Artificial Intelligence and Soft Computing for Industrial Transformation

INSPIRED ALGORITHMS AND APPLICATIONS

Edited By

S. Balamurugan Anupriya Jain Sachin Sharma Dinesh Goyal Sonia Duggal Seema Sharma

WILEY

Nature-Inspired Algorithms Applications

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Artificial Intelligence and Soft Computing for Industrial Transformation

Series Editor: Dr S. Balamurugan (sbnbala@gmail.com)

Scope: Artificial Intelligence and Soft Computing Techniques play an impeccable role in industrial transformation. The topics to be covered in this book series include Artificial Intelligence, Machine Learning, Deep Learning, Neural Networks, Fuzzy Logic, Genetic Algorithms, Particle Swarm Optimization, Evolutionary Algorithms, Nature Inspired Algorithms, Simulated Annealing, Metaheuristics, Cuckoo Search, Firefly Optimization, Bio-inspired Algorithms, Ant Colony Optimization, Heuristic Search Techniques, Reinforcement Learning, Inductive Learning, Statistical Learning, Supervised and Unsupervised Learning, Association Learning and Clustering, Reasoning, Support Vector Machine, Differential Evolution Algorithms, Expert Systems, Neuro Fuzzy Hybrid Systems, Genetic Neuro Hybrid Systems, Genetic Fuzzy Hybrid Systems and other Hybridized Soft Computing Techniques and their applications for Industrial Transformation. The book series is aimed to provide comprehensive handbooks and reference books for the benefit of scientists, research scholars, students and industry professional working towards next generation industrial transformation.

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)

Nature-Inspired Algorithms Applications

Edited by

S. Balamurugan,
Anupriya Jain,
Sachin Sharma,
Dinesh Goyal,
Sonia Duggal
and
Seema Sharma

This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2022 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-68174-8

Cover image: Pixabay.Com Cover design Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Contents

Pı	efac	e			XV
1	Intr	oducti	on to Na	ture-Inspired Computing	1
	N.N	1. Sara	vana Kur	nar, K. Hariprasath,	
	N. I	Kaviyaı	varshini d	ınd A. Kavinya	
	1.1	Intro	duction		1
	1.2	Aspir	ation Fro	m Nature	2
	1.3		ing of Na		3
	1.4	Natui	re-Inspire	d Computing	4
		1.4.1	Autono	mous Entity	5
	1.5	Gene	ral Stocha	astic Process of Nature-Inspired	
		Comp	putation		6
		1.5.1		tegorization	8
				Bioinspired Algorithm	9
				Swarm Intelligence	10
				Physical Algorithms	11
				Familiar NIC Algorithms	12
		Refer	ences		30
2	App	olicatio	ns of Hy	bridized Algorithms and Novel	
	Alg	orithm	s in the I	Field of Machine Learning	33
	P. N	lary Je	yanthi an	d A. Mansurali	
	2.1	Intro	duction o	f Genetic Algorithm	33
		2.1.1	Backgro	ound of GA	35
		2.1.2	Why Na	tural Selection Theory Compared	
			With th	e Search Heuristic Algorithm?	35
		2.1.3	Workin	g Sequence of Genetic Algorithm	35
			2.1.3.1	Population	35
			2.1.3.2	Fitness Among the Individuals	36
			2.1.3.3	Selection of Fitted Individuals	36
			2.1.3.4	Crossover Point	37
			2.1.3.5	Mutation	37

	2.1.4	Applica	tion of Machine Learning in GA	38
		2.1.4.1	Genetic Algorithm Role in Feature	
			Selection for ML Problem	38
		2.1.4.2	Traveling Salesman Problem	39
		2.1.4.3	Blackjack—A Casino Game	40
		2.1.4.4	Pong Against AI—Evolving Agents	
			(Reinforcement Learning) Using GA	41
		2.1.4.5	SNAKE AI—Game	41
		2.1.4.6	Genetic Algorithm's Role in Neural	
			Network	42
		2.1.4.7	Solving a Battleship Board Game as an	
			Optimization Problem Which Was Initially	
			Released by Milton Bradley in 1967	43
		2.1.4.8	Frozen Lake Problem From OpenAI Gym	43
		2.1.4.9	N-Queen Problem	44
	2.1.5	Applica	tion of Data Mining in GA	44
		2.1.5.1	Association Rules Generation	44
		2.1.5.2	Pattern Classification With Genetic	
			Algorithm	45
		2.1.5.3	· ·	
			Mining Optimization	46
			Market Basket Analysis	46
			Job Scheduling	46
			Classification Problem	47
		2.1.5.7	,	
			to Data Mining	47
		2.1.5.8		
			of Data Mining in Education	47
	2.1.6		ages of Genetic Algorithms	47
	2.1.7		Algorithms Demerits in the Current Era	48
2.2			o Artificial Bear Optimization (ABO)	50
			Vasal Cavity	52
			al Bear ABO Gist	54
	2.2.3	-	entation Based on Requirement	58
		2.2.3.1	Market Place	58
		2.2.3.2	Industry-Specific	58
		2.2.3.3	Semi-Structured or Unstructured Data	59
2.0	2.2.4	Merits		60
2.3			Evaluation	61
2.4		is Next?		62
	Refer	ences		63

3	Effi	ciency	of Finding Best	t Solutions Through Ant Colony	
	Opt	imizat	on (ACO) Tecl	hnique	67
	K. S	asi Kal	a Rani and N.	Pooranam	
	3.1	Intro	uction		68
		3.1.1	Example of O ₁	otimization Process	69
		3.1.2	Components	of Optimization Algorithms	70
		3.1.3	Optimization	Techniques Based on Solutions	70
			3.1.3.1 Optin	mization Techniques Based	
				lgorithms	72
		3.1.4	Characteristic	S	73
		3.1.5	Classes of Heu	ristic Algorithms	74
		3.1.6	Metaheuristic		75
			3.1.6.1 Class	diffication of Metaheuristic Algorithms:	
			Natu	re-Inspired vs. Non-Nature–Inspired	75
				lation-Based vs. Single-Point	
			Searc	ch (Trajectory)	75
		3.1.7		ng Flow of ACO	76
	3.2	A Cas	e Study on Sur	gical Treatment in Operation Room	77
	3.3		•	Management System	80
	3.4	Work	ng Process of t	he System	81
	3.5		0	dge to be Considered for Estimation	82
			Heuristic Fund		83
		3.5.2	Functional Ap	proach	85
	3.6		tudy on Travel		85
	3.7		Trends and Co		87
		Refer	nces		88
4	A H	ybrid l	at-Genetic Alg	gorithm-Based Novel Optimal	
	Wav	elet Fi	ter for Compr	ession of Image Data	89
	Ren	jith V.	Ravi and Kama	ılraj Subramaniam	
	4.1	Intro	uction		90
	4.2	Revie	w of Related Wo	orks	91
	4.3	Existi	ng Technique fo	or Secure Image Transmission	93
	4.4			Optimal Wavelet Coefficients	
		for In	age Compressi	on	93
		4.4.1		ansformation Module	94
				Γ Analysis and Synthesis Filter Bank	94
		4.4.2		and Encryption Module	100
			4.4.2.1 SPIH	* -	100
			4.4.2.2 Chao	s-Based Encryption	102

viii Contents

	4.5	Resul	ts and Discussion	104
		4.5.1	Experimental Setup and Evaluation Metrics	104
		4.5.2	Simulation Results	107
			4.5.2.1 Performance Analysis of the Novel	
			Filter KARELET	107
		4.5.3	Result Analysis Proposed System	108
	4.6	Conc	lusion	134
		Refere	ences	135
5			Robot for Harvesting a Paddy Field	137
	N. I		am and T. Vignesh	
	5.1	Intro	duction	137
		5.1.1	Working Principle of Particle Swarm Optimization	138
		5.1.2	First Case Study on Birds Fly	138
			Operational Moves on Birds Dataset	138
			Working Process of the Proposed Model	141
	5.2		nd Case Study on Recommendation Systems	142
	5.3	Third	Case Study on Weight Lifting Robot	145
	5.4		ground Knowledge of Harvesting Process	149
		5.4.1	Data Flow of PSO Process	150
		5.4.2	Working Flow of Harvesting Process	151
		5.4.3	The First Phase of Harvesting Process	151
		5.4.4	Separation Process in Harvesting	152
			Cleaning Process in the Field	152
	5.5	Futur	e Trend and Conclusion	155
		Refere	ences	155
6	Fire	fly Alg	orithm	157
	Anu	priya J	lain, Seema Sharma and Sachin Sharma	
	6.1	Intro	duction	158
	6.2		y Algorithm	160
			Firefly Behavior	160
			Standard Firefly Algorithm	161
		6.2.3	Variations in Light Intensity and Attractiveness	163
		6.2.4	Distance and Movement	164
		6.2.5	Implementation of FA	165
		6.2.6	Special Cases of Firefly Algorithm	166
			Variants of FA	168
	6.3	Appli	cations of Firefly Algorithm	170
		6.3.1	Job Shop Scheduling	170
		6.3.2	Image Segmentation	171

					CONTENTS	IX
		6.3.3	Stroke I	Patient Rehabilitation		172
		6.3.4	Econon	nic Emission Load Dispatch		172
				ral Design		173
	6.4			gorithm is Efficient		174
		•	FA is N	~		176
	6.5	Discu	ssion and	d Conclusion		176
		Refer	ences			177
7	The	Comp	rehensiv	e Review for Biobased FPA Algori	thm	181
	Mee	enakshi	Rana			
	7.1	Intro	duction			182
		7.1.1	Stochas	tic Optimization		183
		7.1.2	Robust	Optimization		183
				ic Optimization		184
			Alogritl			184
				Intelligence		185
	7.2		ed Work			185
				Pollination Algorithm		187
			Version			190
		7.2.3		ls and Description		190
				Reproduction Factor		193
				Levy Flights		193
				User-Defined Parameters		195
				Psuedo Code for FPA		195
				Comparative Studies for FPA		196
				Working Environment		197
			7.2.3.7	Improved Versions of FPA		197
		Limit				202
			e Researd	ch		202
	7.5	Conc				204
		Refer	ences			204
8			_	omputation in Data Mining		209
		ti Shar				200
	8.1		duction	6346		209
	8.2		ification of			211
		8.2.1		Intelligence for Data Mining		211
			8.2.1.1	Swarm Intelligence Algorithm		212
			8.2.1.2	Applications of Swarm Intelligence	:e	21.1
			0.0.1.0	in Data Mining		214
			8.2.1.3	Swarm-Based Intelligence Techni	ques	214

x Contents

8.3	Evolutionary Computation			
	8.3.1	Genetic	Algorithms	227
		8.3.1.1	Applications of Genetic Algorithms	
			in Data Mining	228
	8.3.2	Evolutio	onary Programming	228
		8.3.2.1	Applications of Evolutionary	
			Programming in Data Mining	229
	8.3.3	Genetic	: Programming	229
		8.3.3.1	Applications of Genetic Programming	
			in Data Mining	229
	8.3.4	Evolutio	on Strategies	230
		8.3.4.1	Applications of Evolution Strategies	
			in Data Mining	231
	8.3.5	Differer	ntial Evolutions	231
		8.3.5.1	Applications of Differential Evolution	
			in Data Mining	231
8.4	Biolog	gical Neu	ral Network	232
	8.4.1	Artificia	al Neural Computation	232
		8.4.1.1	Neural Network Models	232
		8.4.1.2	Challenges of Artificial Neural Network	
			in Data Mining	233
		8.4.1.3	Applications of Artificial Neural	
			Network in Data Mining	233
8.5	Mole	cular Biol	logy	233
	8.5.1	Membra	ane Computing	233
	8.5.2	Algoritl	nm Basis	234
	8.5.3	Challen	ges of Membrane Computing	
		in Data	Mining	234
	8.5.4	Applica	tions of Membrane Computing	
		in Data	Mining	234
8.6	Immı	ine Syste	m	235
	8.6.1	Artificia	al Immune System	235
		8.6.1.1	Artificial Immune System Algorithm	
			(Enhanced)	236
		8.6.1.2	Challenges of Artificial Immune System	
			in Data Mining	236
		8.6.1.3	Applications of Artificial Immune	
			System in Data Mining	237
8.7	Appli	cations o	f NIC in Data Mining	237

				Co	ONTENTS	xi
	8.8	Conc	lusion			238
		Refer	ences			238
9	Opt	imizat	ion Tech	niques for Removing Noise		
			Medical 1			243
	D. I	Devasei	na, M. Ja	gadeeswari, B. Sharmila		
	and	K. Sri	nivasan	_		
	9.1	Intro	duction			244
	9.2	Medi	cal Imagi	ng Techniques		245
		9.2.1	X-Ray I	mages		245
		9.2.2	Compu	ter Tomography Imaging		245
		9.2.3	Magnet	ic Resonance Images		246
		9.2.4	Positror	n Emission Tomography		246
		9.2.5	Ultraso	und Imaging Techniques		246
	9.3	Image	e Denoisi	ng		247
		9.3.1	Impulse	Noise and Speckle Noise Denoising		247
	9.4	Optir	nization i	n Image Denoising		249
		9.4.1	Particle	Swarm Optimization		250
		9.4.2	Adaptiv	e Center Pixel Weighted Median		
			Expone	ntial Filter		250
		9.4.3	Hybrid	Wiener Filter		251
		9.4.4	Remova	al of Noise in Medical Images Using		
			Particle	Swarm Optimization		252
			9.4.4.1	Curvelet Transform		252
			9.4.4.2	PSO With Curvelet Transform		
				and Hybrid Wiener Filter		253
		9.4.5	DFOA-	Based Curvelet Transform and Hybrid	i	
			Wiener	Filter		255
			9.4.5.1	Dragon Fly Optimization Algorithm	l	255
			9.4.5.2	DFOA-Based HWACWMF		256
	9.5	Resul	ts and Di	scussions		257
		9.5.1	Simulat	ion Results		257
		9.5.2	Perform	nance Metric Analysis		257
		9.5.3	Summa	ry		263
	9.6			d Future Scope		264
		Refer	ences			265

xii Contents

10	Perfo	rmance	Analysis of Nature-Inspired Algorithms	
	in Bro	east Can	ncer Diagnosis	267
	K. Ha	riprasa	th, S. Tamilselvi, N. M. Saravana Kumar,	
	N. Ka	viyavar	shini and S. Balamurugan	
	10.1	Introdu	action	268
		10.1.1	NIC Algorithms	268
	10.2	Related	l Works	270
	10.3	Dataset	t: Wisconsin Breast Cancer Dataset (WBCD)	274
	10.4	Ten-Fo	ld Cross-Validation	275
		10.4.1	Training Data	275
		10.4.2	Validation Data	275
		10.4.3	Test Data	276
		10.4.4	Pseudocode	276
		10.4.5	Advantages of K-Fold or 10-Fold Cross-Validation	276
	10.5		Bayesian Classifier	276
		10.5.1	Pseudocode of Naive Bayesian Classifier	278
		10.5.2	Advantages of Naive Bayesian Classifier	278
	10.6	K-Mea	ns Clustering	279
	10.7	Suppor	t Vector Machine (SVM)	280
	10.8	Swarm	Intelligence Algorithms	282
		10.8.1	Particle Swarm Optimization	283
		10.8.2	Firefly Algorithm	285
		10.8.3	Ant Colony Optimization	287
	10.9	Evaluat	tion Metrics	288
	10.10	Results	and Discussion	289
	10.11	Conclu	sion	291
		Referer	nces	292
11	Annli	cations	of Cuckoo Search Algorithm	
11			tion Problems	295
		-	ep and Prasant Kumar Dash	293
		Introdi	•	296
		Related		298
			o Search Algorithm	299
	11.5		-	
			Biological Description	300
	11 /	11.3.2	Algorithm	300
	11.4	Applica 11.4.1	ations of Cuckoo Search	304 305
		11.4.1	In Engineering	303
			11.4.1.1 Applications in Mechanical Engineering	305
		11.4.2	In Structural Optimization	308
		11.4.4	III on actural Optiliizanoli	200

Contents	xiii	

			11.4.2.1 Test Problems	308
		11.4.3	Application CSA in Electrical Engineering,	
			Power, and Energy	308
			11.4.3.1 Embedded System	308
			11.4.3.2 PCB	309
			11.4.3.3 Power and Energy	309
		11.4.4	Applications of CS in Field of Machine Learning	
			and Computation	310
		11.4.5	Applications of CS in Image Processing	311
		11.4.6	Application of CSA in Data Processing	311
		11.4.7	Applications of CSA in Computation and Neural	
			Network	312
		11.4.8	Application in Wireless Sensor Network	313
	11.5	Conclu	sion and Future Work	314
		Referei	nces	315
12	Manı	ning of I	Real-World Problems to Nature-Inspired	
			sing Goal-Based Classification and TRIZ	317
			ramwala and Manojkumar Parmar	
	12.1		uction and Background	318
	12.2		tions Behind NIA Exploration	319
		12.2.1	Prevailing Issues With Technology	319
			12.2.1.1 Data Dependencies	319
			12.2.1.2 Demand for Higher Software	
			Complexity	320
			12.2.1.3 NP-Hard Problems	320
			12.2.1.4 Energy Consumption	321
		12.2.2		321
	12.3	Novel '	TRIZ + NIA Approach	322
		12.3.1	Traditional Classification	322
			12.3.1.1 Swarm Intelligence	322
			12.3.1.2 Evolution Algorithm	323
			12.3.1.3 Bio-Inspired Algorithms	324
			12.3.1.4 Physics-Based Algorithm	324
			12.3.1.5 Other Nature-Inspired Algorithms	324
		12.3.2	Limitation of Traditional Classification	324
		12.3.3	Combined Approach NIA + TRIZ	325
			12.3.3.1 TRIZ	325
			12.3.3.2 NIA + TRIZ	325
		12.3.4	End Goal-Based Classification	326
	12.4	Examp	les to Support the TRIZ + NIA Approach	327

xiv Contents

Index			341
	Referei	nces	338
12.6	Conclu	asion	338
	12.5.2	Traveling Salesman Problem	337
	12.5.1	The 0-1 Knapsack Problem	335
12.5	A Solu	tion of NP-H Using NIA	335
		and Parameters of a Neural Network	333
	12.4.3	Genetic Algorithm to Tune the Structure	
		Concentration	332
	12.4.2	Bat Algorithm to Model River Dissolved Oxygen	
		Monthly Electricity Consumption	327
	12.4.1	Fruit Optimization Algorithm to Predict	

Inspired by the world around them, researchers are gathering information that can be developed for use in areas where certain practical applications of nature-inspired computation and machine learning can be applied. This book was designed to enhance the reader's understanding of this process by portraying certain practical applications of nature-inspired algorithms (NIAs) specifically designed to solve complex real-world problems in data analytics and pattern recognition by means of domain-specific solutions. Since various NIAs and their multidisciplinary applications in the mechanical engineering and electrical engineering sectors; and in machine learning, image processing, data mining, and wireless networks are dealt with in detail in this book, it can act as a handy reference guide. A brief description of the topics covered in each chapter is given below.

- -In Chapter 1, "Introduction to Nature-Inspired Computing," Dr. N. M. Saravana Kumar, K. Hariprasath, N. Kaviyavarshini and A. Kavinya introduce a new discipline that strives to develop new computing techniques through observing how naturally occurring phenomena behave to solve complex problems in environmental situations. Characterization of nature-inspired algorithms are also discussed.
- -In Chapter 2, "Applications of Hybridized Algorithms and Novel Algorithms in the Field of Machine Learning," Dr. P. Mary Jeyanthi and Dr. A. Mansurali introduce various hybridized algorithms in the field of machine learning (ML) along with their applications. This chapter emphasizes the characteristics of a genetic algorithm (GA) which helps machine learning in GA's consideration of genes (variables).
- -In Chapter 3, "Efficiency of Finding Best Solutions Through Ant Colony Optimization (ACO) Technique," Dr. K. Sasi Kala Rani and N. Pooranam address the challenges faced in tourism when a planned vacation to a specific destination is challenged by unforeseen events like adverse climate conditions that threaten to derail the trip. In this case, an optimal solution is generated by using heuristic value and

- an ACO algorithm in which the continuous orthogonal ant colony (COAC) method helps to solve real-world problems.
- –In Chapter 4, "A Hybrid Bat-Genetic Algorithm-Based Novel Optimal Wavelet Filter for Compression of Image Data," Renjith V. Ravi and Kamalraj Subramaniam explain how three modules, namely optimized transformation module, compression and encryption module and receiver module, are used. Initially, the input image is sub-band coded using hybrid bat-genetic algorithm-based optimized DWT. Subsequently, the encoding using SPIHT and chaos-based encryption is carried out. In receiver module, the received signal from the AWGN channel is demodulated, decrypted and de-compressed to obtain the estimated image. From the results, we can infer that the use of the proposed filter and technique has produced better image quality when compared to existing techniques.
- -In Chapter 5, "A Swarm Robot for Harvesting a Paddy Field," N. Pooranam and T. Vignesh discuss how the harvesting process can be improved in a positive way by using the PSO-based swarm intelligent algorithm to help in searching for and optimizing the process. The harvesting process has several steps: Reaping (cutting), threshing (separating process), and cleaning (removing non-grain material from grains). The PSO algorithm will find the positions of all robots to start harvesting and crust-based PSO will help to improve the optimization.
- -In Chapter 6, "Firefly Algorithms," Anupriya Jain, Seema Sharma and Sachin Sharma present the working principle of firefly algorithms (FA) in detail with the algorithm explained and its implementation ready for reference. In recent years, variants of FA to accommodate new problems have been introduced. The hybrid or modified models have tremendously improved the performance of a standard FA. These special cases and applications of this metaheuristic problem are discussed in detail.
- -In Chapter 7, "The Comprehensive Review for Biobased FPA Algorithm," Meenakshi Rana introduces the concept of flower pollination algorithms characterized by a small number of parameters, which make it promising in solving optimization problems, even multi-objective complex ones. These algorithms are embedded with a mechanism for a local and global exploration feature which is complementary and helps the algorithm work efficiently.
- -In Chapter 8, "Nature-Inspired Computation in Data Mining," Aditi Sharma highlights the application of nature-inspired computation in data mining along with its benefits and challenges. For the benefit of the reader, the most used optimization techniques are covered in detail.

- -In Chapter 9, "Optimization Techniques for Removing Noise in Digital Medical Images," Dr. D. Devasena, Dr. M. Jagadeeswari, Dr. B. Sharmila and Dr. K. Srinivasan introduce various types of evolutionary computation algorithms inspired by biological, social and natural systems. These methods include the following algorithms: particle swarm optimization (PSO), bat algorithm (BA), firefly algorithm (FA), social spider optimization (SSO), collective animal behavior (CAB), differential evolution (DE), genetic algorithm (GA) and bacterial foraging algorithm (BFA). Thus, the evolutionary algorithms are ones that simulate biological, natural or social level systems to address real-time image processing problems.
- -In Chapter 10, "Performance Analysis of Nature-Inspired Algorithms in Breast Cancer Diagnosis," K. Hariprasath, Dr. S. Tamilselvi, Dr. N. M. Saravana Kumar, N. Kaviyavarshini and Dr. S. Balamurugan introduce many successful optimization approaches like swarm intelligence, machine intelligence, data mining and resource management. The swarm intelligence model is one of the popular computation theories that is motivated by common swarm frameworks. The three primary swarm protocols are to move in the same direction as its neighbors, to remain as close as possible to the neighbors, and to avoid collision among neighbors.
- -In Chapter 11, "Applications of Cuckoo Search Algorithm for Optimization Problems," Akanksha Deep and Prasant Kumar Dash introduce various optimization algorithms which are classified on the basis of two key elements—diversification and aggregation—generally known as exploitation and exploration. Exploration aims to find a contemporary solution which results in locating global optima, whereas exploitation aims to find local optima of the solution space explored.
- -In Chapter 12, "Mapping of Real-World Problems to Nature-Inspired Algorithm Using Goal-Based Classification and TRIZ," Palak Sukharamwala and Manojkumar Parmar present a novel method based on TRIZ to map real-world problems to nature problems. TRIZ is also known as the theory of inventive problem solving. Using the proposed framework, the best NIA can be identified to solve real-world problems. For this framework to work, a novel classification of the NIA based on the end goal that nature is trying to achieve is devised.

To conclude, we would like to extend our appreciation to our many colleagues. We also extend our sincere thanks to all the experts for providing preparatory comments on the book that will surely motivate the reader to read the topic. We also wish to thank the reviewers who took time to

xviii Preface

review this book, and are also very grateful to our family members for their patience, encouragement and understanding. Special thanks also go to many individuals at Scrivener Publishing, whose talents and efforts made the publication of this book possible. Finally, any suggestions or feedback from readers to improve the text will be highly appreciated.

The Editors September 2021

Introduction to Nature-Inspired Computing

N.M. Saravana Kumar^{1*}, K. Hariprasath², N. Kaviyavarshini² and A. Kavinya²

¹Department of Artificial Intelligence and Data Science, M Kumarasamy College of Engineering, Karur, India ²Department of Information Technology, Vivekanandha College of Engineering for Women, Namakkal, India

Abstract

Nature-inspired algorithms have significance in solving many problems. This chapter provides an overview of nature-inspired algorithms like bio-inspired algorithm, swarm intelligence algorithm, and physical and chemical system-based algorithm. Many real-world problems are solved using nature-inspired algorithms and the role of optimization plays an important role. This chapter covers the basic working and classification of nature-inspired algorithms along with its area of applications. The purpose and its significance of each and every algorithm have been described. Also, the applications of algorithms comprise most of the real-time problems.

Keywords: Nature-inspired, bio-inspired, evolutionary computing, swarm intelligence, optimization, applications

1.1 Introduction

An algorithm is a finite series of definite procedure for finding significance of the pattern. They are utilized to explain a course of difficulties and then implement calculation. Algorithm are said to unambiguous and utilized for performing computation and dealing with other task.

^{*}Corresponding author: saravanakumaar2008@gmail.com

S. Balamurugan, Anupriya Jain, Sachin Sharma, Dinesh Goyal, Sonia Duggal and Seema Sharma (eds.) Nature-Inspired Algorithms Applications, (1-32) © 2022 Scrivener Publishing LLC

Algorithm has different characteristics; they are unambiguous, well-defined input and output, determinate, realistic, and independent of language. Unambiguous refers to having only one interpretation which leads to only one conclusion. Well-defined input and output refers to defining the input and output clearly. Determinate refers to algorithm that must be finite as the algorithm should not conclude with infinite loop. Realistic refers to the algorithm that is general, simple, and practical which may be implemented with an accessible source. Independent of language refers to the algorithm that must be designed with independent of language that it can be implemented in any language.

The technique of optimization comprises nonlinear problem with huge variables containing design and more composite constraints in the application of real world. The problem of optimization is linked with decrease of cost, waste, and time or increase in performance, benefits, and profits. Optimization can be described as an attempt of generating solutions to a problem beneath bounded circumstances. Optimization techniques have arisen from a desire to utilize current resources inside the excellent possible way.

1.2 Aspiration From Nature

Always nature performs actions in an incredible approach. After the detectable phenomenon, the incalculable conspicuous effects at present are indiscernible. Theorists and experts have been penetrating this type of phenomenon in the centurial essence and making effort to grasp, recognize, accommodate, describe, and simulate the artificial structure. There are countless handler agents and extra energy that is present in both realistic and non-realistic world, nearly which are unfamiliar and hidden risk is beyond manhood apprehension in total. Those agents bear in collateral and usually in opposition to a very few other affording pattern and quality to nature and standardize the kinship, elegance, and agility of survival. This has to be noticed as the dialectical nature which prevails in the theory of the world progression. The expansion of risk in nature pursues a peculiar structure. In addition to this, also, intelligence dealing with the nature is implemented in a shared, self-formed, and optimum response without any fundamental domination.

This type of entire ordination, which is in various types—micro biological, physiologic, chemic, and sociality—is circulated as stated by the risk factor for low level to high level. This series formulate its common

dependency and partnership with regard to mutual framework and its personal biography. The behavior retardation owing to the transformed conditions and these entire phenomenon best-known or little-known till now come up with an advanced concepts in science and various technologies, also computation which practice the procedures for resolving problems that is inspired by the nature additionally endeavor to comprehend the fundamental foundations and structures of nature that achieve complicated effort in an advantageous form with narrow assets and capableness. Science intermediates in-between the theorist and the world nature which was emerged before many years by developing advanced hypothesis, techniques, and implementation into well-known system of technological strive.

Manhood has been practicing to comprehend the nature of all time because of evolving advanced mechanisms as well as tools. Nature-inspired computing consists of several branches; one of them is integrative in nature that associates interpolating of knowledge together with information of science among various fields of sciences that permits the emerging of advanced computing processes like algorithms or both software and hardware for understanding the problems, combining of various models and territoriality.

1.3 Working of Nature

Acquiring from nature has become an entrenched practice in processing. The explanations behind this are straightforward. Figuring needs to manage progressively complex issues where customary strategies frequently do not function admirably. Regular frameworks have advanced approaches to take care of such issues. Techniques acquired from nature incorporate the two different ways to speak to and model frameworks, for example, cell automata or neural systems, and methods to tackle complex issues. The inspiration for putting together calculations with respect to nature is that the normal procedures concerned are known to deliver alluring outcomes, for example, finding an ideal estimation of some component. This perception has propelled numerous calculations dependent on nature. In spite of their viability, strategies displayed on nature have frequently been treated with suspiciousness. Customary scientific techniques, for example, straight writing computer programs, depend on notable hypothetical establishments. So, their understanding and their confinements can be tried diagnostically. Interestingly, nature-based techniques are specially

appointed heuristics dependent on wonders whose properties are not constantly seen, even by science.

The above issues raise a need to recognize hypothetical establishments to support nature-based calculations. To address this need, we set out to do the accompanying right now. To start with, we recognize highlights that are normal to numerous nature move calculations and show how these are portrayed by a proper model that clarifies why the calculations work. Also, we portray three structures for depicting nature-inspired calculations and their activity. At long last, we examine some more profound issues about the contrasts between normal procedures and techniques dependent on them. This incorporates both the hazardousness of streamlining nature and further exercises that we can get from the manner in which forms really work in nature.

1.4 Nature-Inspired Computing

Nature-inspired computing is an emerging technique which introduces a new discipline by observing the phenomena happening in nature used to give solution to the difficult problem in the surroundings. NIC had has a best presentation for attracting responsiveness in a substantial way. NIC has developed new innovative study with new branch, namely, swarm intelligence (SI), evolutionary computation (EC), quantum computing, neural networks, fractal geometry, artificial life and artificial immune systems (AIS), and DNA computing. It also used in the field of biology, physics, engineering, management, and economics. Some of the examples of nature-inspired algorithms are like evolutionary computing (EC), artificial neural networks (ANN), fuzzy systems (FS), and SI. Nature-inspired computing is also referred as natural-inspired computation which is defined as an expression to include three methods of classes. They are as follows:

- i. For the improvement of innovative problem solving, it takes technique which is inspired by nature.
- ii. Based on utilization of processer for the manufacture of phenomena by nature.
- iii. Based on the molecules of natural material that hire for computation.

To solve optimization problem of real world is challenging and more application need to deal with problem of NP-hard. Even though optimization tool is used to solve this problem, there is no assurance for reaching the

optimal solution. There is no efficiency of algorithm for NP problems. As a conclusion for NP problems, technique of optimization is used to solve by experimental method. Some of new algorithm like particle swarm optimization (PSO), cuckoo search (CS), and firefly algorithm (FA) are developed to face this challenging problem of optimization. These new algorithm are developed to gain popularity for the performance with high efficiency. In recent survey, there are about more than 40 new different algorithms. This classification of these different algorithms is risky as it should be based on criteria with no guideline [1].

In growth of new algorithm which is inspiration of nature, some algorithms like SI algorithms and bio-inspired algorithms are developed. Metaheuristic algorithm like nature-inspired algorithm is based on physical, biological, chemical, and SI. These algorithms are called as physical-based, biological-based, chemical-based, and SI-based algorithms depending on the inspiration of nature. As the entire algorithms are not efficient, some algorithms became more common for solving all problem of real world.

1.4.1 Autonomous Entity

Autonomous entities inside the nature-inspired computing concepts comprised of two systems. One is effectors and the other is detectors. There may be various detectors which acquires data considering the adjacent agents and the surrounding. Also, there may be numerous effectors which reveal specified behaviors, purpose of changing to their intrinsic affirm, and propel transformation to the atmosphere. Effectors alleviate the distributing of data between autonomous entities.

NIC software structures are made out of specific conduct regulations that are important to self-governing entity. They are normally used to determine how a self-governing entity has to act on facts or react to nearby stimuli which might be accumulated and shared via the detectors. Autonomous entities are capable of gaining knowledge of because they reply to neighborhood changing situations via modifying their collective rules of behavior over time.

Computational ideal models concentrated by normal processing are preoccupied from characteristic marvels as differing as self-replication, the working of the cerebrum, Darwinian advancement, subgroup conduct, the resistant framework, the characterizing properties of living things, cell films, and morphogenesis. Other than customary electronic equipment, these computational ideal models can be actualized on elective physical media, for example, bimolecular or caught particle quantum figuring gadgets.

Dually, one can see forms happening in nature as data handling. Such procedures incorporate self-get together, formative procedures, quality guideline systems, protein-protein connection systems, natural vehicle (dynamic vehicle and aloof vehicle) systems, and quality gathering in unicellular creatures. Endeavors to comprehend natural frameworks likewise incorporate designing of semi-manufactured living beings and understanding the universe itself from the perspective of data handling. In reality, the thought was even best in class that data is more central than issue or vitality. The Zuse-Fredkin postulation, going back to the 1960s, expresses that the whole universe is an enormous cell robot which persistently refreshes its principles. As of late, it has been proposed that the entire universe is a quantum PC that figures its own conduct. The universe/nature as computational system is tended to investigating nature with assistance the thoughts of process ability and considering normal procedures as calculations.

1.5 General Stochastic Process of Nature-Inspired Computation

In recent days, the evolution of computation has an essential characteristic like model for processing information, which is meant by simulating the character in the basic of intelligent. The character may be biological system or organization in nature. As an example, the algorithm simulating and inspired the evolution of genetic occurrence of organism in nature that has a policy developing from nature like transformation, collection, and boundary that is to find an optimal solution from the group of solutions in nature is called as genetic algorithm (GA). The algorithm inspired by the human brain structure and use the policy of processing modes of information through neural which is human brain interpretation is called as ANN. The inspiration of seeking actions of group of some species like ant or birds from which optimal solution can be found to the problem by algorithms, namely, PSO and ant colony system (ACS).

In nature-inspired computation, to refer essential and possible setup for fundamental and comparative unitive structure that helps to understand the fundamental principle of intellectual modes and to syncretize of intellectual algorithm and to increase the enactment of algorithm is significant. During the procedure of self-motivated computation, a wide range of calculations and computation models of nature-inspired have dispersed enhancement qualities regardless notwithstanding, it is confined by a general system of outer uniform conditions. The general system

of nature-inspired computation can be viewed as a hierarchy model, which is partitioned into four layers as indicated by material issues to be get resolved, including the layer of macrostructure plan and strategy improvement, the layer of undertaking flagging and comparing, the layer of computation preparation and data detecting, and the layer of development procedure of controlled elements or items. In the layer of macrostructure structure and technique improvement, client and plan module, information and strategy overhauling module, and significant information and strategy archive are incorporated. In the information and technique redesign module, significant information, smart computation model, and other plan strategies are gathered. Subsequent to being moved up to framework level by information and technique module, the information and strategies are put away to information and strategies storehouse to be moved by the macroscopically plan and dynamic finding of solution module.

In the client and structure module, the reacting specific model outside and general parameters are resolved, and data and related information on the chose smart computation model as indicated by reasonable issues to be comprehended are refined. In the meantime, the refining orders are sent to the information and techniques database. The information and strategies store at that point turn into a strategy archive which is not pointing in any way regular figuring techniques however unique smart calculation models. The information and strategy update module is focusing on a particular module. In the layer of undertaking disintegrating and relating, the fundamental activity is the dynamic appropriation. As per the data of model structure and collectivity parameter introduced by the layer above and as indicated by the macroscopical factor, the depiction of undertaking disintegrating, and circulating and relating procedures of errands, collectivity target request, and dynamic parameters are dissected to the comparing nearby assignment instruction and then transmitted to the lower booking actualize module. This undertaking is an investigation of the macroscopical parameter to neighborhood assignment and guidance. In the layer of computation planning and data detecting, the implementation of schedule module, data trade module, and data detecting and addition module are considered [2].

As by the fractional training from the upper level, relative orders can be completed, conveyed by the implementation of schedule modules of smart operators. Each smart operator can be based on concept of reasoning or a substance idea, contingent upon the problem which is resoled depending on the above. The essential reference control sign of genuine development can be organized by every incomplete crucial continuous programming of

assignment, real-time development programming, ongoing development control, and constant guidance momentum. Data of the planning usage module required can be made by the data detecting and gathering module, got through the taking out of original data assortment by fixed-point detecting, distinguishing proof and change, and through optimization of processing signal, data extraction and demonstrating, data collection and redesigning, and data systematization. The manufactured data which is real are dispersed to each planning execution module of operators through the data trade modules, including data arrangement, data order, data test, data transformation, and data distribution.

The layer of development procedure of controlled objective substance incorporates controlled development process and controlled item element, just as comparing sensor framework. In the controlled development process, the controlled article gets continuous control signs of development parameter from the computation planning execution module of upper layer to actualize the items moving. The sensor framework can gather the first data of items and move the data to the above-layer data detecting and collection module.

Decision-making distribution module, information and techniques update module, and computation of schedule module that utilize data trade, detecting, etc., for every specialist are autonomous in the general system of nature-inspired computation. Subsequent to finishing the structure and planning of undertakings, the development of a populace of specialists can be realized in an appropriated and free computational condition which takes on a fundamental attribute of dispersed man-made consciousness remembered for the possibility of nature-inspired computation. It is vibrant that natureinspired computation is not completely equivalent to an autonomous physical framework or organic populace, yet is a unique structure thought that puts up a sort of relative uniform smart computation mode and is characterized dependent on survey and home investigation of interrelated smart models.

1.5.1 **NIC Categorization**

Nature-inspired algorithms are characterized into five gatherings:

- 1. Evolutionary algorithms (EA)
- 2. Physical algorithms (PA)
- 3. Swarm intelligence (SI)
- 4. Bio-inspired algorithms (BIA, however not SI-based)
- 5. Nature-inspired algorithms.

Figure 1.1 categorize the NIC algorithms in detail.

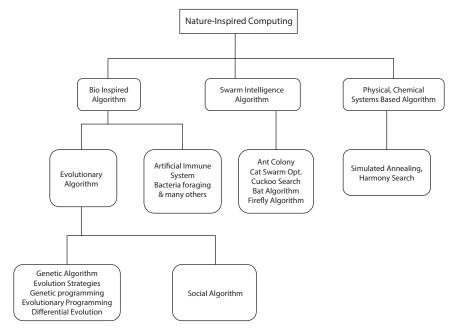


Figure 1.1 Category of NIC.

1.5.1.1 Bioinspired Algorithm

Clearly, SI-based calculations have a place with a more extensive class of calculations, called BIA. Certainly, BIAs are mostly major algorithms of each and every nature-inspired algorithms. From a set of hypothesis perspective, SI-based algorithms are a subgroup of BIAs; while BIAs are a subgroup of nature-inspired algorithms. Numerous BIAs do not utilize straightforwardly the swarming conduct. In this way, this approach is smarter to call them bio-inspired however not as SI based. For instance, GAs are also included in the bio-inspired concept but SI based is not included. Even so, this is difficult to arrange few algorithms, for example, differential evolution (DE). Carefully, DE is not bio-inspired on the grounds that there is no immediate connect to any natural conduct. Nevertheless, it has some similitude to GAs. The BIA comprised of bacterial foraging optimization (BFO), AIS, Krill herd algorithm, and dendritic cell algorithm [3].

Bio-inspired computation serves a gathering of algorithms that focus on gainful processing, for example, for enhancement procedures and coordination acceptance. These algorithms depend upon fields like science, software engineering, and arithmetic. BIAs are major and main set of SI-based and nature-inspired algorithms.

1.5.1.2 Swarm Intelligence

In 1989, Gerardo Beni and Jing Wang acquainted SI in connection with cell automated frameworks. Piece of a huge number of animal that have chosen their own will for focus on a typical objective is called swarm. How do swarms (winged animals, fish, and so on) figure out to move so well altogether. How do ants locate the best wellsprings of nourishment in their surrounding? To respond to these inquiries, new incredible streamlining technique, i.e., SI, is planned.

SI is simply the order that manages advanced collection, self-managed, collaborate, flexible, and incredible behavior of class which observes the 35 straightforward principles. The idea of swarm insight depends on artificial intelligence. Individual can be considered as idiotic yet numerous specialists' display self-association conduct and, in this manner, can act like community oriented intelligence. SI-based calculation is famous and broadly utilized. A biologic staging arrangement of nature gives the motivation. Case of SI incorporates ant colony, bird congregation, animal or bird grouping, bacterial development, and fish tutoring. Swarm telerobotics is the methodology of SI, alludes to increasingly regular set-up of algorithms. "Swarm forecasting" is utilized for determining issues [4].

The paradigms of SI are as follows:

- 1) Ant colony optimization (ACO): Dorigo in his Doctoral exposition presented ACO. It is helpful in discovering better ways through charts.
- 2) Particle swarm optimization (PSO): This approach promises with issue in that a superlative clarification is constituted as a point in a space of dimension. Advantage of PSO is that it has a huge number of individuals that make the atom swarm, which make the system amazingly intense issue of territorial minima.
- 3) Artificial bee colony (ABC): In 2005, Karaboga presented this metaheuristic algorithm and animates the chasing conduct of sovereign honey bees. This algorithm is made up of three phases. They are employed honey bees, scout honey bees, and onlooker honey bees.
- 4) Fish swarm algorithm (FSA): Fish schooling is its starting point. This algorithm works on three conduct of characteristic fish.
 - Searching behavior of fish
 - Swarming behavior of fish
 - · Following behavior of fish