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Forewords

Henning Schulzrinne, Columbia University, USA

The first few iterations of cellular networks, 1G through 3G,
were largely telephone networks with mobility added on,
including the choice of addressing through telephone
numbers, signaling through SS7, and emphasis on
interoperable voice services. 4G and 5G started the
transition to an Internet-driven architecture, with remnants
of the old architecture still clearly visible. But beyond the
protocol choices, all existing generations were largely
driven by the assumption that networks are operated by a
relatively small number of carriers, typically with at least a
nationwide service footprint, reliant on licensed spectrum
and an assumption of mutual trust. 5G has started to focus
more attention on using the same radio technology for both
industrial and consumer networks, but the large-carrier
mindset still pervades the design, with a tightly-coupled set
of protocols and entities. This tightly-coupled model
provides some advantages; it bundles a consistent set of
features and technologies designed and packaged to work
together, relying on a strict user management and
authentication framework. However, this model comes also
with drawbacks, such as the lack of flexibility to adapt to
new technologies or use-cases, and having to rely on three
or at most four carriers in most countries.

Since 3G, branding mobile network generations have had
both a technical and a consumer marketing role. The
generations provided checkpoints for equipment vendors,
and made advances in technology that’s otherwise largely
invisible to consumers relevant and marketable. 5G is
probably the first iteration where a transition in technology
standards became a matter of national pride and an



indicator of national or regional competitiveness, with
promises of increases in consumer and societal welfare that
may be hard to deliver. However, as the digital divide
during COVID-19 illustrated, universal access to affordable
broadband, typically at home, mattered more than higher
5G speeds in the downtown business districts and digital
transformation is not assured by having nationwide 5G.
Thus, technologists and policy makers working on post-5G
efforts should be careful in calibrating expectations, given
that wireless network technology may not be the most
significant hurdle that prevent addressing key societal
challenges.

It seems likely that we will see a much larger variety of
operational scenarios in the next decade, from traditional
vertical-integrated carriers to disaggregated carriers and
to private or federated enterprise networks. Any future
network architecture needs to be sufficiently modular so
that it can scale down to unmanaged home networks and
scale up to networks where participants have limited trust
in each other. This suggests a much more flexible and much
simpler authentication and roaming model than we have
had in previous network generations. Here, 6G can
probably learn from another wireless technology where
“generations” have played less of a role - ubiquitous Wi-Fi.

Developments for IoT during the 5G standardization and
deployment phase may also hold lessons that encourage
predictive modesty for 6G. Rather than being the universal
network that connects billions and billions of IoT devices to
create “smart” buildings and cities, cheap home Wi-Fi and
new low-cost technologies like LoRa, leveraging unlicensed
spectrum, have come to dominate, with carrier IoT
offerings falling short of expectations - indeed, retaining
boring and obsolete 2G often seems to draw more interest
than new 5G ultralow latency capabilities.



Previous generations of cellular networks offered their per-
user speed as the headline advantage, but 5G is already
showing the limitations of that approach, as few mobile
applications are likely to be built that will rely on 1 Gb/s or
above speeds. Thus, the key metrics will not be per-user
throughput or latency, but cost per base station month,
governing deployment cost in low-density areas, and cost
per bit delivered, i.e., primarily operational costs.
Environmental metrics such as energy consumption or
electromagnetic fields (EMF) must also be considered. For
many years, capital equipment has only accounted for
about 15% of revenues of most carriers, i.e., the vast
majority of expenses are operational. This argues for a
simple, self-managed, and robust network, with as many
commodity components and protocols as possible and as
much re-use of available fiber access networks as possible,
rather than infinite configurability or elaborate QoS
mechanisms. The largest opportunities for improved
operational efficiency and reduced complexity are in the
control plane, not the data plane, relying for that on
machine learning and automation technologies as detailed
in this book. However, since 6G will serve as infrastructure,
with concomitant reliability expectations, robustness,
predictability and explainability of any use of machine
learning will be more important than squeezing out the last
percentage points of efficiency.

Despite all the changes in technology, the common thread
across mobile technology generations has been a dramatic
reduction in the consumer unit cost of mobile data, with
new applications enabled simply because they became
affordable. Thus, 6G will likely only offer a significant value
proposition beyond a marketing tag line if it is engineered
to minimize operational complexity, maximizes operational
automation and ensures high availability. The Wi-Fi
experience can offer lessons and might even offer an



