

Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Michel J. Pettigrew, Colette E. Taylor Nigel J. Fisher

Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Wiley-ASME Press Series

Fabrication of Process Equipment

Owen Greulich, Maan H. Jawad

Engineering Practice with Oilfield and Drilling Applications

Donald W. Dareing

Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher

Vibrations of Linear Piezostructures

Andrew J. Kurdila, Pablo A. Tarazaga

Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications

Lukasz Brenkacz

Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation Kamran Behdinan, Rasool Moradi-Dastjerdi

Vibration Assisted Machining: Theory, Modelling and Applications

Li-Rong Zheng, Dr. Wangun Chen, Dehong Huo

Two-Phase Heat Transfer

Mirza Mohammed Shah

Computer Vision for Structural Dynamics and Health Monitoring

Dongming Feng, Maria Q Feng

Theory of Solid-Propellant Nonsteady Combustion

Vasily B. Novozhilov, Boris V. Novozhilov

Introduction to Plastics Engineering

Vijay K. Stokes

Fundamentals of Heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines

Offshore Compliant Platforms: Analysis, Design, and Experimental Studies

Srinivasan Chandrasekaran, R. Nagavinothini

Computer Aided Design and Manufacturing

Zhuming Bi, Xiaoqin Wang

Pumps and Compressors

Marc Borremans

Corrosion and Materials in Hydrocarbon Production: A Compendium of Operational and Engineering Aspects

Bijan Kermani and Don Harrop

Design and Analysis of Centrifugal Compressors

Rene Van den Braembussche

Case Studies in Fluid Mechanics with Sensitivities to Governing Variables

M. Kemal Atesmen

The Monte Carlo Ray-Trace Method in Radiation Heat Transfer and Applied Optics

Dynamics of Particles and Rigid Bodies: A Self-Learning Approach

Mohammed F. Daqaq

Primer on Engineering Standards, Expanded Textbook Edition

Maan H. Jawad and Owen R. Greulich

Engineering Optimization: Applications, Methods and Analysis

R. Russell Rhinehart

Compact Heat Exchangers: Analysis, Design and Optimization using FEM and CFD Approach

C. Ranganayakulu and Kankanhalli N. Seetharamu

Robust Adaptive Control for Fractional-Order Systems with Disturbance and Saturation

Mou Chen, Shuyi Shao, and Peng Shi

Robot Manipulator Redundancy Resolution

Yunong Zhang and Long Jin

Stress in ASME Pressure Vessels, Boilers, and Nuclear Components

Combined Cooling, Heating, and Power Systems: Modeling, Optimization, and Operation

Yang Shi, Mingxi Liu, and Fang Fang

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine

Abram S. Dorfman

Bioprocessing Piping and Equipment Design: A Companion Guide for the ASME BPE Standard

William M. (Bill) Huitt

Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

and Enabling Design of Experiments

R. Russell Rhinehart

Geothermal Heat Pump and Heat Engine Systems: Theory and Practice

Andrew D. Chiasson

Fundamentals of Mechanical Vibrations

Liang-Wu Cai

Introduction to Dynamics and Control in Mechanical Engineering Systems

Cho W.S. To

Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher

This Work is a co-publication between ASME Press and John Wiley & Sons, Inc.

© 2022 ASME

This Work is a co-publication between ASME Press and John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher to be identified as the authors of this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data applied for:

ISBN: 9781119810964

Cover Design: Wiley

Cover Images: © iStock\olegback

Set in 9.5/12.5pt STIX Two Text by Straive, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

Contents

	Preface xv Acknowledgments xvii Contributors xix					
1	Introduction and Typical Vibration Problems 1					
1.1	Michel J. Pettigrew Introduction 1					
1.2	Some Typical Component Failures 2					
1.3	Dynamics of Process System Components 9					
1.5	1.3.1 Multi-Span Heat Exchanger Tubes 9					
	1.3.2 Other Nuclear and Process Components 10					
	Notes 10					
	References 10					
	References 10					
2	Flow-Induced Vibration of Nuclear and Process Equipment: An Overview 13 Michel J. Pettigrew and Colette E. Taylor					
2.1	Introduction 13					
	2.1.1 Flow-Induced Vibration Overview 13					
	2.1.2 Scope of a Vibration Analysis 14					
2.2	Flow Calculations 14					
	2.2.1 Flow Parameter Definition 14					
	2.2.2 Simple Flow Path Approach 15					
	2.2.3 Comprehensive 3-D Approach 16					
	2.2.4 Two-Phase Flow Regime 18					
2.3	Dynamic Parameters 18					
	2.3.1 Hydrodynamic Mass 18					
	2.3.2 Damping <i>19</i>					
2.4	Vibration Excitation Mechanisms 25					
	2.4.1 Fluidelastic Instability 25					
	2.4.2 Random Turbulence Excitation 27					
	2.4.3 Periodic Wake Shedding 31					
	2.4.4 Acoustic Resonance 34					
	2.4.5 Susceptibility to Resonance 35					

W	1
v	ı

2.5	Vibration Response Prediction 36
	2.5.1 Fluidelastic Instability 37
	2.5.2 Random Turbulence Excitation 38
	2.5.3 Periodic Wake Shedding 38
	2.5.4 Acoustic Resonance 38
	2.5.5 Example of Vibration Analysis 38
2.6	Fretting-Wear Damage Considerations 40
	2.6.1 Fretting-Wear Assessment 40
	2.6.2 Fretting-Wear Coefficients 41
	2.6.3 Wear Depth Calculations 42
2.7	Acceptance Criteria 42
	2.7.1 Fluidelastic Instability 42
	2.7.2 Random Turbulence Excitation 43
	2.7.3 Periodic Wake Shedding 43
	2.7.4 Tube-to-Support Clearance 43
	2.7.5 Acoustic Resonance 43
	2.7.6 Two-Phase Flow Regimes 43
	Note 43
	References 44
3	Flow Considerations 47
	John M. Pietralik, Liberat N. Carlucci, Colette E. Taylor, and Michel J. Pettigrev
3.1	Definition of the Problem 47
3.2	Nature of the Flow 48
	3.2.1 Introduction 48
	3.2.2 Flow Parameter Definitions 50
	3.2.3 Vertical Bubbly Flow 54
	3.2.4 Flow Around Bluff Bodies 55
	3.2.5 Shell-Side Flow in Tube Bundles 56
	3.2.6 Air-Water versus Steam-Water Flows 63
	3.2.7 Effect of Nucleate Boiling Noise 63
	3.2.8 Summary <i>67</i>
3.3	Simplified Flow Calculation 67
3.4	Multi-Dimensional Thermalhydraulic Analysis 74
	3.4.1 Steam Generator 74
	3.4.2 Other Heat Exchangers 78
	Acronyms 81
	Nomenclature 81
	Subscripts 82
	Notes 83
	References 83
4	Hydrodynamic Mass Natural Frequencies and Mode Shanes 87

Hydrodynamic Mass, Natural Frequencies and Mode Shapes 87 Daniel J. Gorman, Colette E. Taylor, and Michel J. Pettigrew

- Introduction 87 4.1
- 4.2 Total Tube Mass 88

	4.2.2 Two-Phase Flow 90
4.3	Free Vibration Analysis of Straight Tubes 93
	4.3.1 Free Vibration Analysis of a Single-Span Tube 94
	4.3.2 Free Vibration Analysis of a Two-Span Tube 97
	4.3.3 Free Vibration Analysis of a Multi-Span Tube 99
4.4	Basic Theory for Curved Tubes 100
	4.4.1 Theory of Curved Tube In-Plane Free Vibration 102
	4.4.2 Theory of Curved Tube Out-of-Plane Free Vibration 104
4.5	Free Vibration Analysis of U-Tubes 105
	4.5.1 Setting Boundary Conditions for the In-Plane Free Vibration Analysis of U-Tubes
	Possessing Geometric Symmetry 106
	4.5.2 Development of the In-Plane Eigenvalue Matrix for a Symmetric U-Tube 109
	4.5.3 Generation of Eigenvalue Matrices for Out-of-Plane Free Vibration Analysis
	of U-Tubes Possessing Geometric Symmetry 109
	4.5.4 Free Vibration Analysis of U-Tubes Which Do Not Possess Geometric
	Similarity 112
4.6	Concluding Remarks 114
	Nomenclature 115
	References 116
5	Damping of Cylindrical Structures in Single-Phase Fluids 119
	Michel J. Pettigrew
5.1	Introduction 119
5.2	Energy Dissipation Mechanisms 119
5.3	Approach 123
5.4	Damping in Gases 124
	5.4.1 Effect of Number of Supports 127
	5.4.2 Effect of Frequency 128
	5.4.3 Vibration Amplitude 128
	5.4.4 Effect of Diameter or Mass 128
	5.4.5 Effect of Side Loads 128
	5.4.6 Effect of Higher Modes 129
	5.4.7 Effect of Support Thickness 129
	5.4.8 Effect of Clearance 132
5.5	Design Recommendations for Damping in Gases 132
5.6	Damping in Liquids 133
	5.6.1 Tube-to-Fluid Viscous Damping 133
	5.6.2 Damping at the Supports 136
	5.6.3 Squeeze-Film Damping 138
	5.6.4 Damping due to Sliding 141
	5.6.5 Semi-Empirical Formulation of Tube-Support Damping 143
5.7	Discussion 147
5.8	Design Recommendations for Damping in Liquids 148
5.8	

4.2.1 Single-Phase Flow 89

Nomenclature 149

	Subscripts 150
	References 151
6	Damping of Cylindrical Structures in Two-Phase Flow 155
	Michel J. Pettigrew and Colette E. Taylor
6.1	Introduction 155
6.2	Sources of Information 155
6.3	Approach 157
6.4	Two-Phase Flow Conditions 158
	6.4.1 Definition of Two-Phase Flow Parameters 158
	6.4.2 Flow Regime <i>161</i>
6.5	Parametric Dependence Study 162
	6.5.1 Effect of Flow Velocity 163
	6.5.2 Effect of Void Fraction 163
	6.5.3 Effect of Confinement 168
	6.5.4 Effect of Tube Mass 168
	6.5.5 Effect of Tube Vibration Frequency 168
	6.5.6 Effect of Tube Bundle Configuration 169
	6.5.7 Effect of Motion of Surrounding Tubes 169
	6.5.8 Effect of Flow Regime 170
	6.5.9 Effect of Fluid Properties 171
6.6	Development of Design Guidelines 172
6.7	Discussion 177
	6.7.1 Damping Formulation 177
	6.7.2 Two-Phase Damping Mechanisms 177
6.8	Summary Remarks 178
	Nomenclature 178
	Subscripts 179
	Note 179
	References 180
7	Fluidelastic Instability of Tube Bundles in Single-Phase Flow 183
	Michel J. Pettigrew and Colette E. Taylor
7.1	Introduction 183
7.2	Nature of Fluidelastic Instability 183
7.3	Fluidelastic Instability: Analytical Modelling 185
7.4	Fluidelastic Instability: Semi-Empirical Models 186
7.5	Approach 191
7.6	Important Definitions 191
	7.6.1 Tube Bundle Configurations 191
	7.6.2 Flow Velocity Definition 191
	7.6.3 Critical Velocity for Fluidelastic Instability 196
	7.6.4 Damping <i>197</i>
	7.6.5 Tube Frequency 198

7.7	Parame	tric Dependence Study 198
	7.7.1	Flexible versus Rigid Tube Bundles 198
	7.7.2	Damping 201
	7.7.3	Pitch-to-Diameter Ratio, P/D 201
	7.7.4	Fluidelastic Instability Formulation 204
7.8	Develop	oment of Design Guidelines 206
7.9	In-Plan	e Fluidelastic Instability 209
7.10		low Fluidelastic Instability 212
7.11	Conclud	ding Remarks 213
	Nomen	clature 214
	Subscrij	pt 214
	Referen	ces 215
8	Fluidela	stic Instability of Tube Bundles in Two-Phase Flow 219
	Michel J	. Pettigrew and Colette E. Taylor
8.1	Introdu	ction 219
8.2	Previou	s Research 219
	8.2.1	Flow-Induced Vibration in Two-Phase Axial Flow 220
	8.2.2	Flow-Induced Vibration in Two-Phase Cross Flow 221
	8.2.3	Damping Studies 221
8.3	Fluidela	astic Instability Mechanisms in Two-Phase Cross Flow 221
8.4	Fluidela	astic Instability Experiments in Air-Water Cross Flow 224
	8.4.1	Initial Experiments in Air-Water Cross Flow 224
	8.4.2	Behavior in Intermittent Flow 227
	8.4.3	Effect of Bundle Geometry 229
	8.4.4	Flexible versus Rigid Tube Bundle Behavior 230
	8.4.5	Hydrodynamic Coupling 232
8.5	Analysi	s of the Fluidelastic Instability Results 234
	8.5.1	Defining Critical Mass Flux and Instability Constant 234
	8.5.2	Comparison with Results of Other Researchers 235
	8.5.3	Summary of Air-Water Tests 238
8.6	Tube B	undle Vibration in Two-Phase Freon Cross Flow 239
	8.6.1	Introductory Remarks 239
	8.6.2	Background Information 240
	8.6.3	Experiments in Freon Cross Flow 240
8.7	Freon T	Test Results and Discussion 244
	8.7.1	Results and Analysis 244
	8.7.2	Proposed Explanations 247
	8.7.3	Concluding Remarks 247
	8.7.4	Summary Findings 249
8.8	Fluidela	astic Instability of U-Tubes in Air-Water Cross Flow 250
	8.8.1	Experimental Considerations 250
	8.8.2	U-Tube Dynamics 251
	8.8.3	Vibration Response 251
	8.8.4	Out-of-Plane Vibration 251
	885	In-Plane Vibration 254

x	Contents					
-	8.9	In-Plane (In-Flow) Fluidelastic Instability 255				
		8.9.1 In-Flow Experiments in a Wind Tunnel 255				
		8.9.2 In-Flow Experiments in Two-Phase Cross Flow 255				
		8.9.3 Single-Tube Fluidelastic Instability Results 256				
		8.9.4 Single Flexible Column and Central Cluster Fluidelastic Instability Resul				
		8.9.5 Two Partially Flexible Columns 258				
		8.9.6 In-Flow Fluidelastic Instability Results and Discussion 261				
	8.10	Design Recommendations 261				
		8.10.1 Design Guidelines <i>261</i>				
		8.10.2 Fluidelastic Instability with Intermittent Flow 263				
	8.11	Fluidelastic Instability in Two-Phase Axial Flow 264				
	8.12	Concluding Remarks 265				
		Nomenclature 265				
		Subscripts 266				
		Note 266				
		References 266				
	9	Random Turbulence Excitation in Single-Phase Flow 271 Colette E. Taylor and Michel J. Pettigrew				
	9.1	Introduction 271				
	9.2	Theoretical Background 271				
	7.2	9.2.1 Equation of Motion 272				
		9.2.2 Derivation of the Mean-Square Response 273				
		9.2.3 Simplification of Tube Vibration Response 274				
		9.2.4 Integration of the Transfer Function 275				
		9.2.5 Use of the Simplified Expression in Developing Design Guidelines 275				
	9.3	Literature Search 277				
	9.4	Approach Taken 277				
	9.5	Discussion of Parameters 279				
		9.5.1 Directional Dependence (Lift versus Drag) 279				
		9.5.2 Bundle Orientation 279				
		9.5.3 Pitch-to-Diameter Ratio (P/D) 279				
		9.5.4 Upstream Turbulence 280				
		9.5.5 Fluid Density (Gas versus Liquid) 283				
		9.5.6 Summary <i>283</i>				
	9.6	Design Guidelines 284				
	9.7	Random Turbulence Excitation in Axial Flow 287				
		Nomenclature 287				
		References 288				
	10	Random Turbulence Excitation Forces Due to Two-Phase Flow 291				

Colette E. Taylor and Michel J. Pettigrew Introduction 291 10.1

- Background 291 10.2
- Approach Taken to Data Reduction 295 10.3

10.4	Scaling	Factor for Frequency 296
	10.4.1	Definition of a Velocity Scale 297
	10.4.2	Definition of a Length Scale 298
	10.4.3	Dimensionless Reduced Frequency 301
	10.4.4	Effect of Frequency 301
10.5	Scaling	Factor for Power Spectral Density 302
	10.5.1	Effect of Flow Regime 302
	10.5.2	Effect of Void Fraction 304
	10.5.3	Effect of Mass Flux 306
	10.5.4	Effect of Tube Diameter 306
	10.5.5	Effect of Correlation Length 306
	10.5.6	Effect of Bundle and Tube-Support Geometry 307
	10.5.7	Effect of Two-Phase Mixture 308
	10.5.8	Effect of Nucleate Boiling 310
10.6	Dimens	sionless Power Spectral Density 311
10.7	Upper :	Bounds for Two-Phase Cross Flow Dimensionless Spectra 314
	10.7.1	Bubbly Flow 314
	10.7.2	Churn Flow 315
	10.7.3	Intermittent Flow 316
10.8	Axial F	Flow Random Turbulence Excitation 318
10.9	Conclu	sions 323
	Nomen	sclature 324
	Referer	nces 325
11	Periodi	c Wake Shedding and Acoustic Resonance 329
		5. Weaver, Colette E. Taylor, and Michel J. Pettigrew
11.1		action 329
11.2		c Wake Shedding 332
	11.2.1	
	11.2.2	
	11.2.3	
	11.2.4	
	11.2.5	The Effect of Bundle Orientation and <i>P/D</i> on Fluctuating Force
		Coefficients 346
	11.2.6	The Effect of Void Fraction and Flow Regime on Fluctuating Force
		Coefficients 347
11.3	Acousti	ic Resonance 354
	11.3.1	Acoustic Natural Frequencies 354
	11.3.2	Equivalent Speed of Sound 355
	11.3.3	Acoustic Natural Frequencies $(f_a)_n$ 356
		Acoustic Natural Frequencies $(f_a)_n$ 356
	11.3.3	Acoustic Natural Frequencies $(f_a)_n$ 356
	11.3.3 11.3.4	Acoustic Natural Frequencies $(f_a)_n$ 356 Frequency Coincidence — Critical Velocities 356

v	1	1
л		

11.4	Conclusions and Recommendations 366
	Nomenclature 367
	References 369
12	Assessment of Fretting-Wear Damage in Nuclear and Process Equipment 373
	Michel J. Pettigrew, Metin Yetisir, Nigel J. Fisher, Bruce A.W. Smith, and Victor P. Janzen
12.1	Introduction 373
12.2	Dynamic Characteristics of Nuclear Structures and Process Equipment 374
	12.2.1 Heat Exchangers 374
	12.2.2 Nuclear Structures 375
12.3	Fretting-Wear Damage Prediction 376
	12.3.1 Time-Domain Approach 376
	12.3.2 Energy Approach 380
12.4	Work-Rate Relationships 380
	12.4.1 Shear Work Rate and Mechanical Power 380
	12.4.2 Vibration Energy Relationship 381
	12.4.3 Single Degree-of-Freedom System 381
	12.4.4 Multi-Span Beams Under Harmonic Excitation 382
	12.4.5 Response to Random Excitation 382
	12.4.6 Work-Rate Estimate: Summary 384
12.5	Experimental Verification 384
12.6	Comparison to Time Domain Approach 385
12.7	Practical Applications: Examples 386
12.8	Concluding Remarks 392
	Nomenclature 392
	Note 393
	References 394
13	Fretting-Wear Damage Coefficients 397
	Nigel J. Fisher and Fabrice M. Guérout
13.1	Introduction 397
13.2	Fretting-Wear Damage Mechanisms 397
	13.2.1 Impact Fretting Wear 397
	13.2.2 Trends 398
10.0	13.2.3 Work-Rate Model 402
13.3	Experimental Considerations 404
	13.3.1 Experimental Studies 404
	13.3.2 Room-Temperature Test Data 404
	13.3.3 High-Temperature Experimental Facility 407
10.4	13.3.4 Wear Volume Measurements 409
13.4	Fretting Wear of Zirconium Alloys 409
	13.4.1 Introduction 409
	13.4.2 Experimental Set-Up 410
	13.4.3 Effect of Vibration Amplitude and Motion Type 412
	13.4.4 Effect of Pressure-Tube Pre-Oxidation and Surface Preparation 412

	13.4.5	Effect of Temperature 412	
	13.4.6	Effect of pH Control Additive and Dissolved Oxygen Content	413
	13.4.7	Discussions 414	
13.5	Fretting	Wear of Heat Exchanger Materials 417	
	13.5.1	Work-Rate Model and Wear Coefficient 417	
	13.5.2	Effect of Test Duration 419	
	13.5.3	Effect of Temperature 422	
	13.5.4	Effect of Water Chemistry 424	
	13.5.5	Effect of Tube-Support Geometry and Tube Materials 426	
	13.5.6	Discussion 427	
13.6	Summa	ry and Recommendations 429	
	Nomeno	clature 429	

Component Analysis 433

Introduction 433

Notes 429 References 430

Analysis of a Process Heat Exchanger 435 Analysis of a Nuclear Steam Generator U-Bend 445

Subject Index 463

Preface

Excessive flow-induced vibration causing failures by fatigue or fretting wear must be avoided in process and nuclear components. That is the purpose of this handbook. In this book, the term process components is used generally to describe nuclear reactor internals, nuclear fuels, piping systems, and all shell-and-tube heat exchangers, including nuclear steam generators, power plant condensers, boilers and coolers.

There are already a number of good books on flow-induced vibration. So, why another one? This handbook is to help engineers to design, operate, and diagnose heat transfer equipment. The emphasis in this handbook is on two-phase flow-induced vibration. Despite the fact that roughly half of all heat exchanger equipment operates in two-phase flow, previous flow-induced vibration texts have provided limited guidance regarding vibration induced by two-phase flow. The prediction of fretting-wear damage is another important priority. The state of the art is presented in the design guidelines, figures and tables. The use of these design guidelines is illustrated with example calculations. To assist students and new design engineers, the calculations are supplemented and presented with more explanation in an appendix.

Largely, this handbook is the outcome of some 40 years of research and development at the Canadian Nuclear Laboratories. The emphasis of this book is the presentation of design guidelines based on extensive analysis of the literature and, in particular, on experimental data obtained in the field and at the Canadian Nuclear Laboratories in Chalk River.

We believe that this book will be useful to engineering design firms in the nuclear, petrochemical and aerospace industries, graduate schools in mechanical engineering and technical support groups in operating nuclear and petrochemical plants. This handbook is not a textbook, although it could be used as a resource in a graduate course. We also hope that this book will help to stimulate further research in the area of two-phase flow-induced vibration.

Michel J. Pettigrew Colette E. Taylor Nigel J. Fisher

Acknowledgments

The authors would like to recognize the institutions and colleagues who have provided permissions, support and inspiration to this project. We begin by recognizing the publishers who have kindly given permission to use copyrighted tables and figures. Rather than add the requested recognition statements to each figure, the following general statements are provided to avoid repetition.

- Figures from the *Congress of the Engineering Institute of Canada (EIC)* reprinted with permission from the EIC.
- Figures from the International Association for Structural Mechanics in Reactor Technology (IASMiRT) conferences reprinted courtesy of IASMiRT.
- Figures from *ANL Reports*, copyright by Argonne National Laboratory, managed and operated by the University of Chicago, U.S. Department of Energy, reprinted with permission.
- Figures from the *Nuclear Power Safety*, the *Journal of Fluids and Structures*, the *Journal of Sound and Vibration*, the *Journal of Multiphase Flow* and the *Journal of Nuclear Engineering and Design*, reprinted with permission from Elsevier.
- Figures from *Convective Boiling and Condensation*, Oxford Publishing Limited, Oxford, GB, reproduced with permission of Oxford Publishing Limited through PLSclear.
- Figures from AERE reports reproduced with the permission of UKAEA Scientific Publications.
- Figures from *Washington State University Reports* reprinted with permission from the Washington State University Libraries.
- Figures from the 8th International Heat Transfer Conference reprinted with permission from Begell House Inc.
- Figures from the *Journal of Heat Transfer Engineering* and the *Journal of Nuclear Science and Engineering*, reprinted with permission of the publisher (Taylor & Francis Ltd, https://www.tand-fonline.com/)
- Figures from Atomic Energy of Canada Ltd. Reports, used with permission from AECL.

This document is based on some 40 years of research and development conducted at Chalk River Laboratories in the area of flow-induced vibration. This technology development effort was largely supported by Atomic Energy of Canada Limited (AECL) and by the CANDU Owners Group (COG). It also received support from the Heat Transfer and Fluid Flow Service (HTFS), the Centre d'Etudes Nucleaires de Saclay (CEN-Saclay), the Pressure Vessel Research Council (PVRC) and the Washington Public Power Supply System (WPPSS). The support of all these organizations is very gratefully acknowledged. Many people have contributed to this effort including colleagues from industry and universities. Recognizing that we will fail to acknowledge all of our partners, we have decided to name some of the key individuals and institutions.

xviii Acknowledgments

The authors have benefited from discussions with researchers in other institutions such as F. Axisa and B. Villard, Centre d'Etudes Nucleaires de Saclay; H.G.D. Goyder, UKAEA Harwell; R.T. Hartlen, Ontario Hydro; N.W. Mureithi and many graduate students at École Polytechnique, Montreal; I.G. Currie, University of Toronto; R.J. Rogers, University of New Brunswick and M.P. Païdoussis, McGill University.

Visiting scientists, B.S. Kim, Korea Power Engineering Company Inc., Taejon, Korea; A. Yasuo, Central Research Institute of Electric Power Industry, Japan; and Z.L. Qiao, Xian Jiaotong University, China, contributed to the development of the flow-induced vibration database.

The contributors would also like to recognize the input of colleagues from the Canadian Nuclear Laboratories throughout the past 50 years: J. Albrecht, K.M. Boucher, W.A. Cook, T. Dickinson, P. Feenstra, E.G. Hagberg, Y. Han, G. Knowles, J. Mastorakos, J. McGregor, K. Moore, J.N. Patrick, P.J. Smith, Y. Sylvestre, J. H. Tromp, M.K. Weckwerth, and T. Whan. These individuals ably assisted with construction, instrumentation and installation of various flow loops and test sections, as well as copious data analysis.

Finally, the authors wish to express our gratitude to our understanding partners in life, for allowing us to take the time to write this handbook and for their moral support.

Contributors

Liberat N. Carlucci

Retired, Canadian Nuclear Laboratories (previously, Atomic Energy of Canada Ltd.)

Nigel J. Fisher

Retired, Canadian Nuclear Laboratories (previously, Atomic Energy of Canada Ltd.)

Daniel J. Gorman

Professor Emeritus, Ottawa University (Deceased)

Fabrice M. Guérout

Canadian Nuclear Laboratories

Victor P. Janzen

Retired, Canadian Nuclear Laboratories (previously, Atomic Energy of Canada Ltd.)

Michel J. Pettigrew

Principal Engineer Emeritus, Canadian Nuclear Laboratories Adjunct Professor, Polytechnique Montreal

John M. Pietralik

Retired, Canadian Nuclear Laboratories (previously, Atomic Energy of Canada Ltd.)

Bruce A. W. Smith

Retired, Canadian Nuclear Laboratories (previously, Atomic Energy of Canada Ltd.)

Colette E. Taylor

Retired, Canadian Nuclear Laboratories (previously, Atomic Energy of Canada Ltd.)

David S. Weaver

Professor Emeritus, McMaster University

Metin Yetisir

Canadian Nuclear Laboratories

1

Introduction and Typical Vibration Problems

Michel J. Pettigrew

1.1 Introduction

Excessive flow-induced vibration must be avoided in process and nuclear system components. That is the purpose of this handbook. The term "process components" is used generally here to describe nuclear reactor internals, nuclear fuels, piping systems, and all shell-and-tube heat exchangers, including nuclear steam generators, power plant condensers, boilers, coolers, etc. Higher heat-transfer performance often requires higher flow velocities and more structural supports. On the other hand, additional supports may increase pressure drop and costs. The combination of high flow velocities and inadequate structural support may lead to excessive tube vibration. This vibration can cause failures by fatigue or fretting wear. Failures are very undesirable in terms of repair costs and lost production, particularly for high-capital-cost plants such as nuclear power stations, petroleum refineries and oil exploitation platforms. To prevent these problems at the design stage, a thorough flow-induced vibration analysis is recommended. Such analysis requires good understanding of the dynamic parameters and vibration excitation mechanisms that govern flow-induced vibration.

This handbook covers all relevant aspects of component vibration technology, namely: examples of vibration failures, flow analysis, and vibration excitation and damping mechanisms. The latter includes fluidelastic instability, periodic wake shedding, acoustic resonance, random turbulence, flow-induced vibration analysis and fretting-wear predictions.

Chapter 2 is an overview of flow-induced vibration technology. The reader should start with this chapter. In many cases, Chapter 2 will be sufficient to provide the required information. Each aspect of the technology is covered in detail in the succeeding chapters. Typically, each chapter includes a review of the state of the art, available laboratory data, brief review of theoretical considerations and modeling, parametric analysis, recommendations for design, and sample calculations.

The performance of process components is often limited by excessive vibration in a localized area, e.g., near inlets, outlets, etc. The combination of detailed flow calculations and vibration technology allows the designer to avoid such problems. Flow velocities and support design can be optimized to allow maximum heat transfer in all regions of process components, resulting in higher heat-transfer performance, less corrosion and fouling problems and reduced component size. The latter means capital cost reduction and a more competitive manufacturing industry.

This handbook is for the practicing engineer who is designing or troubleshooting nuclear and process system components. Design guidelines are proposed based on extensive analysis of the


literature and, in particular, on experimental data obtained in the field and at the Canadian Nuclear Laboratories of Atomic Energy of Canada Limited at Chalk River, Ontario, Canada. Although it is not intended as an undergraduate text book, it could be useful as a source of design data and practical examples. To assist students and new design engineers, the example calculations provided throughout this handbook are supplemented and presented with more explanation in Appendix A.

There are already several useful books on flow-induced vibration, e.g. Au-Yang (2001), Blevins (1990), Chen (1987), Kaneko et al (2014), Naudascher and Rockwell (1994), and Païdoussis (1998). So, why another one in the form of a handbook? This book is complementary to the above books for the following reasons. This book has greater emphasis on design guidelines. Much experimental data is presented in the form of comprehensive data bases that include a significant number of two-phase flow results. Particular attention is given to damping in single- and two-phase flow, two-phase flow-induced vibration mechanisms such as fluidelastic instability and random turbulence excitation, and the prediction of fretting-wear damage. Simple examples of calculations are given throughout the handbook.

1.2 Some Typical Component Failures

In heat exchangers, tube failures due to fretting wear may occur at the tube supports or at midspan if the tubes vibrate with sufficient amplitude to contact each other. Figure 1-1 shows an example of tube-to-tube fretting wear. It occurred in the U-bend of an early nuclear steam generator with tubes that were inadequately supported near the outlet in a region of high-velocity two-phase cross flow. Extensive fretting-wear damage was also observed between tube and tube support, as shown in Fig. 1-2. Here, the damage was sufficient to cause a hole in the tube resulting in leakage between tube-side and shell-side. Obviously, this kind of problem must be avoided. An additional support near the outlet region was an easy solution to this problem.

Figure 1-3 shows extensive tube-to-tube fretting-wear damage in the inlet region of a triple segmental liquid-liquid process heat exchanger. The problem was due to the combination of long tube spans (1.45 m) and high flow velocities impinging directly on the tubes in the inlet region. Lacing

Fig. 1-1 Tube-to-Tube Fretting Wear in the U-Bend Region of an Early Nuclear Steam Generator (Pettigrew, 1976).

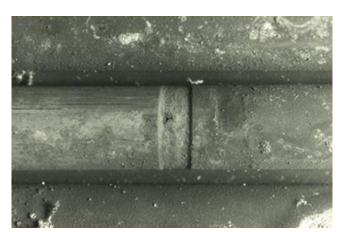


Fig. 1-2 Tube-to-Support Fretting Wear: Note Hole Through Tube Wall (Pettigrew, 1976).

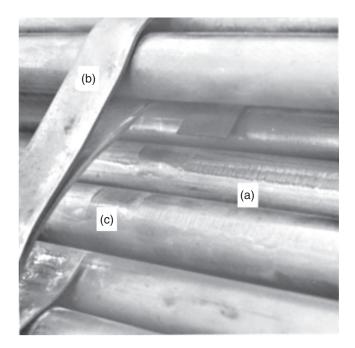


Fig. 1-3 Fretting Wear in the Inlet Region of a Liquid Process Heat Exchanger: a) Tube-to-Tube Initial Damage, b) Lacing Strip, and c) Damage at Lacing Strip Location (Pettigrew, 1976).

strips were installed to support the tubes near the inlet. Unfortunately, they were excessively loose. Fretting wear occurred between the tube and the lacing strips. Tubes wore through, as shown in Fig. 1-4. Eventually, proper baffle-supports were installed, as shown in Fig. 1-5. No further problems occurred.

In power condensers, very-high-velocity steam may impinge on the tubes, causing excessive vibration. Figure 1-6 shows a fatigue failure of a titanium condenser tube. The vibration amplitude was

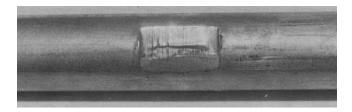
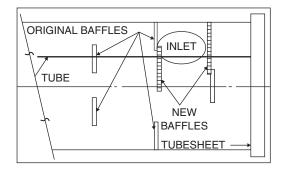



Fig. 1-4 Fretting Wear Through Tube Wall at a Lacing Strip Location in a Process Heat Exchanger (Pettigrew et al, 1977).

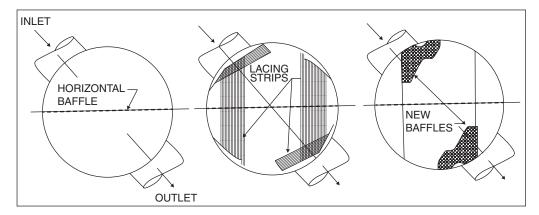


Fig. 1-5 Fretting Wear of Process Heat Exchanger: Repair (Pettigrew and Campagna, 1979 / with permission of Atomic Energy of Canada Limited).

sufficient for the tubes to contact each other at midspan. In this case, the condenser was operated with only four of the six tube bundles, resulting in 150% of design flow velocity. Operation at 100% design flow did not cause any vibration damage.

Figure 1-7 shows tube-to-tube fretting-wear damage in another power condenser. In this case, the damage was sufficient to wear through the tube wall, causing leakage of sea water into the secondary side of a power plant.

An example of fretting-wear damage of a tube located just beyond the baffle cut (window tube) vibrating against a baffle edge is shown in Fig. 1-8. This tube came from a gas-to-gas heat exchanger,

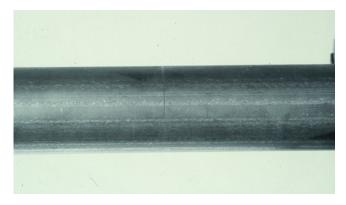


Fig. 1-6 Fatigue Failure of a Titanium Tube in a Nuclear Power Plant Condenser (Pettigrew et al, 1991).

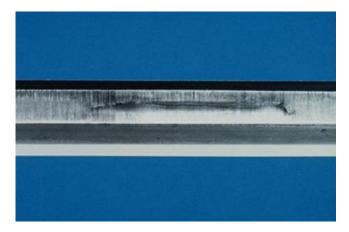
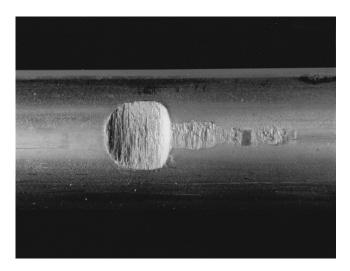



Fig. 1-7 Tube-to-Tube Fretting Wear in a Power Plant Condenser.

Fig. 1-8 Fretting Wear of a Gas Heat Exchanger Tube at a Baffle Edge Location.

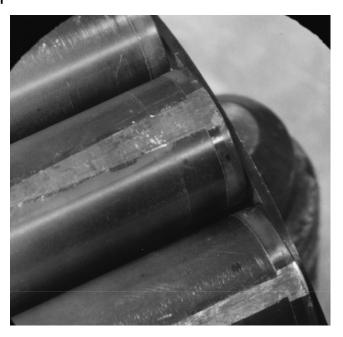


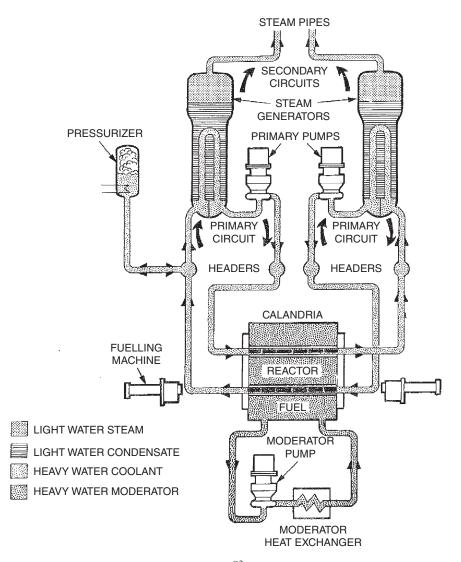
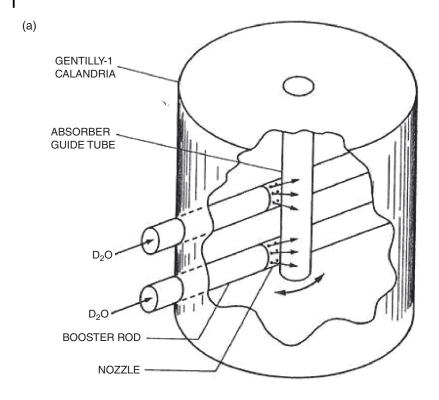
Fig. 1-9 Fretting-Wear Damage on Nuclear Fuel (Hot Cell Examination) (Pettigrew, 1976).

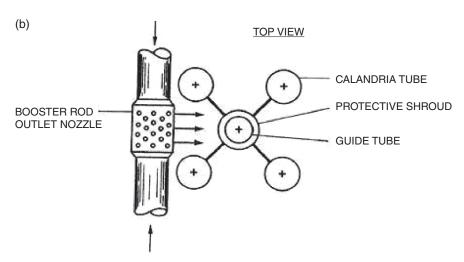
which was inadvertently operated at several times above design flow during a commissioning operation.

Figure 1-9 is an example of fretting wear of nuclear fuel as seen through an optical magnifier during "hot cell" examination. The damage occurred at the top of fuel string assemblies in 40% of the high flow fuel channels of a prototype CANDU-BLW $^{\oplus 1}$ nuclear station. The fuel strings were inserted in upward-flow vertical fuel channels where they were attached at the bottom and free at the top. The flow in each channel became two-phase as boiling occurred along the fuel and reached approximately 16% steam quality near the top. The mass flux was typically 4400 kg/m² s. The fretting problem was attributed to transverse flow-induced vibration of the fuel strings. Inadvertently, some of the fuel strings were assembled eccentrically. This caused the strings to be bent and promoted fretting wear. The corrective measures taken were to ensure concentric assembly of the fuel and increase fuel string flexural rigidity to reduce vibration.

One of the most costly vibration related problems took place in the early 1990s at the Darlington Nuclear Power Station, where nuclear fuel bundles were seriously damaged by fatigue and fretting wear (Fig. 1-10). The cost of investigation, repairs and particularly lost production totalled approximately 1 billion dollars Canadian. The problem was caused by acoustic resonance in the inlet headers due to coincidence of the pump pressure pulsation frequency, (30 Hz x 5 vanes = 150 Hz) and the natural acoustic frequency of the headers. The pressure pulsations were transmitted and amplified in the fuel channels, subjecting the fuel bundles to significant pressure fluctuations causing extensive damage. The problem was solved by simply replacing the five-vane pump impellers by seven-vane impellers, thus eliminating the acoustic resonance.

Sometimes vibration problems develop because of changes in operating conditions. For example, pressurized water reactor (PWR) fuel failures occurred in the 1990s due to fretting wear between fuel rods and support grids. The problem was related to longer fuel residence time, which caused increased clearances between the rods and grids due to creep, and deregulation of fuel


Fig. 1-10 Schematic Drawing of CANDU-PHW^{®2} Reactor (Pettigrew, 1978 / with permission of Atomic Energy of Canada Limited)

procurement. The latter allowed fuels from different suppliers at the same time in the reactor core. Differences in design caused slight differences in impedance resulting in increased cross flows and, thus, more flow-induced vibration excitation. Changes in support grid design solved this problem.

Vibration problems are not limited to material damage such as fatigue and fretting wear. For example, excessive vibration of control absorber guide tubes due to jet impingement could have caused a serious reactor control problem (see Fig. 1-11a). The problem was avoided by shielding the guide tube with a protective shroud, as shown in Fig. 1-11b.

Many other vibration problems have been encountered, such as fatigue failures of PWR core barrel tie rods and in-core instrumentation nozzles, excessive acoustic noise due to control valve

Fig. 1-11 a) Control Absorber Guide Tube Vibration due to Jetting, b) Modification with Protective Shroud (Pettigrew, 1976 / with permission of Atomic Energy of Canada Limited).

dynamics and mechanical damage resulting from acoustic resonance in gas heat exchangers. Although most vibration problems have very costly consequences, they are usually solved by simple design modifications or changes in operating conditions. After the fact, it is easy to see that most problems could have been avoided by proper understanding of flow-induced vibration phenomena.