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Abstract

The automotive industry is highly dependable on assembly lines for the produc-
tion of today’s demand volumes. Assembly lines were once introduced as an
efficient production configuration for a single product, in which the production
tasks are divided among multiple workstations organized along a conveyor belt.
Nowadays, the automotive manufacturers cannot rely on production systems for
a single model: the choice of vehicle comes with innumerous configurations,
options, and add-ins. In the production site, these different vehicles must share
the same resources and may flow on the same assembly line. As a result, assem-
bly lines must be at the same time specialized to provide high efficiency, but also
flexible to allow the mass customization of the vehicles.

In this thesis, a compendium of problems and solution algorithms for the
assembly line balancing problem considering demand uncertainty is presented.
As planning and building an assembly line is a commitment of several months or
even years, it is understandable that the demand will fluctuate during the lifetime
of an assembly line. New products are developed, others are removed from the
market, and the decision of the final customer plays a role on the immediate
demand. In this work, the demand or production sequence is modeled using three
different view points of a system configuration.

A first approach proposed in this thesis considers total control of the produc-
tion sequence. In this first problem, the assembly line planner can optimize the
assembly line and the production sequence simultaneosly. The uncertainty is due
to the different time frames of both problems. The planning of an assembly line
is a long term decision, while the sequencing problem is solved in short-time
based on the customer orders. An exact solution procedure is proposed in this
thesis for the optimal design of a paced assembly line, which must operate with
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uncertain demand to be sequenced in the future. The expected amount of util-
ity work for the production is minimized using a combinatorial version of the
Benders’ decomposition.

A second problem dealt with in the thesis is the design of an assembly line
when the planner plays no role in the production sequence. In this approach, the
production sequence is considered to be random. A Branch-and-Bound Algorithm
using Markov chains to evaluate partial solutions is proposed and used to solve
instances exactly.

A third contribution considers a restriction on the sequence control. The plan-
ner has at disposal a buffer to alter the production sequence locally. For this
problem setting, the buffer operation is optimized, in which selection policies are
proposed and tested. The uncertainty is modeled through a random buffer entry,
that must be resequenced respecting production and due date restrictions in an
online setting.
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1Introduction

1.1 Motivation and Overview

There are few products nowadays that can be compared to an automotive vehicle.
Usually weighing from 800 kg to several tons and costing several thousand or even
extremes such as a couple of million Euros, it is astonishing to see such a large
product playing a major role in our society. According to the European Automo-
tive Manufacturers Association [ACEA, 2020], there were 610 vehicles for every
1000 inhabitants in the European Union in 2018. Such numbers require an annual
production of 92.8 million vehicles worldwide or 18.5 million vehicles in the Euro-
pean Union [ACEA, 2020], which is equivalent to almost 3 vehicles per second
worldwide. Such production levels require large facilities and a significant part of
the labor workforce. In the European Union, direct and indirect jobs in this industry
account for 6.7% of the total job market.

Although automotive vehicles and large-scale production existed before, the
mass production shift of durable automotive vehicles is credited to Henry Ford with
his Ford Model T in 1908 [Binder and Rae, 2020]. The innovation was to consider
the transport of the products or workpieces in conveyor belts, on which the vehicles
flow through a series of workstations [Binder and Rae, 2020]. The hundreds or
thousands of individual tasks are divided among the workers in an assembly line.
This way, each worker performs simple tasks in which he or she can specialize.
Each worker can then perform the operations within a small cycle time, after which
the workpiece is transported to the next station.

The division of the task elements among the multiple workstations is a classical
problem in Operations Research named Assembly Line Balancing Problem (ALBP)
and was firstly discussed in a thesis by Bryton [1954] and in a research paper by
Salveson [1955]. A related optimization problem is the Bin Packing Problem, in
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2 1 Introduction

which objects have to be assigned and fitted into bins in a way that the number
of required bins is minimized. In assembly lines, the objects can be seen as the
operational tasks, while the bins are the workstations. Instead of having a physical
dimension, each task requires a given amount of time in the station. The limitation
is not the bin size, but the cycle time of the assembly line. A difference between
the Assembly Line Balancing Problem and the Bin Packing Problem is due to
precedence relations [Wee and Magazine, 1982]. In the basic version of the Bin
Packing Problem, each object can be assigned freely among the bins. A production
sequence, on the other hand, usually requires some partial order between the tasks.
As products and pieces are assembled, interior parts are not reachable anymore.
Hence, there exist precedence relations between the tasks.

The Assembly Line Balancing Problem in its base form as described in the last
paragraph is called Simple Assembly Line Balancing Problem (SALBP) [Scholl and
Becker, 2006] and has very strict assumptions such as deterministic and known
production times, a serial line, and the production of a single product. Although
these assumptions may be true for Ford’s Model T, the automotive market requires
a high level of customization nowadays [Boysen et al., 2008]. It is not possible to
establish an assembly line for a single- vehicle anymore. Instead, the production
system has to be flexible enough to assemble several vehicle variations. Boysen et
al. [2008] describe the new paradigm as mass customization, in which the customer
can select almost every element of the product from a given range of options. The
number of theoretically possible combinations resulting in unique products is huge.
Boysen et al. [2009a] report the number of variations of popular vehicle models in
2004, which vary from 40,000 to 3.35 · 1024 for a selection of European cars.

The presence of multiple product models results in a more complex optimization
problem, since not only the assignments of tasks to stations are important, but also
how the productmodels are sequenced.Different production layouts, the presence of
buffers, and the production sequence greatly affect the productivity of an assembly
system. Furthermore, the customer’s taste changes and evolves. So the demand itself
may vary during the operational time of an assembly line. Such complexity factors
are explored in this manuscript, mainly dealing with the uncertainty of demand in
the balancing of multiple-product assembly lines.

1.2 Objectives and Document Outline

The outline of the document is described along with the objective of each chapter.
In general, the thesis brings new contributions to the research of assembly line
balancing under demand uncertainty.
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The first objective of the document is to describe the production stages at auto-
motive manufacturers. The production of vehicles is different than considering a
general product because of the large dimensions. Cars, trucks, or buses are large
and heavy products, so their handling is rather limited. The deviations of production
times cannot be easily compensated by buffers, since the size of the products poses
a strong restriction. In Chapter 2 the different stages of production are described,
among related optimization problems, such as production planning, assembly line
balancing, sequencing, resequencing, etc.

Chapter 3 contains a literature review on different sources of uncertainty in the
balancing of assembly lines. A classification of the literature is extended to model
the stochastic components of the problem. The uncertainty is mostly modeled in
the processing times, while much fewer references deal with uncertain demand or
production sequences. Chapter 3 is also used to identify gaps in the literature, which
are partially filled by contributions described in Chapters 4–6.

The research core of the manuscript consists of three chapters containing each
a problem definition and a solution procedure. All of the contributions deal with
assembly lines under uncertain demand, although in each chapter a different assump-
tion or view of the problem is proposed. One key aspect to distinguish the three
problems is the control over the production sequence.

Thefirst contribution is detailed inChapter 4. For this problemsetting, production
sequencing is totally defined by the planner of the assembly line. This assumption
allows selecting a production sequence that matches well with the assignment of
tasks in the assembly system. For this problem, the assembly line problem and pro-
duction sequencing problem are solved in an integrated form. As both decisions
are taken in different time frames in practical applications, a hierarchical approach
is defined. The assignment of tasks to stations is a medium to long-term decision,
while the production sequencing is solved on a daily or weekly basis. The uncer-
tainty in the problem is represented by an uncertain demand at the planning stage
of the assembly line. This way, the balancing of the assembly line has to be defined
before the realization of the demand, while the sequencing can be solved after the
customers define their orders. The problem is defined in a two-stage stochastic pro-
gramming model, for which an exact solution procedure is proposed to minimize
the expected utility work (amount of work from auxiliary versatile workers). A Ben-
ders’ Decomposition Algorithm based on combinatorial cuts is developed among
valid inequalities and improvements. The contents of Chapter 4 has some overlap
to the published article version of the chapter (see Sikora [2021]). The results of
both publications, however, are complementary.

At the other end of the control spectrum, the second approach models the bal-
ancing problem under no control over the sequence. In Chapter 5, the production


