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Foreword

In 1985, as part of a NASA and CAE Symposium on Structural Mechanics held
in Beijing, China, I had the pleasure of meeting Dr. X. R. Wu and his colleagues.
Since then, I have known of the research work on the two- and three-dimensional
(2D and 3D) weight function methods (WFMs) of Dr. Wu and coworkers through
the NASA/CAE Cooperative Research Program on Fatigue and Fracture Mechanics
on “small-crack behavior in aerospace materials.” A team at the NASA Langley
Research Center and the Beijing Institute of Aeronautical Materials conducted the
test and analysis program for about six years. At that time, Dr. I. S. Raju and I
were using the finite element method (FEM) to develop stress intensity factor (SIF)
solutions for many 2D and 3D crack configurations. Also, Drs.Wu and Carlsson, and
coworkers, were developing WFMs for analysis of 2D and 3D crack problems. The
small-crack test specimen selected, the single-edge-notch tension SEN(T) specimen,
has become a standard for measuring small-crack behavior under a variety of cyclic
loading conditions. In NASA RP-1309 (1994), the SIFs for a surface- and corner-
crack at the semi-circular edge notch from FEM and WFM analyses agreed very
well over a wide range in crack-configuration parameters. These SIF solutions were
then used successfully to correlate small-crack-growth-rate data under cyclic loading
and to predict the “fatigue” life of SEN(T) specimens made of two high-strength
aluminum alloys and subjected to a simulated aircraft spectrum loading using a
micro-structural defect size that nucleated the fatigue failures.

The SIF is the foundation of linear elastic fracture mechanics (LEFM) analyses
for engineering materials and structures. WFM is an efficient, accurate, and easy-
to-use method for computing SIFs due to arbitrary loadings. The concept is simple
and the WF only depends upon the crack configuration and the boundary condition,
and when the WF is known, the SIF solutions are easily calculated from the un-
cracked stress distribution at the prospective crack site through a simple quadrature.
In current aerospace structural damage-tolerance design software, such as NASGRO,
AFGROW, andDARWIN,most of the SIF solutions, especially themore recent ones,
are generated by using WFMs.

The first book onWFM byWu and Carlsson “Weight Functions and Stress Inten-
sity Factors” was published in 1991 by Pergamon Press, Oxford, UK. It has been
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vi Foreword

widely used by many researchers and engineers all over the world in the past 30
years. Now from the new Wu-Xu book, I am glad to see the advances being made
in WF theory, with a systematic and comprehensive treatment of the state of knowl-
edge of WFMs. The book coverage has been greatly expanded to include (1) for
2D crack problems: standardized analytical WFs for a large number of 2D center-
and edge-crack configurations, extension of the WFM from isotropic to orthotropic
materials (as more composite materials are being used in structural applications),
to mixed-mode crack configurations (opening mode, K I, and shear mode, K II), to
multiple-site damage (MSD, a failuremode that is now considered in aircraft design),
to the determination of residual-strength of panels containing MSD, and to simulate
the effects of crack-tip plasticity by using the strip-yield model; (2) for 3D crack
problems: various WFMs for embedded and surface/corner cracks subjected to uni-
and bi-variant stresses; (3) a variety of new applications of the WFMs, such as
crack analyses involving thermal and residual stresses, cohesive/Dugdale models,
bridging stress and crack opening stress, WFMs for “substitute crack geometry,”
and an inverse WF approach for determining crack line stresses; (4) analyses and
discussions of other 2D and 3D WFMs, although most of the work presented in the
book has been conducted by the authors and coworkers.

The application to strip-yield modeling is well-suited for the WFM, since the
model is a crack under various crack-surface loading. The book shows application to
fracture using the crack-tip-opening displacement (CTOD) or angle (CTOA) fracture
criteria with very encouraging comparisons of measured and calculated failure loads.

Formany years, I have used the strip-yieldmodel to simulate fatigue-crack growth
usingElber’s crack-closure theory in the FASTRANcode. The code is likeAFGROW
and NASGRO but has not used the WFM to calculate SIFs. The code uses closed-
form SIF equations that were developed for many standard crack configurations that
occur in aircraft structures. In the literature, other applications with the strip-yield
model have used WFMs. FASTRAN currently has two models—a central through
crack in a finite-width plate and two symmetric through cracks emanating from
a circular hole. However, to predict the crack closure (opening) behavior of other
crack configurations the code uses K-analogy. In this book, the WFM is used to
predict the crack-closure (opening) behavior for other crack configurations. Again,
the comparisons between the closed-form equations and the WFM were quite good.
Therefore, the WFM can provide a very efficient tool for accurate determination of
configuration-specific crack opening stresses in the Newman crack-closure model.

An interesting feature of the “inverse” WFM is that the method can be used to
determine the crack line stress distribution in an un-cracked body. The method uses
the analytical WF and crack-mouth-opening displacement, CMOD, for the crack
configuration as known inputs. An integral equation that relates the CMOD, WF
and crack line stress is solved. The stress distribution at the prospective crack line
location in the un-cracked body is determined segment by segment. The method
is verified through comparisons to known stress distributions for a variety of 2D
crack configurations and loadings. The inverse WFMwas shown to be useful for the
determination of residual stresses.
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In summary, this book represents the persistent efforts of the authors and
coworkers on the research of WFMs in fracture mechanics for well over 30 years.
It has provided analytical WFMs and a wide variety of accurate and rigorously
verified WFs for many crack configurations that would be useful for researchers,
students, engineers, and designers to use in fatigue and fracture analyses on a variety
of structural applications. It has been demonstrated through many examples that the
analytical WFM can provide a versatile, efficient, and accurate analytical tool for
complicated crack problems involving arbitrary crack-face loadings. I congratulate
the authors for the pioneering work and significant achievements that are of high
scientific and practical value to fracture mechanics and to aerospace and many other
industries.

June 2021 J. C. Newman Jr.
Former Senior Scientist

NASA Langley Research Center
Hampton, VA, USA

Giles Emeritus Professor
Former Richard Johnson Chair

Department of Aerospace Engineering
Mississippi State University

Starkville, MS, USA



Preface

Fracture mechanics has been an indispensable tool in many important technical areas
for the design and safe operation of structures containing cracks or crack-like defects
that are either introduced in materials processing, component fabrication or induced
in service operation. The stress intensity factor (SIF), the characterizing parameter of
the linear elastic crack tip stress–strain field, is the foundation of fracture mechanics
analysis. The weight function method (WFM) is very powerful for the determination
of SIFs and other important fracture parameters for cracked bodies. It is especially
attractive for complex loadings and when a large number of SIFs are desired for
wide range of crack sizes and multiple load conditions. Compared to various other
solutionmethods, theWFMhas several distinct advantages, being versatile, accurate,
remarkably efficient, and easy-to-use.

According to the basic theory of WFM first introduced by Bueckner and further
developed by Rice, SIFs for a crack with its faces loaded by an arbitrary stress
distribution can be determined by a simple quadrature of the product of the weight
function (WF), m(a, x), for the given crack geometry and the “crack line stress” in
the un-cracked body, σ (x). Since σ (x) can be readily obtained by using theory of
elasticity or by numerical methods, accurate derivation of m(a, x) for different crack
geometries is crucial to the successful application of WFMs and therefore has been
the central topic of WFM research. The main objectives of the present book are to
present reliable methods for derivation of accurate WFs for different types of cracks,
to provide accurate and rigorously verified WFs for various crack geometries, and
to give a large amount SIF (and COD) data for many crack geometries and load
conditions.

This book gives, in systematic manner, a detailed account of the research work
on WFMs by the authors and coworkers over the past three decades. Theoretical
background to the WF theory is described in detail, and various two- and three-
dimensional (2D and 3D)WFMs are introduced and evaluated. A standardized proce-
dure for the derivation of 2D analytical WFs for center and edge crack geometries
with different boundary conditions based on crack opening displacements (CODs) is
presented. By using the standardized procedure, a large number of analyticalWFs for
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various crack geometries are derived, verified and validated, and utilized to deter-
mine SIFs and CMODs for various complex loadings. Accuracy of the results is
rigorously evaluated. Many of these WFs and SIF solutions have been incorporated
into relevant international standards and industrial codes of practice.

The book contains 15 chapters.
Chapters 1–3 give the theoretical background and overview, derivation, verifi-

cation, and assessment of WFMs for 2D crack geometries. Chapter 1 presents a
standardized analytical procedure based on CODs for deriving 2D crack WFs and
analytical expressions for SIFs and CODs under basic load cases. Chapter 2 analyzes
and discusses two other WFMs that are based on multiple reference states (MRS):
the direct adjustment method and the universal WFM. Verification and accuracy
evaluation of the three WFMs by using the Green’s functions are made in Chap. 3.
Furthermore, in-depth analyses of merits and shortcomings of different WFMs are
made, and possible sources of error are analyzed.

Chapters 4–10 constitute the bulk portion of the book, providing detailed deriva-
tion of the WFs for several dozens of 2D center crack (Chap. 4) and edge crack
geometries in simply and multiply connected regions (Chaps. 5 and 6), and a large
number of SIF solutions for various loadings in graphical and/or tabular forms.
Analytical WFMs are also presented for several important crack problems including
cracks in orthotropic composite material (Chap. 7), collinear multiple site damage
(MSD)WFs and their applications to residual strength analysis of panels withMSDs
(Chap. 8), mode II crack WFs and SIFs for center/edge cracks (Chap. 9). Different
types of 3DWFMs for embedded and part-through cracks are presented in Chap. 10,
including the slice synthesis WFM and the point load weight function methods. SIF
solutions for basic load case of crack face pressure of power-law type are tabulated
to facilitate rapid determination of SIFs for more complex loadings. A large number
of 3D SIFs for various load cases are generated, and their accuracy levels are verified
against well-recognized analytical or numerical results and fitted equations.

Chapters 11–15 demonstrate various engineering applications of the 2D analytical
WFMs. The topics discussed include SIFs for cracks in self-equilibrating residual
and thermal stress fields (Chap. 11); calculation of CODs for arbitrary loadings
(Chap. 12); analyses of bridging and cohesive models, and crack opening stresses
required by fatigue crack growth life prediction models (Chap. 13); analysis of
cracks in real-world complex crack geometries using WFM (Chap. 14); inverse
WF approach for determination of un-cracked stress distributions with special
applications to residual/thermal stresses (Chap. 15).

Throughout the book, the analysis has been carried out in termof normalized (non-
dimensional) quantities; the normalization is necessary to avoid lengthy expressions.
For each crack geometry, a characteristic length dimension,W, is chosen for normal-
ization of the crack length a, the coordinate x, and the COD u. The corresponding
normalized quantities thus become: α = a/W, ξ = x/W, u = U/W. Similarly, for
crack line stress σ (x), a normalizing stress σ 0 is chosen, and the normalized crack
line stress is written as σ (x)/σ 0 or σ (ξ )/σ 0. The non-dimensional SIF is denoted by
f . The SIF is obtained by K = f ·σ 0(πa)1/2 = f ·σ 0(παW )1/2.
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The present book reflects the continuing efforts of further developing and
improving the analytical WFMs since the publication of its predecessor, the book
entitled “Weigh Functions and Stress Intensity Factors Solutions,” Pergamon Press,
Oxford, 1991, by Wu and Carlsson, that has been widely used by the international
fracture mechanics community in the past 30 years. The basic ideas of 2D WFM
are adopted by the present book, but the major part of the present book is new,
including Chaps. 2, 3, 7–11, 13–15. Furthermore, Chaps. 1, 4–6 have been signif-
icantly expanded both in breadth and in depth. Also, it should be noted that a WF
book inChinesewas published in 2019 byChinaAviation Press.However, the present
book is not a direct translation of the Chinese version; it is rewritten and significantly
condensed.

The book is primarily intended to serve as a useful reference for researchers,
designers, and engineers, and for university senior students and postgraduates, who
are concerned with fatigue and fracture of engineering materials and structures.
Principal areas for applications include, but not limited to aerospace, mechanical,
civil, and material engineering. Readers are expected to have basic knowledge of
fracture mechanics.

The book can be used for different purposes: (1) deriving analytical WFs for new
crack geometries and boundary conditions by following the standardizedWF deriva-
tion procedure for 2D through-thickness crack geometries and the slice synthesis
WFM and the point load WFMs for 3D embedded and part-through crack geome-
tries; (2) computation of SIFs and CODs for the crack geometries and crack face
loadings of interest by using the relevant WFs contained in the present book; (3)
use it as a handbook to find the required solutions of SIFs (and CODs) directly, or
with the non-dimensional data tables for power-law stresses in this book, to calcu-
late SIFs (and CODs) for crack line polynomial stresses by simple arithmetic; (4)
solutions to various practical examples in the book, including those in Chaps. 11–15,
can provide useful guidance to readers for determination of SIF and COD solutions
to their specific crack problems.

Beijing, China

Shanghai, China
May 2021

Xue-Ren Wu
xrwu621@163.com

Wu Xu
xuwu@sjtu.edu.cn

mailto:xrwu621@163.com
mailto:xuwu@sjtu.edu.cn
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Chapter 1
Standardized Analytical Weight
Function Method Based on Crack
Opening Displacements

Abstract The stress intensity factor (SIF) is the foundation of fracture mechanics
analysis for engineering structures and materials. Development of solution methods
for SIFs of cracked bodies has been one of the central topics in fracture mechanics.
The weight function method (WFM) is a powerful, accurate, efficient and easy-
to-use method for computing SIFs due to arbitrary loadings. In this chapter, the
Wu-Carlsson standardized analytical WFM based on crack opening displacement,
and the generalized WFM for mixed boundary conditions are presented. Detailed
derivation procedures for analytical WFs are described for 2D center and edge crack
geometries, respectively. Closed-form SIF-expressions for various basic crack face
loadings are derived. Verification of 2D WF-accuracy using Green’s function for
point-by-point assessment is proposed. The influences of displacement boundary
condition and the reference load case on analytical WFs are discussed. Analytical
WFMs for crack analysis in mode II and in orthotropic composite material are briefly
introduced.

Keyword Fracture mechanics analysis · Stress intensity factor · COD-based
analytical weight function method · Center cracks · Edge cracks

1.1 Introduction

It is well known that most engineering materials and structures contain cracks or
crack-like defects that are either introduced during material processing and fabri-
cation or in service by damage due to e.g. overloading, fatigue or environmental
effects. Within the anticipated operational life of structures, subcritical crack growth
can take place and may eventually lead to catastrophic structural fracture/failure.
It is therefore widely recognized that the presence of cracks and subsequent crack
growth must be considered both in design and in service operations of engineering
structures.

Fracturemechanics provides theoretical foundation and effective tools for analysis
of crack problems in engineering materials and structures [1–9]. Being an important
branch of solid mechanics, fracture mechanics focuses its attention on assessing, in
quantitative manner, the behavior of cracks with singular stress/strain field in the
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crack tip region. Under the conditions of linear elastic fracture mechanics (LEFM),
the singular crack tip stress/strain field is dominated by the stress intensity factor
(SIF, or K). Under the condition of small scale yielding, i.e. yielding is confined in a
region small relative to the crack length and other dimensions of the crack body,K still
uniquely characterizes crack-tip stress/strain conditions. The parameter K describes
the first order effects of stress magnitude and distribution as well as the geometry of
structure/component and crack, and relates the crack geometry and applied load to
the driving force for crack growth. This “one-parameter characterization” of crack tip
condition is one of the most important concepts in fracture mechanics, which makes
it possible to transfer test results from simple laboratory specimens to real world
cracked structures via K. In many industries such as the aerospace industry, the reli-
ability of airframes and engines are maintained by damage tolerance approaches that
in turn depend on SIF-solutions. Therefore, accurate and efficient SIF-determination
is regarded as “at the very heart of damage tolerance assessment” [9].

Development of various numerical and analytical methods for determining SIFs
has been one of the central topics in fracture mechanics. Many analytical and numer-
ical methods for K-solutions have been developed [8–12]. However, after a long
history of over 60 years, from the current structural integrity assessment proce-
dures/standards [13–18], industrial design software [19, 20] and development trends
[21], it is clear that besides several well-known SIF-handbooks [22–25] that are
mostly for simple load cases, numerical methods such as the finite element method
(FEM) and the boundary element method (BEM), and weight function methods
(WFMs) now remain the two types of most viable methods for K-determination,
especially when complex load conditions are involved. In the aerospace structural
damage tolerance design software, e.g. thewell-knownNASGRO [19] andDARWIN
[20], most of the K-solutions, especially the more recently added ones, are in fact
generated by using various WFMs.

Numerical methods provide powerful technique for analyzing crack problems.
However, each numerical calculation can only produce oneK-value for a given crack
length and load case. Furthermore, because of the crack tip singularity, modeling and
computation for crack problems are much more complicated than crack-free prob-
lems. Special crack-tip elements, finemeshes and experiences are required for proper
treatment of the crack-tip stress/strain singularity. For small cracks, it becomes quite
difficult for numerical methods to achieve accurate solution due to meshing difficul-
ties. Because SIFs are functions of crack length, repeated modeling and computation
work must be carried out for many crack length steps from the initial crack size (a0)
to critical crack size (ac). For fatigue crack growth analysis, this can be very laborious
and time-consuming. There is no doubt that commercial FEM codes offer the capa-
bility of analyzing complicated crack problems. However, as pointed out recently by
McClung [9]: numerical methods “can be attractive option for solving very specific
problems (such as a critical field cracking issue), but the resource requirements
(including the computational time itself) still render this approach impractical as a
general design tool for complex structures with many fracture-critical locations.” In
short, numerical methods for SIFs are capable, but “can be expensive and imprac-
tical for real-world design applications”. This may well explain why almost all the
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SIF-solutions in the probabilistic damage tolerance design software DARWIN [20]
for aero-engines are determined by using WFMs, and why WFMs are regarded as a
“critical component of a damage tolerance fracture plan”.

The powerfulness of WFMs stems from the fact that the WFs are only property
of the crack geometry and the traction-displacement boundary composition, and is
independent of the crack line stress (the stress along the prospective crack loca-
tion in the crack-free body). For a given crack geometry, once determined based on
one or more reference load cases to which SIFs are known, the WF can be used
unlimitedly to calculate SIFs and other crack parameters for arbitrary load cases, by
simple integration of the product ofWF and crack line stress. Repeatedmodeling and
computation for each load case and for many crack length steps that are required by
numerical methods are eliminated. Quite often, closed form solution can be obtained
(for two dimensional (2D) crack problems). In comparison to numerical methods,
distinct advantages of WFMs include: versatility, efficiency, easy-to-use and relia-
bility. And therefore,WFMs present “the best balance between accuracy and required
computing power”.

The WFM for determination of crack SIFs was initially envisioned by Bueckner
[26] and further by Rice [27], and was subsequently developed by many researchers
until present.According toBueckner and his superposition principle [28],when using
WFMs to determine SIFs, only the WF for the considered crack geometry and the
stress distribution at the prospective crack line in the crack-free body are required.
The determination of crack line stress presents no difficulties since it can be obtained
either exactly by using the classical theory of elasticity or, in most cases, very accu-
rately by numerical methods such as FEM. Therefore, accurate determination of
the WFs for various practical crack geometries is the key to successful application
of WFMs. However, it is virtually impossible to derive exact WFs for finite crack
geometries. Consequently, various numerical and analytical approaches for the deter-
mination of WFs have been developed in the past decades. Numerical approaches
generally require large amount of work, and can only give WFs at some discrete
points along the crack line. Such discrete WFs are inconvenient to use. Analytical
approaches are able to provide closed form WF-expressions that are convenient to
use and computationally much more efficient, but the accuracy levels of analytical
WFs derived with different approaches may differ significantly. Therefore, analytical
WFs need careful verification for their accuracy prior to applications. The analytical
approaches require one or more reference load cases, and can be further divided into
two types, one requires a single reference load case, and the other requires multiple
reference state (MRS). The two analytical approaches are presented in Chaps. 1 and
2, respectively, and are rigorously evaluated and compared in Chap. 3.

This chapter presents the basic theory of the generalized 2D WFM under mixed
boundary conditions, and a standardized analytical WFM based on crack opening
displacement (COD) associated with one reference load case. Detailed derivation
procedures for analytical WFs are given for center cracks and edge cracks, respec-
tively. Closed-form SIF-expressions for the two crack types under several basic crack
face loadings are derived. Verifications of accuracy for the derived WF are made by
using the Green’s function (GF). The effects of displacement boundary condition
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and the reference load case are studied. Furthermore, analytical WFMs for crack
analysis in mode II and in orthotropic composite material are briefly introduced.

1.2 The Generalized Weight Function for Mixed
Load-Displacement Boundary Conditions

1.2.1 Weight Functions of Bueckner and Rice

The concept of weight function (or alternatively influence function, or Green’s func-
tion) was first introduced by Bueckner based on analytical function representation of
elastic fields for isotropic materials [26]. He showed that the stress intensity factor,
K, due to an arbitrary set of loads can be obtained by integrating the product of crack
line stress σ (x) induced by these loads and the weight functionm(a, x) of the consid-
ered crack geometry. The SIF, K(a), as a function of crack length a, is calculated
using the WFM by Eq. (1.1):

K (a) = √
W

α∫

0

σ(ξ) · m(α, ξ/α)dξ (1.1)

whereα and ξ are non-dimensional crack length and coordinate, respectively, defined
by α = a/W, ξ = x/W (a and x are the crack length and coordinate respectively, and
W is a characteristic dimension of the considered crack geometry); σ (ξ ) is crack line
stress at the fictitious crack line in the crack-free body, resulting from all applied
loads and displacement and body force as well as internal stress (see Sect. 1.2.3).
The analysis of σ (ξ ) is made for un-cracked body, and is a conventional problem
of elasticity. Therefore, accurate determination of WF, m(α, ξ /α), is the key issue in
WFMs. Bueckner presented the basic theory of WFM for the determination of K,
Eq. (1.1). However, the problem of methods for deriving WFs m(α, ξ /α) for cracked
bodies remained to be solved at that time. Although an approximate expression
of m(α, ξ /α) for an edge crack in finite width plate was later derived by Bueckner
using the integral equation method, the applicable range is limited to α = 0 ~ 0.5 (see
Sect. 5.2.1 and Fig. 5.9 for details). The integral equationmethod seemed impractical
as a general WF-derivation approach.

The same equation as Eq. (1.1) was derived independently by Rice [27] in a study
of linear elastic crack tip fields employing Irwin’s relation between energy release
rate and the SIFK [3]. He also showed for the first time thatWF can be determined by
taking partial derivative of a known elastic solution of crack opening displacement
(COD) for a reference load case, U r(a, x), with respect to crack length a [27], as
given by Eq. (1.2).
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m(α, ξ/α) = E ′√W

Kr(a)
· ∂Ur(a, x)

∂a
, Kr(a) = fr(α)

(
σ0

√
πa

)
(1.2)

where E′ is effective Young’s modules, with E′ = E for plane stress, and E′ = E/(1-
ν2) for plane strain, ν is Poisson’s ratio, K r(a) is a known SIF for the reference load
case, and f r(α) is non-dimensional SIF. The approach proposed by Rice, Eq. (1.2),
paved a very effective way for the derivation of various WFs, and has been utilized
by many researchers.

The combination of WFM [26, 27] with the superposition principle [28] provides
a very powerful method for determining SIFs and other important crack parameters
in LEFM. Since the mid-1970s, further studies on the theory and applications of
WFM have been made by many researchers. References [29–43] are some earlier
representativework on analyticalWFMsof 2D crack problems, andRefs. [44–48] are
those on numericalWFMs. References [49–58] are onWFMs for 3D crack problems.
Somemore recent publications on numericalWFMs are referred to [59–64]. In recent
years, analytical WFMs for multiple-site-damage (MSD) collinear cracks in aircraft
structures have been developed [65–68]. These new developments show that research
on WFMs is still quite active, and there is even a recent resurgence of interest in the
development and more engineering applications of the WFMs [9]. References [69–
79] reflect efforts made by the present writers in recent years. For a comprehensive
review on this topic, see [79]. The present book presents a systematic account of the
WF theory; provides numerous analytical WFs with SIF-solutions for 2D and 3D
crack problems1; and demonstrates various practical applications.

1.2.2 Generalized Weight Function Method for Crack
Problem with Mixed Boundary Conditions

The boundary condition of cracked body considered by Bueckner [26] and Rice [27]
formulation of WFs was for surface tractions prescribed type. Generalizations of the
WF theory to mixed boundary condition involving both prescribed surface tractions
and displacements were later made by several workers [30, 32, 80, 81]. A generalized
WFM for crack problem with mixed boundary conditions was proposed by Wu and
Carlsson [32, 36], based on the Betti’s reciprocal theorem. SIF-calculations using
WFMs for crack problems of mode I, II and III are given in [32, 36]:

1 Note The terms “2(3)D crack problems” and “2(3)D weight function (WF)” adopted in this book
follows the theory of elasticity, and they refer to the dimension of the cracked body instead of the
crack itself. Thus, 2D means through-thickness cracks in a two-dimensional (x–y) plane; 3D means
embedded and part-through cracks in a three-dimensional body (x–y-z, z being thickness direction).
These terms have been traditionally used in the literature. On the other hand, the terms “1(2)D crack
problem” in more recent literature on WFMs refer to the dimension of the crack itself instead of
the cracked body. The two types of terms are both correct and will not be confused.
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K (2)
I (a) = 4μ

(κ + 1)K (1)
I (a)[∫

CT

T (2)
i

∂U (1)
i

∂a
ds −

∫
CU

U (2)
i

∂σ
(1)
i j

∂a
n jds +

∫
B
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i

∂U (1)
i

∂a
dB

]
(1.3)

K (2)
II (a) = 4μ

(κ + 1)K (1)
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CT
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(1.4)

K (2)
III (a) = μ

K (1)
III (a)
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3
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3
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3
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(1.5)

where the superscripts (1), (2) represent the load cases (1) and (2); CT and CU refer to
the boundaries with tractions (Ti) and displacement (Ui) prescribed, respectively; B
is the surface of crack body, and bi is body force; κ = 3–4v (plane strain), κ = (3
− v)/(1 + v) (plane stress); v is Poisson’s ratio. Note there is a difference of (κ +
1)/4 between mode III and mode I/II. Details are referred to [32, 36]. It is noted that
the generalized WFs in Eqs. (1.3)–(1.5) are difficult to use. However, by using the
superposition principle for crack problems with mixed boundary conditions, these
expressions can be converted into simple forms that are much easier to use, see next
sections.

1.2.3 Superposition Principle

Although SIFs for any other load cases can be determined by using the generalized
WFM, practical applications of Eqs. (1.3)–(1.5) may encounter difficulties. This is
because the use of the equations requires both the knowledge of the SIF K (1)(a) and
other quantities: e.g. ∂U (1)

i /∂a on CT and ∂σ
(1)
i j /∂a on CU, which are not easily

determined. These limitations on the direct application of Eqs. (1.3)–(1.5) can be
overcome by using theBueckner superposition principle in LEFM [28]. The idea here
is to transform Eqs. (1.3)–(1.5), that require complete elastic solutions including the
displacementU (1)

i onCT, and the traction σ
(1)
i j onCU, to some equivalent expressions

that will require much less knowledge of the reference crack problem.
Consider a crack-free body which is subjected to prescribed tractions Ti over the

boundary CT, and prescribed displacement Ui over the boundary CU; it may also
contain a self-equilibrating internal stress σ int, Fig. 1.1a. On the lineMN, there will
be a stress distribution σ (x) resulting from the loads on the boundary and internal
stress systems. If a crack is now introduced along MN, at the same time a traction
−σ (x) is applied on the crack faces, Fig. 1.1b, the crack will remain perfectly closed,


