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Supervisor’s Foreword

Understanding macroscopic thermodynamic phenomena from microscopic
dynamics is a grand challenge that has hovered over physicists ever since the era
of Gibbs and Boltzmann. Over the past quarter century, the fluctuation theorem
has played a pivotal role in unveiling several fundamental aspects of emergent irre-
versibility in systems far from equilibrium. In his thesis, Yuto Murashita studies the
fluctuation theorem in extreme yet practically important situations with divergent
entropy production and discusses its implications to a few fundamental issues in
statistical mechanics.

In the standard framework of the fluctuation theorem, the entropy production is
expressed in terms of the ratio of the probability of the original dynamics to that of the
time-reversed one. Measure theory tells us that this ratio is not always well defined,
especially when entropy production diverges and such cases belong to a new class
of irreversibility, which is referred to as absolute irreversibility. Yuto extends the
fluctuation theorem so as to be applicable to situations with absolute irreversibility.
As a different situation with divergent entropy production, Yuto considers a system
which is coupled simultaneously to multiple heat baths at different temperatures as
in the case of the Feynman ratchet. In the overdamped limit, the entropy production
is divergent since velocities relax not to an equilibrium state but to a nonequilib-
rium steady state. Despite this singular behavior of the fast degrees of freedom,
the fluctuation theorem can be shown for the dynamics of slow degrees of freedom.
Furthermore, Yuto applies the fluctuation theoremwith absolute irreversibility to two
fundamental problems in statistical physics: the Gibbs paradox and the Loschmidt
paradox. TheGibbs paradox originates from the problem of gasmixing and is closely
connected with the issue in statistical-mechanical problem concerning how to define
entropy. Yuto shows that the fluctuation theorem with absolute irreversibility can be
utilized as a definition of entropy by considering the gas-mixing process. Finally,
Yuto revisits the Loschmidt paradox from the viewpoint of the fluctuation theorem
with absolute irreversibility. The Loschmidt paradox concerns how irreversible
behaviors emerge from reversible equations of motion. In a closed Hamiltonian
system, an imperfect Loschmidt demon is invoked to define an entropy produc-
tion consistent with the fluctuation theorem. Remarkably, the entropy thus defined
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vi Supervisor’s Foreword

exhibits system-specific behavior reminiscent of the Kolmogorov-Sinai entropy and
features emergent irreversibility.

I believe that this thesis makes a seminal contribution toward resolving two long-
standing problems in statistical physics, namely theGibbs paradox and theLoschmidt
paradox.

Tokyo, Japan
December 2021

Masahito Ueda
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Chapter 1
Introduction

1.1 Historical Introduction

Equilibrium statistical physics was established by Boltzmann [1] and Gibbs [2, 3] in
the late 19th century. It has now wide applications in physics, chemistry, biology and
economics and is indispensable for various fields of modern science. In the mid-20th
century, linear-response theory [4–7] was developed to describe systems slightly out
of equilibrium. Yet, theory applicable to systems far away from equilibrium had been
elusive over the following decades.

In 1993, the fluctuation theorem was conjectured in the context of the invariant
measure of a chaotic dissipative system and demonstrated by molecular dynamical
simulations of a shear-driven fluid in a steady state [8]. The fluctuation theorem
states that the probability of entropy decrease is exponentially suppressed compared
to that of entropy increase. Remarkably, the fluctuation theorems can be applied to
strong driving beyond the linear-response regime. Moreover, they can be regarded
as a generalization of linear-response theory in the limit of infinitesimal driving [9].
Although the fluctuation theorems were initially shown in dissipative determinis-
tic systems [10, 11], they were later shown in various systems including stochastic
systems such as the Langevin systems [12] and the Markov systems [13]. Thus, the
fluctuation theorems are general equalities valid under various kinds of nonequilib-
rium dynamics and encompass linear-response theory.

However, the fluctuation theorems in their early stage were restricted to systems
under time-independent driving. The Jarzynski equality [14] and the Crooks fluc-
tuation theorem [15, 16] were revolutionary in that they apply to systems under
time-dependent driving. Later on, fluctuation theorems for various types of entropy
productions were derived [17, 18]. The fluctuation theorems have a general structure
that the ratio of the probability of the physical process to that of the reference process
gives the exponential of the corresponding entropy production [19, 20]. From this
perspective, the fluctuation theorems can be understood in a unified way. Thus, the
fluctuation theorems give a unified description of nonequilibrium systems under an
arbitrary driving.

© Springer Nature Singapore Pte Ltd. 2021
Y. Murashita, Fluctuation Theorems under Divergent Entropy Production
and their Applications for Fundamental Problems in Statistical Physics,
Springer Theses, https://doi.org/10.1007/978-981-16-8638-2_1
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2 1 Introduction

It is noteworthy that the theoretical development of the fluctuation theorems has
occurred in excellent synergy with experiments in small thermodynamic systems
such as colloidal particles [21] and biomolecules [22]. See Ref. [23] for an extensive
review of experimental investigations.

1.2 Present Study

As we have seen in the previous section, the fluctuation theorems are nonequilibrium
equalities with a wide applicability, and therefore expected to constitute the founda-
tion of statistical physics. In this thesis, we pose twomajor questions to the fluctuation
theorems. The first question is about their applicability: “How far from equilibrium
do they apply?” The second question is about their fundamental significance: “Do
they give any novel insight into the foundation of statistical physics?”

Specifically, we consider the fluctuation theorems in two genuinely nonequilib-
rium situationswith divergent entropy production, namely, the situationwith absolute
irreversibility and the situation with multiple heat reservoirs. Then, we show that the
former of themprovides uswith considerable insights into two fundamental problems
in statistical physics, i.e., the Gibbs paradox and the Loschmidt paradox.

The first genuinely nonequilibrium situation is what we call an absolutely irre-
versible situation. Absolute irreversibility refers to the mathematical singularity of
the reference probability measure with respect to the original probability measure,
and physically corresponds to negatively divergent entropy production. Due to the
singularity, the fluctuation theorems cannot be applied to this situation. Therefore,
we should modify the fluctuation theorems into a form that incorporates the degree
of absolute irreversibility. This is the study done by the author in his master course.

The second situation is a system simultaneously coupled to multiple heat reser-
voirs. In this system, when we take the limit of infinitesimal velocity relaxation, the
entropy production positively diverges due to the instantaneous transport of heat by
the velocities. Consequently, naive overdamped descriptions fail to evaluate ther-
modynamic quantities. Therefore, we go back to the underdamped description and
construct an overdamped approximation by using the technique of the singular expan-
sion. By doing so, overdamped contributions to thermodynamic quantities from the
positional degrees of freedom are separated and shown to satisfy the fluctuation
theorems.

Then, we apply the fluctuation theorems with absolute irreversibility to the Gibbs
paradox [2, 3]. The original discussion of the Gibbs paradox concerns difference
between the entropy production upon identical-gas mixing and that upon different-
gas mixing [2]. This problem is related to fundamental aspects of thermodynam-
ics and statistical mechanics. Now, the Gibbs paradox collectively refers to issues
relating to the dependence of the thermodynamic entropy on the particle number.
Among them, we consider the issue to determine the relation between the thermody-
namic entropy and the statistical-mechanical entropy. In the thermodynamic limit, it
has been known that the requirement of extensivity for the thermodynamic entropy


