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Foreword
This book grew from our four‐day NIH‐sponsored course,
which, for 20 years, was focused on providing an overview
and guide to the design and execution of human genetic
mapping studies for these common (and genetically
complex) diseases, melding the genomic technology with
the statistical rigor needed to apply and interpret the
results. When we developed the concept for the first edition
of this book in 1996, the Human Genome Project was just
reaching full speed, combining continual breakthroughs in
DNA gene mapping and sequencing technology with
emerging applications to human disease to shed the first
light on the organization of the human genome and the
variations that cause disease. The first applications of the
Human Genome Project data were to find the location, and
ultimately the causative mutations, for rare Mendelian
inherited diseases. It was dogma then that the genetic
architecture of common diseases was beyond our reach,
based on the naïve belief that Mendelian disease
represented how genetic variation impacted disease.
However, we soon demonstrated, with the discovery that
multiple apolipoprotein E (APOE) alleles had differing and
strong effects on the risk of Alzheimer disease, that these
technologies and approaches could be adapted to
illuminate the genetic underpinnings of common diseases.
The rapid advances in both DNA technology and statistical
methodology demanded that a significant update to the
book was needed, with the second edition of the book in
2006. By this point the blood and protein markers of the
1970s had been surpassed by the restriction fragment
length polymorphisms (RFLPs) of the 1980s, the
microsatellite repeats of the 1990s, and the single



nucleotide polymorphisms (SNPs, of which RFLPs are a
subset) for the past 20 years. Naturally, the analyses of
these data also advanced from early mainframe
applications of genetic linkage analysis in small numbers of
families, to PC‐powered analyses of thousands of cases and
controls for association.
In the past 15 years since that second edition, increasingly
dense SNP arrays and whole exome or whole genome
sequencing have created new horizons for dissecting
complex diseases. In addition, the explosion of other
“omics” data, particularly gene expression data, provide
biological context for the discovered DNA variations,
adding biological interpretation as a critical element of
genetic studies.
With all these advances, it became apparent that a new
edition of this book was warranted, and new and fresh
perspectives were needed. Thus, we turned over the
editing of this new edition to two of our brilliant younger
colleagues, who have been active in both developing and
applying methods at the forefront of genetics and
genomics. While the inclusion of genome‐wide association
studies, integration of genomic data, and data mining are
new, the breadth of the book in describing the overall
process of designing and executing successful projects
remains.
Finally, we fondly acknowledge the continuing impact of
our mentor, Dr. P. Michael Conneally, who inspired both of
us to inquire, question, investigate, and solve, the often
difficult, constantly emerging human genetic puzzles. He
encouraged us to help educate researchers, physician‐
scientists, and physicians in the complex nature of genetic
studies. He wrote the forward for the first two editions, and
although he passed away in 2017, his legacy remains in our
work and the work of our trainees and collaborators.



We are immensely grateful to Bill and Marylyn for taking
on this important task and developing this excellent third
edition of the book.

Jonathan L. Haines, PhD
Margaret A. Pericak‐Vance, PhD
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Designing a Study for Identifying
Genes in Complex Traits

William K. Scott1, Marylyn D. Ritchie2, Jonathan L.
Haines3, and Margaret A. Pericak-Vance1
1 Dr. John T. Macdonald Foundation Department of
Human Genetics, University of Miami Miller School of
Medicine, Miami, FL, USA
2 Department of Genetics, Perelman School of Medicine
at the University of Pennsylvania, Philadelphia, PA, USA
3 Department of Population and Quantitative Health
Sciences, Case Western Reserve University, Cleveland,
OH, USA

Introduction
Disease gene discovery in humans has a long history,
predating even the identification of DNA as the genetic
molecule (Watson and Crick 1953) and the determination of
the number of human chromosomes (Ford and Hamerton
1956; Tjio and Levan 1956). In fact, as early as the 1930s
some simple statistical methods for the analysis of genetic
data had been developed (Bernstein 1931; Fisher 1935a,b).
However, these methods were severely limited in their
application (more on basic concepts of genetics in Chapter
2). Not only were genetic markers lacking (the ABO blood
type was one of the few that had been described), but these
methods were restricted to small, two to three generation
pedigrees. Any calculations were performed by hand, of
course, making analysis laborious.
There were two hurdles to overcome before human disease
gene discovery would become routine. First, appropriate



statistical methods were lacking, as were ways of
automating the calculations. Second, sufficient genetic
markers to cover the human genome needed to be
identified. Morton (1955), building on the work of Haldane
and Smith (1947) and Wald (1947), described the use of
maximum likelihood approaches in a sequential test for
linkage between two loci. He used the term “LOD score”
(for logarithm of the odds of linkage) for his test. This score
is the basis for most modern genetic linkage analyses and
represents a milestone in human disease gene discovery.
However, the complex calculations had to be done by hand,
severely limiting the use of this approach. Elston and
Stewart (1971) described a general approach for
calculating the likelihood of any non‐consanguineous
pedigree. This algorithm was extended by Lange and Elston
(1975) to include pedigrees of arbitrary complexity. Soon
thereafter, the first general‐purpose computer program for
linkage in humans, LIPED (Ott 1974), was described. Thus,
the first of the two major hurdles was overcome.
By the mid‐1970s there were 40–50 red cell antigen and
serum protein polymorphisms available as genetic markers.
A few markers could be arranged into initial linkage
groups, but these markers covered only approximately 5–
15% of the human genome. In addition to this limited
coverage, genotyping these polymorphisms was labor
intensive, time consuming, and often quite technically
demanding. This remaining hurdle was crossed with the
description of restriction fragment length polymorphisms
(RFLPs) by Botstein et al. (1980). Not only were these
markers easier to genotype in a standard manner, but they
were frequent in the genome, covering the remaining 85–
95% of the genome for the first time.
With these tools in place, the field of human disease gene
discovery blossomed. The first successful disease gene
linkage using RFLPs was reported (Gusella et al. 1983),



localizing the Huntington disease gene to chromosome 4p.
This discovery marked the beginning of disease gene
identification through the positional cloning approach.
Early successes using positional cloning were for diseases
inherited in Mendelian fashion: autosomal dominant,
autosomal recessive, or X‐linked. Although confounding
factors such as genetic heterogeneity, variable penetrance,
and phenocopies might exist for single‐gene or Mendelian
traits, it is generally possible with a known genetic model
to determine the best and most efficient approach to
identifying the responsible gene. The success of these tools
is apparent since by mid‐2017 over 3350 single‐gene
disorders had at least one causative genetic variant
identified (OMIM, accessed May 2017 at http://omim.org).
However, the inheritance patterns for traits such as the
common form of Alzheimer’s disease, multiple sclerosis,
and non‐insulin‐dependent diabetes (to name a few) do not
fit any simple genetic explanation, making it far more
difficult to determine the best approach to identifying the
unknown underlying effect. In addition to the confounding
factors involved in single‐gene disorders, such as genetic
heterogeneity and phenocopies, gene–gene and gene–
environment interactions must be considered when a
complex trait is dissected. However, the tools that enabled
efficient mapping of Mendelian trait loci through positional
cloning were not as effective in dissecting these more
complex traits. New statistical tools, study designs, and
genotyping technologies were needed to perform large‐
scale analysis of genetic factors underlying these complex
traits. As these technologies were developed, a new
approach to complex disease gene identification via
genome‐wide association studies (GWAS) was enabled. The
shift to this approach was predicted by a seminal
perspective published by Risch and Merikangas (1996), in
which they showed that large‐scale case–control analyses

http://omim.org/


of complex traits would be a powerful and efficient method
of identifying alleles underlying complex traits, once
genotyping technology allowed the cost‐effective
determination of a dense map of genetic markers. The first
GWAS was published in 2005 (Klein et al. 2005), identifying
the association of variation in the CFH gene with age‐
related macular degeneration. This was simultaneously
confirmed using alternate study designs (Edwards et al.
2005; Haines et al. 2005) proving that GWAS worked,
allowing this new era of complex disease genetics to begin
in earnest.
With the dawn of the GWAS era, a corresponding shift in
the prevailing hypotheses for these studies occurred. No
longer were studies solely searching for one or a few rare
mutations in a single gene that cause a rare and
devastating disease. Studies of common complex diseases
were searching for multiple alterations in one or more
genes acting alone or in concert to increase or decrease
the risk of developing a trait. Early GWAS tended to test
the “common disease‐common variant” (CDCV) hypothesis:
the risk for common diseases, across ethnic groups, arises
from evolutionarily old variants that have had substantial
time to spread throughout the human population. Many
studies successfully identified thousands of variants
associated with the risk of complex diseases. An interactive
catalog of these variants is maintained by the National
Human Genome Research Institute and the European
Molecular Biology Laboratory at http://www.ebi.ac.uk/gwas.
Despite these successes, many studies testing the CDCV
hypothesis failed to explain all the heritable variation in the
risk of the complex traits under study – a phenomenon
termed “missing heritability” (Manolio et al. 2009). One
explanation for this was that the effect of rare variants was
not well studied by early GWAS – an alternative hypothesis
termed the “common disease‐rare variant” (CDRV)
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hypothesis. This hypothesis suggests that risk of common
complex diseases arises from a larger number of rare
variants in one or more genes, perhaps occurring more
recently.
As was the case with common variants and the exploration
of the CDCV hypothesis being enabled by GWAS
approaches and high‐throughput genotyping technology,
exploration of the CDRV hypothesis was enabled by
advances in high‐throughput sequencing technology and
accompanying statistical analysis methods. Initial screens
of coding‐sequence variants in Mendelian traits via whole‐
exome sequencing (WES) were published by Ng et al.
(2009, 2010) and Choi et al. (2009), demonstrating that in
some cases, disease gene mapping could skip the positional
cloning strategy and proceed directly to evaluating
segregation of mutations in families. This proof of principle
has been used to justify this approach for testing the CDRV
hypothesis in complex traits but has been met with mixed
success. A successful example is the recent analysis of 50 
000 individuals in the MyCode Community Health Initiative
successfully identified rare variants underlying
cardiovascular traits and lipid levels (Dewey et al. 2016).
The rapid and continuing decrease in whole‐genome
sequencing (WGS) costs suggests that within a few years, it
will be possible (and perhaps commonplace) to test the
CDRV hypothesis using WGS in large sample sizes –
essentially performing genome‐wide association for
common and rare variants with direct genotype
determination via sequencing.
Study design, laboratory methods, and analytic approaches
differ by trait type (Mendelian or complex) and hypothesis
being tested (rare disease‐rare variant, Mendelian
positional cloning; CDCV [GWAS]; CDRV [WES or WGS and
individual variant or set‐based association]). These
approaches are described in the following sections.



Components of a Disease Gene
Discovery Study
Each genetically complex trait has its own peculiarities that
require special attention. However, a guiding paradigm can
be applied to most conditions. Originally, the general
approach that was used for Mendelian single‐gene
disorders was positional cloning. With the completion of
the human genome reference sequence, cloning was no
longer a necessary step – and therefore this general
approach is better described as disease gene discovery.
The classical approach (Figure 1.1) follows a generally
linear series of events: defining the phenotype, identifying
multi‐case families, collecting blood samples, genotyping
markers, analyzing data for initial disease gene
localization, refining the initial localization to define the
minimum candidate region, and then sequencing genes
within this region to find the causative mutation(s).
In contrast to the classical approach, the current
approaches to finding genes for common and genetically
complex traits are not linear, and many steps are works in
progress, subject to further defining, refining, or
replacement by subsequent steps. Figure 1.2 illustrates the
stepwise and recursive nature of the components of a
complex trait study. Each step has its own key factors that
must be considered, and for complex traits, the order and
emphasis of these steps on the approach will vary from
study to study. This fact is underappreciated and contrasts
strongly with the classical disease gene discovery
approach. Indeed, many of the difficulties reconciling
discordant studies of the same complex trait arise from
study‐specific decisions made in the approach.



Figure 1.1 Steps in a Mendelian disease gene discovery
(positional cloning) study.

Figure 1.2 Study cycle for a complex trait gene
identification study.
This section discusses the steps in Figure 1.2, providing an
overview of each component and a guide to the chapter(s)
providing more detail on these points.

Define Disease Phenotype
The first step in any disease gene discovery process is to
know what phenotype is being studied. This may sound



obvious, but specifying the exact measures that will be
used to reliably and validly determine the phenotype is
often overlooked in the rush to move forward. There are
three aspects that need to be considered: clinical definition,
determining that a trait has a genetic component, and
identification of datasets that can be studied.

Clinical Definition
It is not enough to define a trait in binary terms, such as
the presence or absence of Huntington’s disease or
diabetes. In Huntington’s disease, for example, there can
be wide variation in the symptoms, with some only
psychological or very mild motor disturbances detectable
by expert examination, and the age at which these
symptoms begin is similarly variable. In diabetes, there are
distinct subtypes (insulin‐dependent diabetes mellitus and
non‐insulin‐dependent diabetes mellitus) as well as variable
age at onset. Additionally, blood glucose levels (a
quantitative trait) are strongly associated with diabetes (a
qualitative trait) and could be used as a surrogate measure
or endophenotype. One critical role of the clinician in study
design is to assess the various diagnostic procedures and
tools and determine which ones best define a consistent
phenotype. Additionally, dissecting genetically complex
diseases usually requires large datasets to supply enough
power to unravel genetic effects. For this reason,
participant ascertainment often extends to multiple sites. It
is critical for multi‐site studies to establish consensus
diagnostic procedures and criteria and apply them
consistently across sites. For example, the establishment of
a consensus diagnostic scheme (McKhann et al. 1984)
played an important role in a successful complex disease
linkage study in late‐onset familial Alzheimer’s disease
(Pericak‐Vance et al. 1991) and subsequent identification of
the association of Alzheimer’s disease and common


