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Preface

Excessive flow-induced vibration causing failures by fatigue or fretting wear must be avoided in
process and nuclear components. That is the purpose of this handbook. In this book, the term proc-
ess components is used generally to describe nuclear reactor internals, nuclear fuels, piping sys-
tems, and all shell-and-tube heat exchangers, including nuclear steam generators, power plant
condensers, boilers and coolers.
There are already a number of good books on flow-induced vibration. So, why another one? This

handbook is to help engineers to design, operate, and diagnose heat transfer equipment. The
emphasis in this handbook is on two-phase flow-induced vibration. Despite the fact that roughly
half of all heat exchanger equipment operates in two-phase flow, previous flow-induced vibration
texts have provided limited guidance regarding vibration induced by two-phase flow. The predic-
tion of fretting-wear damage is another important priority. The state of the art is presented in the
design guidelines, figures and tables. The use of these design guidelines is illustrated with example
calculations. To assist students and new design engineers, the calculations are supplemented and
presented with more explanation in an appendix.
Largely, this handbook is the outcome of some 40 years of research and development at the Cana-

dian Nuclear Laboratories. The emphasis of this book is the presentation of design guidelines based
on extensive analysis of the literature and, in particular, on experimental data obtained in the field
and at the Canadian Nuclear Laboratories in Chalk River.
We believe that this book will be useful to engineering design firms in the nuclear, petrochemical

and aerospace industries, graduate schools inmechanical engineering and technical support groups
in operating nuclear and petrochemical plants. This handbook is not a textbook, although it could
be used as a resource in a graduate course. We also hope that this book will help to stimulate further
research in the area of two-phase flow-induced vibration.

Michel J. Pettigrew
Colette E. Taylor

Nigel J. Fisher
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1

Introduction and Typical Vibration Problems
Michel J. Pettigrew

1.1 Introduction

Excessive flow-induced vibration must be avoided in process and nuclear system components. That
is the purpose of this handbook. The term “process components” is used generally here to describe
nuclear reactor internals, nuclear fuels, piping systems, and all shell-and-tube heat exchangers,
including nuclear steam generators, power plant condensers, boilers, coolers, etc. Higher
heat-transfer performance often requires higher flow velocities and more structural supports.
On the other hand, additional supports may increase pressure drop and costs. The combination
of high flow velocities and inadequate structural support may lead to excessive tube vibration. This
vibration can cause failures by fatigue or fretting wear. Failures are very undesirable in terms of
repair costs and lost production, particularly for high-capital-cost plants such as nuclear power
stations, petroleum refineries and oil exploitation platforms. To prevent these problems at the
design stage, a thorough flow-induced vibration analysis is recommended. Such analysis requires
good understanding of the dynamic parameters and vibration excitation mechanisms that govern
flow-induced vibration.
This handbook covers all relevant aspects of component vibration technology, namely: examples

of vibration failures, flow analysis, and vibration excitation and damping mechanisms. The latter
includes fluidelastic instability, periodic wake shedding, acoustic resonance, random turbulence,
flow-induced vibration analysis and fretting-wear predictions.
Chapter 2 is an overview of flow-induced vibration technology. The reader should start with this

chapter. In many cases, Chapter 2 will be sufficient to provide the required information. Each
aspect of the technology is covered in detail in the succeeding chapters. Typically, each chapter
includes a review of the state of the art, available laboratory data, brief review of theoretical con-
siderations and modeling, parametric analysis, recommendations for design, and sample
calculations.
The performance of process components is often limited by excessive vibration in a localized area,

e.g., near inlets, outlets, etc. The combination of detailed flow calculations and vibration technology
allows the designer to avoid such problems. Flow velocities and support design can be optimized to
allowmaximumheat transfer in all regions of process components, resulting in higher heat-transfer
performance, less corrosion and fouling problems and reduced component size. The latter means
capital cost reduction and a more competitive manufacturing industry.
This handbook is for the practicing engineer who is designing or troubleshooting nuclear and

process system components. Design guidelines are proposed based on extensive analysis of the
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literature and, in particular, on experimental data obtained in the field and at the CanadianNuclear
Laboratories of Atomic Energy of Canada Limited at Chalk River, Ontario, Canada. Although it is
not intended as an undergraduate text book, it could be useful as a source of design data and
practical examples. To assist students and new design engineers, the example calculations
provided throughout this handbook are supplemented and presented with more explanation in
Appendix A.
There are already several useful books on flow-induced vibration, e.g. Au-Yang (2001), Blevins

(1990), Chen (1987), Kaneko et al (2014), Naudascher and Rockwell (1994), and Païdoussis (1998).
So, why another one in the form of a handbook? This book is complementary to the above books for
the following reasons. This book has greater emphasis on design guidelines. Much experimental
data is presented in the form of comprehensive data bases that include a significant number of
two-phase flow results. Particular attention is given to damping in single- and two-phase flow,
two-phase flow-induced vibration mechanisms such as fluidelastic instability and random turbu-
lence excitation, and the prediction of fretting-wear damage. Simple examples of calculations are
given throughout the handbook.

1.2 Some Typical Component Failures

In heat exchangers, tube failures due to fretting wear may occur at the tube supports or at midspan
if the tubes vibrate with sufficient amplitude to contact each other. Figure 1-1 shows an example of
tube-to-tube fretting wear. It occurred in the U-bend of an early nuclear steam generator with tubes
that were inadequately supported near the outlet in a region of high-velocity two-phase cross flow.
Extensive fretting-wear damage was also observed between tube and tube support, as shown in
Fig. 1-2. Here, the damage was sufficient to cause a hole in the tube resulting in leakage between
tube-side and shell-side. Obviously, this kind of problem must be avoided. An additional support
near the outlet region was an easy solution to this problem.
Figure 1-3 shows extensive tube-to-tube fretting-wear damage in the inlet region of a triple seg-

mental liquid-liquid process heat exchanger. The problem was due to the combination of long tube
spans (1.45 m) and high flow velocities impinging directly on the tubes in the inlet region. Lacing

Fig. 1-1 Tube-to-Tube Fretting Wear in the U-Bend Region of an Early Nuclear Steam Generator
(Pettigrew, 1976).
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strips were installed to support the tubes near the inlet. Unfortunately, they were excessively loose.
Fretting wear occurred between the tube and the lacing strips. Tubes wore through, as shown in
Fig. 1-4. Eventually, proper baffle-supports were installed, as shown in Fig. 1-5. No further pro-
blems occurred.
In power condensers, very-high-velocity steammay impinge on the tubes, causing excessive vibra-

tion. Figure 1-6 shows a fatigue failure of a titanium condenser tube. The vibration amplitude was

Fig. 1-2 Tube-to-Support Fretting Wear: Note Hole Through Tube Wall (Pettigrew, 1976).

(b)

(a)

(c)

Fig. 1-3 Fretting Wear in the Inlet Region of a Liquid Process Heat Exchanger: a) Tube-to-Tube Initial
Damage, b) Lacing Strip, and c) Damage at Lacing Strip Location (Pettigrew, 1976).
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sufficient for the tubes to contact each other at midspan. In this case, the condenser was operated
with only four of the six tube bundles, resulting in 150% of design flow velocity. Operation at 100%
design flow did not cause any vibration damage.
Figure 1-7 shows tube-to-tube fretting-wear damage in another power condenser. In this case, the

damage was sufficient to wear through the tube wall, causing leakage of sea water into the second-
ary side of a power plant.
An example of fretting-wear damage of a tube located just beyond the baffle cut (window tube)

vibrating against a baffle edge is shown in Fig. 1-8. This tube came from a gas-to-gas heat exchanger,

Fig. 1-4 Fretting Wear Through Tube Wall at a Lacing Strip Location in a Process Heat Exchanger (Pettigrew
et al, 1977).
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Fig. 1-5 Fretting Wear of Process Heat Exchanger: Repair (Pettigrew and Campagna, 1979 / with permission
of Atomic Energy of Canada Limited).
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Fig. 1-6 Fatigue Failure of a Titanium Tube in a Nuclear Power Plant Condenser (Pettigrew et al, 1991).

Fig. 1-7 Tube-to-Tube Fretting Wear in a Power Plant Condenser.

Fig. 1-8 Fretting Wear of a Gas Heat Exchanger Tube at a Baffle Edge Location.
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which was inadvertently operated at several times above design flow during a commissioning
operation.
Figure 1-9 is an example of fretting wear of nuclear fuel as seen through an optical magnifier

during “hot cell” examination. The damage occurred at the top of fuel string assemblies in 40%
of the high flow fuel channels of a prototype CANDU-BLW®1 nuclear station. The fuel strings were
inserted in upward-flow vertical fuel channels where they were attached at the bottom and free at
the top. The flow in each channel became two-phase as boiling occurred along the fuel and reached
approximately 16% steam quality near the top. The mass flux was typically 4400 kg/m2 s. The fret-
ting problem was attributed to transverse flow-induced vibration of the fuel strings. Inadvertently,
some of the fuel strings were assembled eccentrically. This caused the strings to be bent and pro-
moted fretting wear. The corrective measures taken were to ensure concentric assembly of the fuel
and increase fuel string flexural rigidity to reduce vibration.
One of the most costly vibration related problems took place in the early 1990s at the Darlington

Nuclear Power Station, where nuclear fuel bundles were seriously damaged by fatigue and fretting
wear (Fig. 1-10). The cost of investigation, repairs and particularly lost production totalled approx-
imately 1 billion dollars Canadian. The problemwas caused by acoustic resonance in the inlet head-
ers due to coincidence of the pump pressure pulsation frequency, (30 Hz x 5 vanes = 150 Hz) and
the natural acoustic frequency of the headers. The pressure pulsations were transmitted and ampli-
fied in the fuel channels, subjecting the fuel bundles to significant pressure fluctuations causing
extensive damage. The problem was solved by simply replacing the five-vane pump impellers by
seven-vane impellers, thus eliminating the acoustic resonance.
Sometimes vibration problems develop because of changes in operating conditions. For example,

pressurized water reactor (PWR) fuel failures occurred in the 1990s due to fretting wear between
fuel rods and support grids. The problem was related to longer fuel residence time, which caused
increased clearances between the rods and grids due to creep, and deregulation of fuel

Fig. 1-9 Fretting-Wear Damage on Nuclear Fuel (Hot Cell Examination) (Pettigrew, 1976).
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procurement. The latter allowed fuels from different suppliers at the same time in the reactor core.
Differences in design caused slight differences in impedance resulting in increased cross flows and,
thus, more flow-induced vibration excitation. Changes in support grid design solved this problem.
Vibration problems are not limited to material damage such as fatigue and fretting wear. For

example, excessive vibration of control absorber guide tubes due to jet impingement could have
caused a serious reactor control problem (see Fig. 1-11a). The problem was avoided by shielding
the guide tube with a protective shroud, as shown in Fig. 1-11b.
Many other vibration problems have been encountered, such as fatigue failures of PWR core bar-

rel tie rods and in-core instrumentation nozzles, excessive acoustic noise due to control valve
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Fig. 1-10 Schematic Drawing of CANDU-PHW®2 Reactor (Pettigrew, 1978 / with permission of Atomic Energy
of Canada Limited)
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dynamics and mechanical damage resulting from acoustic resonance in gas heat exchangers.
Althoughmost vibration problems have very costly consequences, they are usually solved by simple
design modifications or changes in operating conditions. After the fact, it is easy to see that most
problems could have been avoided by proper understanding of flow-induced vibration phenomena.
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Fig. 1-11 a) Control Absorber Guide Tube Vibration due to Jetting, b) Modification with Protective Shroud
(Pettigrew, 1976 / with permission of Atomic Energy of Canada Limited).
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