiner, Andreas Probst, Wolfgang Pachatz,Christian Ploder, and Thomas Dilger	535
Human Factors in Human-Centred Systems - On the Influence of Language on the Usability of a Cognitive Aid in Rescue Services Marcel Köhler	546
Re-imagining Blended Learning. An Experience-Led Approach to Accelerate Student Future Skills Development	558
Development of Computer Skills to Draw in the LibreCad from Virtual Learning Environments	565
The New Meaning of Hybrid Learning During the Pandemic Olga Nikolaevna Imas, Olga Vladimirovna Yanuschik, I. G. Ustinova, S. V. Rozhkova, and Evgeniia Aleksandrovna Beliauskene	577
Modern Trends in Soft Skills Development for «International Transport Policy» Students Tatiana Polyakova and Irina Zueva	585
Development of an Open Digital Platform "Digital PsyTech" for Psychological and Pedagogical Support of Participants in the Educational Process Nadezhda I. Almazova, Anastasiia Tabolina, Anna V. Rubtsova, Natalia B. Smolskaia, Dmitrii V. Tikhonov, Marina V. Bolsunovskaya, Tatiana Abashkina, and Nikolay I. Snegirev	593
Evaluation of User Experiences in an Immersive Role Play for Cross-Institutional and Cross-National Virtual Collaborative Learning in Hospitality Management	602
Educational Innovations in Financial ManagementDegree ProgramsPetr Osipov, Elena Girfanova, and Julia Ziyatdinova	614

Contents

New Dimensions in Online Teaching and Learning of ForeignLanguages: Proximity at a DistanceNeelakshi Chandrasena Premawardhena	622
Remote Supervision: A Boost for Graduate Students	634
Interdisciplinary Approach to Teaching Petrochemical Engineers Marina Zhuravleva, Natalia Bashkirtseva, Elvira Valeeva, Olga Zinnurova, and Julia Ovchinnikova	645
Transitioning the Teaching/Learning Process to Online EnvironmentDuring the COVID-19 PandemicPaula Miranda, Silviano Rafael, and Júlia Justino	653
Communicative Competencies Assessment of Teachers at Engineering University Ekaterina Tsareva, Roza Bogoudinova, and Elena Yurievna Semushina	661
Exploring the Correlations Between the Dimensions of ComputationalThinking and Problem-Solving Concepts Through Students'PerspectivesFoteini Papadopoulou, Charilaos Tsihouridis, and Marianthi Batsila	669
A Proposed Model for the Academia-Industry Collaboration: A Case Study Hiranmoy Samanta, Pradip Kumar Talapatra, and Kamal Golui	680
Component Organised Learning Method for Digital Supply Chain Hybrid Courses Lea Murumaa, Eduard Shevtshenko, and Tatjana Karaulova	691
Activity-Based Methods in Training Foreign Students Alla A. Kaybiyaynen, Svetlana E. Matveeva, Rozalina V. Shagieva, Liudmila Dulalaeva, and Tatiana N. Nikitina	706
Using Digital Technologies to Implement Advanced Professional Education Programs Svetlana V. Barabanova, Mansur Galikhanov, Alla A. Kaybiyaynen, and Darya-Anna A. Kaybiyaynen	717
Engaging Students with Gamified Learning Apps: The Role of Teacher Intervention	728
Social Media in Education: A Case Study Regarding HigherEducation Students' ViewpointsGeorgios Lampropoulos, Pekka Makkonen, and Kerstin Siakas	735

Work-in-Progress: Piloting Smart Blockchain Badges for Lifelong Learning	746
Intelligent Systems in Translation to Assist in Engineers' Training Egor Petrov, Jamila Mustafina, Ahmed Aljaaf, Askar Khayrullin, and Magizov Rustem	754
Building Students' Transferable Skills Through Classroom Activities and Assessments Jianhua Yang and Mir Seyedebrahimi	766
Laboratory Didactics 5.0 Gudrun Kammasch, Hans-Georg Bruchmüller, and Silke Frye	775
Professional Self-identification of Student's Majoring in Engineering	787
Digitalization of Engineering Education in Training for Industry 4.0 Irina Makarova, Jamila Mustafina, Polina Buyvol, Eduard Mukhametdinov, and Vadim Mavrin	797
Games in Engineering Education	
Analysis of Possibilities of Using Game Statistics of the Cloud Quest in Assessment of Personality Inna Yudina, Pavel Kozlovskii, Natalia Pavlikova, Ksenia Kochkina, and Pavel Sataev	813
Improving Soft Skills and Motivation with Gamification inEngineering EducationJudit Módné Takács, Monika Pogátsnik, and Tamás Kersánszki	823
The Model of Digital Lifelong Education System in the Era of Grand Challenges: The Case of Multidisciplinary University	835
Vector Model of the Youth Professional Self-Determination in the Context of Multidisciplinary University	844

Contents

An Evaluation of Serious Games for Engineering Education Susann Zeiner-Fink, Annika Feldhoff, and Angelika C. Bullinger	852
Using a Math Card Game in Several Ways for Teaching the Concept of Limit	865
Understanding Student Motivation to Engage in the Contents Under Pressure Digital Game Jeffrey Stransky, Landon Bassett, Cheryl A. Bodnar, Daniel Anastasio, Daniel Burkey, and Matthew Cooper	878
Design and Development of a Collaborative Serious Game to Promote Professional Knowledge Acquisition of Prospective Teachers Charlotte Knorr and Bernd Zinn	890
Assessing and Enhancing Student On-Line Engagement	
Gender Differences of Egyptian Undergraduate Students' Achievements in Online Collaborative Learning Wesam Khairy Morsi and Hala Medhat Assem	905
Towards the Development of a Mobile Healthcare App for Diagnosis of RNA Diseases	917
A Haptic Handwriting Device in MOALEM Platform for Arabic Vocabulary Learning Somaya Al-Maadeed, Batoul Khalifa, Moutaz Saleh, Samir Abou El-Seoud, and Jihad AlJa'am	928
Examining Accesses to Educational Resources in a Blended Learning Flipped Classroom Controls Course in 2020 Ana M. B. Pavani	939
Designing Mobile App "Digital Professional Navigation" (DPN) for Self-determination of Schoolchildren and University Students on the Basis of a Multidisciplinary University Dmitrii V. Tikhonov, Nikolay I. Snegirev, Anna V. Rubtsova, Tabolina V. Anastasiia, Natalia B. Smolskaia, Nadezhda I. Almazova, Marina V. Bolsunovskaya, Cherkas Alina, and Svetlana E. Chesnokova	951
Learning Community Detection and Evaluation Meriem Adraoui, Asmaâ Retbi, Mohammed Khalidi Idrissi, and Samir Bennani	960
Quiz Feedback in Massive Open Online Courses from the Perspective of Learning Analytics: Role of First Quiz Attempts	972

Digital Humanist: An Innovative Learning Approach for a New ICT Specialist in the Field of Creative Industry
Aleksandra Cicha, Francesco Colace, Vicky Katsoni, Tatyana Koukoleva, Maciej Pietrzykowski, Theologos Prokopiou, Virginia Rosania, Alfonso Santaniello, Domenico Santaniello, Borislava Stoimenova, Ivan Stoychev, and Daniel Tejerina
A Socio-educational App for Digitally Transforming Online Learning
Encouraging Student Engagement Through Storytelling
Teaching Multivariable Calculus in the Emergency Remote Learningin Brazil Amidst COVID-19 PandemicCassia Isac, Ana Luiza Lima de Souza, and Aruquia Peixoto
Author Index

Collaborative Learning

Adapting Materials for Diverse Contexts to Help Faculty Adopt Process Oriented Guided Inquiry Learning (POGIL)

Clif Kussmaul^(⊠)
^{[□}

Green Mango Associates, LLC, Bethlehem, PA, USA clif@kussmaul.org

Abstract. Process Oriented Guided Inquiry Learning (POGIL) is an approach to teaching and learning in which students work in teams to practice important professional skills and develop their own understanding of key concepts. Numerous studies have found that POGIL increase student motivation and learning. POGIL and related approaches can be a significant change for many instructors, so The POGIL Project has developed numerous workshops to help faculty understand POGIL principles and practices, and learn to create activities and facilitate student learning. However, these workshops were developed by and for STEM faculty in the US. In the last decade, POGIL workshops increasingly target other disciplines, cultures, and countries. This has highlighted limitations and opportunities to improve the workshops. This paper briefly describes POGIL, the author's experiences adapting POGIL workshops and materials for faculty in diverse contexts, and lessons learned that could help to adapt other materials.

Keywords: POGIL · Professional development · Universal design · Workshop

1 Introduction

Over the last 20 or more years, a variety of evidence-based approaches to teaching and learning have been developed, validated, and disseminated. This paper focuses on one such approach, *Process Oriented Guided Inquiry Learning (POGIL)*. To help faculty learn about and implement POGIL practices in their classes, the POGIL community regularly offers ¹/₂-day, 1-day, and multi-day workshops. However, the workshop sessions were developed by and for faculty in the United States. The author has led over 40 POGIL workshops in the US, over 20 in southern India [e.g., 1–4], as well as in Ghana, Switzerland, and Vietnam. This paper describes why and how workshops were adapted for such settings. The lessons learned should be relevant when adapting other learning materials to other contexts.

The rest of this paper is organized as follows. Section 2 briefly describes POGIL, a sample POGIL activity, and the POGIL workshops for faculty. Section 3 describes a set of recommendations based on the author's experiences adapting workshop materials for diverse contexts. Section 4 provides conclusions and future directions.

2 Process Oriented Guided Inquiry Learning

The *ICAP model* (Interactive, Constructive, Active, Passive) [5] describes how learning outcomes improve as the learning environment progresses from *passive* to *active* to *constructive* (learners create their own understanding) to *interactive* (learners work together and explain concepts to each other). Learning that is both interactive and constructive is also called *social constructivism*.

In a POGIL class, teams of students (typically 3–5) work together to practice teamwork, critical thinking, and other important skills. The teams work on learning activities that guide them to interact and construct their own understanding of key concepts. The instructor observes and listens to students, provides encouragement and help, and leads class discussions about key ideas. Thus, POGIL is learner-centered, not teacher-centered [6, 7]. A POGIL activity consists of one or more *models* (e.g., tables, graphs, diagrams, computer code) each followed by a sequence of *critical thinking questions* that guide students through *explore-invent-apply learning cycles* to *explore* the model, *invent* their own understanding of a new concept, and then *apply* that understanding.

POGIL was initially developed for chemistry [e.g., 8] but has since spread to many other STEM disciplines [e.g., 9–12]. Numerous research studies have found that POGIL improves student motivation and learning, despite faculty concerns about "covering" enough content. (For a recent summary of research on POGIL, see [13]). For example, a survey of POGIL faculty in computer science found strong agreement that students are more engaged, more active, develop deeper understanding, and develop relevant skills [14]. The POGIL Project (http://pogil.org) is a non-profit organization that develops and provides training; reviews, endorses, and publishes POGIL activities; and provides other support for POGIL practitioners.

2.1 Sample POGIL Activity: Models of Disease

This section briefly describes the initial sections of a POGIL style activity designed for an introductory programming course. The activity guides student teams to explore a sequence of models for how diseases spread through a population. In doing so, students learn about modeling, program design, and iterative development practices. Students also gain experience in teamwork, critical thinking, and problem solving.

The activity starts with a brief introduction to motivate the activity, shown in Fig. 1. Too often, instructors introduce new concepts without context or motivation, but an appropriate example or sample problem can help to engage students.

Section A presents two *compartmental models*, shown in Fig. 2. The early questions prompt students to explore these models, by noting how many stages and transitions are in each model, and whether a person can become sick more than once. Later questions prompt students to invent their own understanding, and explain the common name for each model (SIS and SIR). These questions are not intended to be difficult, but to ensure that students understand the models and are better prepared to work with more complex models later in the activity.

Section B starts with a short block of pseudocode, shown in Fig. 3. Questions prompt students to explore the pseudocode to identify the key phases and sub-phases,

Diseases that are infectious and spread easily can have large, deadly impacts. In the 1300s, the **Black Death** killed 75-200 million people (30-60% of the population) in Europe, Asia, and North Africa. The **Cocoliztli Epidemic** of 1545-48 killed 5-15 million people (80% of the population) in what is now Mexico. In 1918-20, the **Spanish flu** killed 75 million people worldwide, nearly four times as many as World War I. More recently, **HIV/AIDS** has killed over 30 million people since 1960. This activity explores ways to model and simulate the spread of a disease. The same concepts and techniques are used in other types of modeling.

Fig. 1. Introduction to activity on disease models

Fig. 2. Compartmental models for section A of activity on disease models.

and understand how the simulation works. Students are then asked to choose which phases will be easiest and hardest, and to explain their reasoning; this would be obvious to an instructor or experienced developer, but is often not obvious to novices. Next, students are given several pages of starter code (in Python), and questions prompt students to look through the code to see how many functions are defined, which will need to be completed, which are tests, etc.

```
make population (one individual at a time)
    make individual
run simulation (one day at a time)
    update population (one individual at a time)
    update individual
    check for new infections
    summarize results (for day)
summarize results (for simulation) (e.g., graph, table)
```

Fig. 3. Pseudocode for section B of activity on Disease Models.

Section C starts with a short block of Python code that defines a set of variables, shown in Fig. 4. Questions prompt students to explore the variables, identify elements, and connect them back to the compartmental models, pseudocode, and starter code. Later questions prompt students to create new sets of variables to represent other diseases and conditions.

```
# individuals and population
indA
         =
             { "stage":"healthy",
                                  "days":0 }
indB
        =
             { "stage":"sick",
                                  "days":5 }
         = [ { "stage": "healthy",
                                  "days":0 },
pop
             { "stage":"sick",
                                  "days":2 },
             { "stage":"healthy", "days":0 } ]
# daily summary and history
dav1
        = { "healthy":1, "sick":1 }
         = [ { "healthy":1, "sick":1 },
hist
             { "healthy":1, "sick":1 },
             { "healthy":2, "sick":0 } ]
```

Fig. 4. Simulation data values for section C of activity on disease models.

Thus, in the course of this classroom activity, students explore and invent understanding of graphical models, pseudocode, starter code, data representations, and good development practices, and how these different elements are interrelated. To some instructors, this approach seems time-consuming and inefficient, but an activity like this can help students to develop deeper understanding so that they are more confident and successful with the programming assignment, and with future assignments.

2.2 Faculty Professional Development

Unfortunately, not enough instructors adopt evidence-based approaches [15], despite varied propagation efforts [e.g., 16, 17]. To help instructors learn about POGIL principles and practices, The POGIL Project has developed a set of professional development workshop sessions for instructors, trains experienced POGIL instructors to lead these sessions, and offers ½-day, 1-day, and multi-day workshops at professional conferences and academic institutions. Table 1 lists sessions in a typical 3-day workshop. To a large extent, the sessions use POGIL practices to help instructors learn about POGIL; for example, instructors work through a short POGIL activity (as students), and then work through a second meta-activity to reflect on what they did, what the instructor did, and how the activity's structure supported their learning.

Introductory	Activity Authoring
 Fundamentals of POGIL 	Activity Structure
Classroom Facilitation	 Learning Objectives & Scaffolding
Team Formation	Robust Models
• Modeling a POGIL Classroom	 Activity Rubrics for Feedback
 Improving Facilitation Skills 	Author Coaching
Scenarios & Effective Strategies	Other
 Introducing Process Skills 	POGIL Laboratories (6 sessions)
• Using & Assessing Process Skills	Inclusive Excellence
Facilitator Toolbox	• Scholarship of Teaching & Learning

Table 1. Workshop Sessions developed by The POGIL Project

3 Adapting Materials in Diverse Contexts

The workshop sessions described above were mostly developed by and used with college and high school instructors who teach STEM (science, technology, engineering, and mathematics) in the US. The POGIL Project solicits feedback from workshop participants and leaders, which is used to identify and fix problems, and consider ways to continually improve the workshops.

However, the workshop sessions are increasingly used in more diverse contexts. For example, the author has led workshops in India, Ghana, Switzerland, and Vietnam, and other POGIL practitioners have led workshops in China, Japan, South Africa, and South Korea. These workshops present a variety of challenges. For example:

- Participants might have different levels of English language proficiency, especially when materials and conversations involve abstract concepts in education and other academic disciplines.
- Some activities and examples assume that participants are familiar with US customs, geography, currency, and society, and thus might be confusing in other contexts. For example, in India, 100,000 is written 1,00,000 (one lakh) and 10,000,000 (ten million) is written 1,00,000 (one crore). The author has led workshops with over 50 participants, none of whom could describe or draw a "Star of David".
- In the US, The POGIL Project typically gives every participant printed copies of the handouts, notes, and other materials for a workshop. Outside the US, sending materials might be too expensive, or they might never arrive (as happened to the author in Ghana). Preparing materials locally can be complicated and can result in errors.

Based on experiences adapting workshop sessions for other contexts, we offer a set of recommendations, divided into several broad categories. The term "learners" refers to participants in a workshop, but also applies to students in a course. Thus, these recommendations are also relevant to adapting classroom materials.

Note that many of these recommendations are examples of *universal design* [18, 19]; efforts to remove barriers and expand access for specific populations often have similar benefits for broader populations.

3.1 Strategic Recommendations

These higher-level recommendations should guide everything else.

Focus on How to Help Learners Interact and Construct Understanding. As outlined above, the ICAP Model [5] describes how learning outcomes improve as contexts become more *active*, *constructive*, and *interactive*. Similarly, POGIL provides a framework to make this happen. There is always pressure to "cover" as much content as possible, but it is more important to focus on the impact on the learner. An instructor who "covers" content that learners don't understand or remember is wasting time; learners who truly understand key concepts and master skills are empowered to learn more on their own. For example:

- Meet with some learners before the workshop, or observe some class sessions, to better understand the range of common practices.
- Although workshop sessions might have minute-by-minute schedules, be ready to adjust based on learner behavior and needs, to allow more time for key topics, and omit topics as necessary, rather than pushing too hard to follow a schedule that doesn't work for the learners.

Use Tight Feedback Loops to Quickly Identify and Respond to Problems. Tom Peters, the business writer and speaker, is quoted as saying "Test fast, fail fast, adjust fast" – the sooner we try something and find out whether it works or not, the sooner we can do something about it. A sequence of small successes is better than a large effort that fails. An instructor who lectures without any student feedback doesn't know what they are learning and when they are confused. For example:

- Split long sessions into shorter pieces that alternate with quick feedback activities.
- Check the learners' answers and confidence frequently every few minutes, ideally. Phone apps and clicker devices can help, but colored cards or a show of hands can be quite effective too.
- Use "think-pair-share" questions, where learners think about their own answer, then chat with a partner, and then a few pairs share their answers with the whole group.

Encourage Small Steps to Build Confidence. New approaches to teaching and learning can intimidate students and instructors. Find ways to help people see benefits, even small ones, as quickly as possible. Follow new ideas or techniques with short opportunities to apply them. For example:

- Decompose complex ideas into simpler ideas and check that learners understand each part. POGIL activities use learning cycles (described above); the author often finds that more, shorter cycles increase student confidence and persistence.
- POGIL is a set of practices that work well together, but also work well individually, so the author explicitly lists the practices and suggests a few to try first. Instructors who have good experiences with a few practices are likely to try more, while instructors who take on too much and have problems might give up in frustration.
- Writing a POGIL style activity can be slow and difficult, so the author developed a workshop session to help instructors quickly write a mini-activity they could pilot in their own classes.

Allow More Time in Unfamiliar Settings. Sessions and activities that work well in one context will likely work less well and take more time in other contexts. Differences in culture and language can introduce misunderstandings and confusion that take time to resolve. For example:

- Schedule 120 min for a session that would normally take 90 min, and run at most three sessions a day, not four or five.
- Consider options if the workshop starts late due to travel delays, technical issues, or unexpected changes. On multiple occasions, the author has arrived late for workshop, had to meet first with an academic leader, reached the workshop location after

participants were assembled, participated in an opening ceremony, and then had to connect to a projector and organize printed materials, before starting the first session, nearly an hour later than scheduled.

3.2 Tactical Recommendations for Materials and Presentation

These lower-level recommendations focus on materials, including slides, handouts, and worksheets, and how they are organized and presented. When the instructor and/or materials use a language that is not a preferred language for some or all learners, those learners face additional challenges and need extra support. For example, learners in Europe and India are usually proficient in English but are often more proficient in a language native to their own state or country.

Simplify Language, Structures, and Examples. Blaise Pascal, Benjamin Franklin, Mark Twain, and others have been quoted as apologizing for a long letter because they didn't have time to make it shorter. A first draft often seeks to capture an idea, not to express it clearly; later drafts (and mature workshop sessions) should seek to simplify and clarify. For example:

- Use active voice, not passive voice; e.g., "solve problems" instead of "problems should be solved".
- Use verbs, not related nouns; e.g., "explore" instead of "exploring" (a gerund) or "exploration" (a nominalization).
- Use parallel structures to emphasize similarities and reduce the amount of effort needed for a set of related ideas.
- Find a website or program that computes readability scores [e.g., 20, 21] and revise the text to improve the score. This often results in shorter sentences and fewer long or unfamiliar words.
- If possible, translate some materials into a language more familiar to learners, enlist assistants who can converse in their language(s), or provide materials in advance so learners can skim and lookup unfamiliar words. (This can also help learners with vision or reading impairments.)

The author rewrote an overview of POGIL. The original text was:

POGIL is an acronym for Process Oriented Guided Inquiry Learning. It is a student-centered instructional approach that simultaneously develops discipline content mastery and key process skills such as critical thinking, self-assessment and teamwork — skills that are valuable in the workforce.

A POGIL classroom consists of students working in small self-managed teams on specially designed guided inquiry materials. These materials supply students with data or information to interpret followed by guiding questions designed to lead them toward concept development – essentially a recapitulation of the scientific process. The instructor serves as facilitator, observing and addressing individual and classroom-wide needs.