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Preface

This book aims to provide an introduction to selected topics within the theory of
inverse problems in optimal control and noncooperative dynamic game theory. These
topics have emerged relatively recently in data-driven problems that involve infer-
ring the underlying optimality objectives of decision-makers (agents or systems)
from quantitative observations of their behavior. For example, such problems have
arisen in applications across systems and control, robotics,machine learning, biology,
economics, and operations research including the development of robots that mimic
the behavior of human experts; the quantitative study of biological control systems;
the design of advanced driver assistance technologies; the efficient inference of
agent intentions; and the estimation of competitive market and economic models
in economics and operations research.

The origins of this book lie in our own research exploring inverse problems in
optimal control and noncooperative dynamic game theory. We noticed a sparsity of
literature treating such inverse problems in their data-driven forms. Most notably,
almost no work on them had appeared in leading systems and control journals prior
to 2018! Despite the broad practical significance and deep (intellectual) challenges
of inverse optimal control and inverse noncooperative dynamic game theory, the
powerful mathematical tools and fundamental theoretical insights offered by systems
and control theory had, therefore, been missing from many popular treatments. The
purpose of this book is thus to both expose systems and control researchers to inverse
problems (providing a springboard to open problems) and to draw broader attention
to useful systems and control techniques for solving them (specifically Pontryagin’s
minimum principle).

This book’s intended audience are researchers and graduate students in systems
and control, robotics, and computer science. It is intended to bemostly self-contained,
but previous exposure to systems and control or (dynamic) optimization would be
helpful. Given the significance of the minimum principle throughout this book, we
provide a background chapter with a short introduction to its use in (forward) optimal
control and noncooperative dynamic game theory. In particular, we collect the scat-
tered results on the conditions for optimal and Nash equilibrium solutions, both in
discrete and continuous time.
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viii Preface

After presenting background fundamentals, the first half of this book seeks to
illuminate key concepts underlying the rapidly growing literature on inverse optimal
control for linear and nonlinear dynamical systems in discrete and continuous time
with continuous state and control spaces. These concepts include the formulation of
different inverse optimal control problems depending on the available data as well
as the proposal of the techniques to solve them.

The second half of this book endeavors to generalize and extend inverse optimal
control theory to inverse noncooperative dynamic game theory. Inverse problems in
noncooperative dynamic game theory are concerned with computing the individual
optimality objectives of competing decision-makers from data. Such inverse prob-
lems raise a host of new theoretical issues due to the information structures and
(equilibrium) solution concepts unique to noncooperative dynamic games. There-
fore, the book attempts to highlight both the similarities and differences between
inverse optimal control and inverse noncooperative dynamic game theory.

Throughout the book, an emphasis is placed on fundamental questions and perfor-
mance characterizations. For example, conditions analogous to identifiability and
persistence of excitation are established under which inverse optimal control and
inverse noncooperative dynamic game problems have either unique or functionally
equivalent solutions.

It is hoped that this book will prove helpful and inspire future investigations of
inverse optimal control and inverse noncooperative dynamic game theory.

Melbourne, Australia
Heidelberg, Germany
Karlsruhe, Germany
Brisbane, Australia

Timothy L. Molloy
Jairo Inga Charaja
Sören Hohmann

Tristan Perez
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Chapter 1
Introduction

1.1 Motivation

The notion that phenomena within the natural world, including human and animal
behavior, arises from the optimization of interpretable criteria has inspired the study
of optimality across almost all fields of human endeavor. Studies of optimality in
nature date back to antiquity, with Heron of Alexandria discovering that rays of light
reflected frommirrors take those paths with the shortest lengths and least travel times
[33, pp. 167–168]. Optimality now underlies our understanding of the principle of
least action and Fermat’s principle of least time in physics, evolution and animal
behavior in biology [42, 65, 66], human motor control in neuroscience [41, 64], and
utility optimization in economics (among myriad other examples). Optimality has
thus been described as “one of the oldest principles of theoretical science” [58] and
“one of science’s most pervasive and flexible metaprinciples” [59].

Despite the scientific quest to discover optimality principles and underlying opti-
mality criteria from observational data, the study of mathematical optimization has
principally focused on forward problems that involve finding the best or optimal
values of decision variables under given optimality criteria. Inverse problems that
instead involve finding criteria under which given values of decision variables are
optimal have received less attention, particularly within the optimal control branch
of mathematical optimization.

Optimal control is concerned with exerting optimal causal influence on a dynam-
ical system evolving in (discrete or continuous) time, with the variables of influence
called controls and the variables to be influenced called states. The forward prob-
lem of optimal control (or simply, the optimal control problem) specifically involves
finding controls that lead to a given cost functional of the states and controls being
minimized subject to the constraints imposed by a given dynamical system. Optimal
control thus constitutes dynamic mathematical optimization with the decision vari-
ables being controls, and their optimality depending on time and the order in which
they influence the dynamical system.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Optimal control originated from the calculus of variations, and evolved signif-
icantly during the second half of the twentieth century with the celebrated work
of Bellman on dynamic programming, Pontryagin on the minimum principle,1 and
Kalman on linear-quadratic (LQ) optimal control [10, 61]. Bellman’s dynamic pro-
gramming specifically led to the elegant result that the optimal controls for a dynam-
ical system can be expressed as functions of its past states, with these functions being
called optimal feedback (control) laws. In contrast, Pontryagin’s minimum principle
led to a set of conditions that trajectories or sequences of controlsmust satisfy in order
to be optimal (i.e., a set of necessary optimality conditions). Finally, Kalman showed
that optimal control problems involving linear dynamical systems and cost function-
als that are quadratic in the state and control variables can be solved in an efficient
manner via matrix equations. In recent years, optimal control has attracted much
renewed attention due to its close relationship with reinforcement learning, which
relaxes some of the (stronger) assumptions of optimal control such as having prior
knowledge of the dynamical system (see, e.g., [9, 36, 37] for detailed discussions of
the relationship between optimal control and reinforcement learning).

In this book, we investigate inverse optimal control problems (and their extensions
in noncooperative dynamic game theory) that involve computing cost functionals
under which given or measured state and control trajectories of dynamical systems
are optimal. Interest in these inverse problems has grown significantly in recent years,
sparked by their potential to model complex, dynamic decision-making tasks such
as human navigation [5]; human arm movement [8, 62]; human pose adjustment and
posture control [14, 56]; humaneyemovement [15]; the performanceof humanpilots,
drivers, and operators [22, 26, 40, 43, 67, 68]; and other animal behaviors [18]. The
solution of these inverse problems also raises the possibility of developing machines,
robots, and autonomous agents that mimic the capabilities of human experts and
highly evolved organisms [1, 2, 31, 46, 57].

1.2 Inverse Optimal Control

Rudolf Emil Kalman was the first to pose an inverse optimal control problem. In his
famous 1964 paper, Kalman posed the question “When is a Linear Control System
Optimal?”, and considered the problem of finding all cost functionals under which
a given feedback control law is optimal for a given dynamical system [32]. Impor-
tantly, he demonstrated that this inverse problem is frequently ill-posed, with a linear
feedback control law often being optimal under more than one cost functional.

Kalman [32] originally posed and solved his inverse optimal control problem
under several rather restrictive assumptions including that:

1. the dynamical system is linear and time-invariant;
2. the dynamical system has a single control variable;

1 Pontryagin originally formulated the minimum principle as a maximum principle.
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3. the given feedback control law is time-invariant and linear; and
4. the cost functionals considered are quadratic.

While subsequent works have focused on relaxing some of these assumptions (cf.
[12, 29, 34, 47, 63]), most have remained concerned with the structural properties
of optimal, mainly LQ, control problems given feedback control laws.

Within systems and control engineering, inverse optimal control has only recently
expanded to encompass the data-driven (inverse) problem of computing cost func-
tionals under which given or measured state and control trajectories are optimal.
Indeed, Nori and Frezza in 2004 [53] appear to have been among the first in systems
and control to examine this data-driven formof inverse optimal control. Similar struc-
tural estimation and inverse reinforcement learning problems had, however, earlier
been examined in economics [24, 25] and computer science [52] (albeit mostly for
systems evolving in discrete time with a finite number of states and/or controls).

In its data-driven form, inverse optimal control has begun to attract the attention
of control theorists equipped with the powerful tools of (nonlinear) optimal control
theory. Specifically, its data-driven form has been observed to naturally lend itself
to solution and analysis via Pontryagin’s minimum principle due to the principle’s
focus on optimal trajectories rather than optimal feedback control laws. In this con-
text, Chaps. 3 and 4 present a control-theoretic introduction to (data-driven) inverse
optimal control in both discrete and continuous time using Pontryagin’s minimum
principle.

1.3 Inverse Noncooperative Dynamic Game Theory

Game theory provides amathematical theory of interaction betweenmultiple rational
decision-makers, called players; it is dynamic if the players interact by each exerting
causal influence on a common dynamical system (in either discrete or continuous
time); and it is noncooperative if the players pursue their own individual objectives,
which may conflict with those of the other players. Noncooperative dynamic game
theory is thus a natural extension of optimal control to settings inwhich the controls of
a single dynamical system are divided between multiple different players, each with
their own cost functional. However, unlike optimal control, the (forward) problem
of finding optimal player strategies given the dynamical system and the player cost
functionals is ambiguous since the notion of optimality itself ceases to be a well-
defined concept.

A variety of optimality (or solution) concepts for (forward) noncooperative
dynamic games have been developed by varying factors including the order in which
the players make decisions, and what information the players have or believe about
the other players and state of the dynamical system.2 In this book, we shall focus
on Nash equilibrium solutions that arise when all players act simultaneously and

2 A detailed discussion of solution concepts for noncooperative dynamic games is beyond the scope
of this book, but is given in [7, Chap. 1].
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seek to minimize their individual cost functionals under the (correct) belief that all
other players act likewise. A precise definition of Nash equilibria is deferred until
the next chapter, but intuitively a player following their Nash equilibrium strategy
has no incentive to unilaterally adopt a different strategy.

Nash equilibrium solutions to (forward) noncooperative dynamic games can be
analyzed and obtained using themodern tools of optimal control including Bellman’s
dynamic programming, Pontryagin’sminimumprinciple, andKalman’smatrix equa-
tions in the case of a linear dynamical system and quadratic player cost functionals
[7]. Historically, however, noncooperative dynamic game theory evolved alongside
optimal control (rather than after it), with Isaacs first introducing two-player non-
cooperative dynamic games in the 1950s and 1960s [28], and Starr and Ho [60]
introducing N -player noncooperative dynamic games in 1969.3

Noncooperative dynamic game theory has since developed a rich literature and
numerous applications in mathematics, economics, engineering, and biology includ-
ing vehicle collision avoidance [7, 45, 49], modeling markets [17, 35], control of
power systems [13], decentralized control of electric vehicles [39], vehicle formation
control [23, 38], advanced driver assistance systems [19, 20, 30, 50], and modeling
collision avoidance in birds [44]. In addition, recent experiments show the descriptive
power of noncooperative dynamic games in modeling human–machine interaction
or shared control systems [20, 27, 30, 48]. These results can be seen as a natural
extension of the conjecture that humanmotion is governed by an optimality principle
asserting the minimization of individual costs (see, e.g., [16, 54, 64]). Consequently,
interactions between humans and machines (as players) modify the costs incurred
by individuals, and hence the actions they respond with.

While noncooperative dynamic game theory evolved in parallel to optimal con-
trol, surprisingly little attention has been paid to its inverse problem of computing
player cost functionals such that given state and player control trajectories (or feed-
back control laws) constitute a Nash equilibrium. Indeed, inverse noncooperative
dynamic game theory appears to have only emerged within the last four decades,
with most developments found in the economics literature. Notable early treatments
include Fujii and Khargonekar [21] in 1988, and Carraro [11] in 1989, who both
considered linear dynamical systems, quadratic player cost functionals, and given
(or estimated) linear player feedback control laws (in the same spirit as Kalman’s
early work on inverse optimal control). Subsequent treatments in economics have
focused on (data-driven) inverse noncooperative dynamic game problems (called
inverse noncooperative dynamic games) involving given state and player control tra-
jectories, with the vast majority considering relatively simple dynamical systems in
discrete time with a finite number of states and/or controls (cf. [3, 6, 55], the survey
paper of [4] and references therein). More recently, the related problem of multiagent

3 Isaacs was the first to extend the concept of a Nash equilibrium, proposed by John Nash [51]
for (static) game theory, to describe the (forward) solution of two-player noncooperative dynamic
games. Starr and Ho [60] generalized Issacs’ work to N -player noncooperative dynamic games,
and were the first to explicitly note that it was no longer obvious what should be deemed a solution.
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inverse reinforcement learning has received some attention in computer science, but
again mostly in discrete time.

Despite having numerous potential applications in control beyond those covered
by inverse optimal control including in multiagent systems and collaborative con-
trol, inverse noncooperative dynamic game theory has only recently been explored
in its data-driven formulation using control-theoretic tools. Pontryagin’s minimum
principle is thus yet to be fully explored as a tool for analyzing and solving inverse
noncooperative dynamic games. In this context, Chaps. 5 and 6 generalize and extend
the inverse optimal control treatments of Chaps. 3 and 4 to inverse noncooperative
dynamic game theory in both discrete and continuous time using Pontryagin’s min-
imum principle (henceforth referred to simply as the minimum principle). Chapter6
will specifically consider noncooperative dynamic game theory in continuous time
with dynamical systems defined by differential equations. Following convention,
hereon in this book we shall refer to (inverse) noncooperative dynamic games in con-
tinuous time as (inverse) noncooperative differential games, and (inverse) noncoop-
erative dynamic games in discrete time as simply (inverse) noncooperative dynamic
games.

1.4 Outline of this Book

This book is divided into seven chapters. This first chapter has served as an intro-
duction to inverse problems in optimal control and noncooperative dynamic game
theory, motivating their investigation using the minimum principle.

Chapter2 gives the necessary mathematical background on static optimization,
(forward) optimal control, and dynamic games. In particular, we present optimal-
ity conditions derived from minimum principles, which lay the foundation of the
presented inverse optimal control and inverse dynamic game methods of this book.

Chapters3 and 4 address inverse optimal control problems in discrete and continu-
ous time, respectively. The first part of each chapter formulates specific inverse prob-
lems that may arise depending on the given state and control data. Direct approaches
for solving inverse optimal control problems, called bilevel methods and based on
bilevel optimization, are then discussed. Motivated by the limitations of these direct
methods, we use the minimum principle to develop alternative methods along with
theoretical results that characterize the existence and uniqueness of inverse optimal
control solutions they may yield. We complete each chapter by examining the rela-
tionship between (data-driven) inverse optimal control and the feedback-law-based
problem posed by Kalman as inverse LQ optimal control.

Chapters5 and 6 extend the inverse optimal control methods and analysis of
Chaps. 3 and 4 to inverse noncooperative dynamic games and inverse noncooper-
ative differential games. Analogous to Chaps. 3 and 4, in Chaps. 5 and 6 we pose
specific inverse problems before discussing direct methods for solving them. We
then use the minimum principle in the form of (necessary) conditions for Nash equi-
libria to formulate efficient alternative solution methods with associated theoretical
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results characterizing the existence and uniqueness of the solutions they may yield.
In addition, we complete each chapter by examining the specific solution of inverse
LQ dynamic or differential games when player feedback laws are given rather than
state and control trajectories.

Finally, Chap. 7 presents various simulation examples and an experimental case
study of human driver behavior identification toward advanced driver assistance
technology. The simulation examples and experimental case study serve to illustrate
and compare the methods presented in the other chapters.

Each chapter in the book finishes with a section called “Notes and Further Read-
ing”, where we give additional information to help the reader find related work or
extensions of the ideas presented, with the aim of illuminating current and potential
future research directions and trends.
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Chapter 2
Background and Forward Problems

In this chapter, we briefly revisit concepts in (static) optimization, (forward) optimal
control, and (forward) noncooperative dynamic game theory that will prove useful
in later chapters on inverse optimal control and inverse noncooperative dynamic
(and differential) game theory. Detailed treatments of these topics are provided in
numerous books (e.g., [1, 3, 6, 12]), so we shall refer to these and other primary
sources for rigorous mathematical proofs.

2.1 Static Optimization

Static optimization is an important precursor to optimal control and noncooperative
dynamic (and differential) game theory.

2.1.1 General Formulation

Consider a real-valued cost (or objective) function V : U �→ R defined on a control-
constraint set U that is either a subset of Rm or the entirety of Rm . The static
optimization problem

min
u

V (u)

s.t. u ∈ U
(2.1)

involves determining an optimal control (or decision) variable u∗ ∈ U ⊂ R
m that

leads to the cost function V attaining its minimum value over U in the sense that
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V (u∗) ≤ V (u) for all u ∈ U . The value of a control variable u∗ that minimizes V
(i.e., a minimizing argument of V ) is written as satisfying

u∗ ∈ argmin
u∈U

V (u).

An important technical concern is that (2.1) may be infeasible in the sense that no
u that minimizes the cost function V belongs to U . For example, (2.1) is infeasible
if the set U arises from contradicting constraints and is thus empty (denoted by
U = ∅ � {}); it is also infeasible if V decreases without bound onU (such as in the
case V (u) = u withU = R where V (u) → −∞ as u → −∞). The later example,
in particular, highlights that for (2.1) to be feasible, it is necessary (though not always
sufficient) for V to be bounded from below onU by some value κ ∈ R in the sense
that V (u) ≥ κ for all u ∈ U . The greatest value of κ that bounds V from below on
U is called the infimum of V (on U ), and is written as

inf
u

V (u)

s.t. u ∈ U .
(2.2)

More precisely, the infimum of V is the greatest lower bound on the values of V (u)

with u ∈ U in the sense that infu∈U V (u) ≤ V (ū) for all ū ∈ U . The infimum
can exist when the minimum does not since it need not correspond to a value of
V attained on U (i.e., it may be that infu∈U V (u) �= V (ū) for all ū ∈ U ). In this
book, we shall often avoid explicitly assuming the existence of minima by instead
considering infima, noting however that they correspond when (2.1) is feasible.

2.1.2 Necessary Optimality Conditions

Let us define ∇uV (ū) ∈ R
m as the gradient of the cost function V at ū ∈ R

m . That
is, the gradient of the cost function V at ū ∈ R

m is the vector

∇uV (ū) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂V (u)

∂u(1)

∣∣∣
u=ū

∂V (u)

∂u(2)

∣∣∣
u=ū

...
∂V (u)

u(m)

∣∣∣
u=ū

⎤
⎥⎥⎥⎥⎥⎥⎦

where the components are the partial derivatives of V with respect to the components
of the vectoru = [

u(1) u(2) · · · u(m)

]′ ∈ U evaluated at ū ∈ R
m .Here and throughout

the book, we use ′ to denote the vector (or matrix) transpose.
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If the cost function V is continuously differentiable on R
m (i.e., the gradient

∇uV (ū) exists and is a continuous function of ū) and U is a closed and convex
subset of Rm , then optimal solutions u∗ to (2.1) lie either on the boundary of the set
U (with a gradient directed outwards) or in the interior of the set U (with a zero
gradient). Thus, if some u ∈ U is an optimal solution to (2.1) (i.e., if u = u∗), then

∇uV (u)′(ū − u) ≥ 0 (2.3)

for all ū ∈ U , which simplifies to ∇uV (u) = 0 if u is in the interior (i.e., not on the
boundary) ofU . Here, we use 0 to denote either the scalar number zero, or a vector
(or matrix) of appropriate dimensions with all zero elements.

It is important to note that u ∈ U must satisfy (2.3) in order to constitute an
optimal solution to (2.1). However, if u ∈ U satisfies (2.3) we cannot, in general,
conclude that it is an optimal solution to (2.1) since (2.3) is satisfied by all u ∈ U
that are local (potentially non-global) minima, maxima, or inflection points of V .
Thus, we say that (2.3) is a necessary, though not always sufficient, condition for
u ∈ U to constitute an optimal solution to (2.1). An important special case in which
(2.3) is both a necessary and sufficient condition for u ∈ U to be an optimal solution
to (2.1) is when both the cost function V and constraint set U are convex.

2.1.3 Quadratic Programs

A quadratic program is a static optimization problem ((2.1) or (2.2)) in which the
cost function V is given by a quadratic form in the sense that

V (u) = 1

2
u′Ωu + b′u (2.4)

for u ∈ U where Ω ∈ R
m×m is a given real symmetric matrix (i.e., Ω = Ω ′), and

b ∈ R
m is a given real column vector. In this book, we shall primarily concern

ourselves with the solution of unconstrained quadratic programs of the form

inf
u

1

2
u′Ωu + b′u

s.t. u ∈ R
m .

(2.5)

The gradient of V when V is the quadratic form (2.4) is

∇uV (u) = Ωu + b.

The necessary optimality condition (2.3) for u to be a solution to the unconstrained
quadratic program (2.5) is thus
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Ωu + b = 0.

If Ω is positive definite (denoted by Ω � 0 and meaning that u′Ωu ≥ 0 for all
u ∈ R

m with equality if and only if u = 0), then V is (strictly) convex and this
condition becomes both necessary and sufficient for u to be an optimal solution to
(2.5). Equivalently, if Ω is positive definite then u solves (2.5) if and only if

u = −Ω−1b (2.6)

sinceΩ has an inverseΩ−1 when it is positive definite (i.e.,Ω is invertible or nonsin-
gular). If, however, Ω is positive semidefinite (denoted by Ω � 0 and meaning that
u′Ωu ≥ 0 for all u ∈ R

m), we require the following Moore–Penrose pseudoinverse
and singular value decomposition (SVD) concepts to present necessary optimality
conditions for (2.5).

Definition 2.1 (Moore–Penrose Pseudoinverse) Amatrix A+ ∈ R
n×m is theMoore–

Penrose pseudoinverse (or pseudoinverse) of amatrix A ∈ R
m×n if it satisfies the four

conditions:

AA+A = A (2.7a)

A+AA+ = A+ (2.7b)

(AA+)′ = AA+ (2.7c)

(A+A)′ = A+A. (2.7d)

Definition 2.2 (Singular Value Decomposition of Positive Semidefinite Matrix) For
a positive semidefinite matrix Ω , the pair (U,Σ) is called a singular value decom-
position (SVD) of Ω if Ω = UΣU ′ where Σ ∈ R

m×m is a diagonal matrix with
nonnegative entries and U ∈ R

m×m .

Detailed discussions of these definitions are given in [2, Chap. 1] and [7, Chap.
14]. Importantly, they lead to the following proposition characterizing the solutions
to unconstrained quadratic programs of the form of (2.5) whenΩ is positive semidef-
inite.

Proposition 2.1 (Solutions to Unconstrained Quadratic Programs) Consider the
unconstrained quadratic program (2.5)whereΩ is positive semidefinite withMoore–
Penrose pseudoinverse Ω+ and with a SVD (U,Σ) such that Ω = UΣU ′. If (I −
ΩΩ+) = 0, then all u ∈ R

m satisfying

u = −Ω+b +U ′
[
0
z

]
(2.8)

for any (arbitrary) z ∈ R
m−r are optimal solutions to (2.5) where I denotes the

identity matrix of appropriate dimensions, and r � rank(Ω) is the matrix rank ofΩ .

Proof See [7, Proposition 15.2]. �


