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Antoine: Slave, Creole Gardener, and
Expert Grafter of Pecan Trees

Lenny Wells
Department of Horticulture, University of Georgia,
Tifton, GA, USA



ABSTRACT
Scientific advancements in any field are often the result
of hard work by well‐trained scientists whose productive
lives and academic careers are well documented.
Occasionally, advancements are made in a given field by
those without the advantage of formal education or
training, and about whom there is little documentation,
but whose intellect and skill contribute greatly to the
advancement of that field. In the mid‐1800s, a man
known only as Antoine grafted 126 pecan (Carya
illinoinensis) trees at Oak Alley Plantation in St. James
Parish, Louisiana. Originally, a sugarcane plantation,
dating back to 1836, Oak Alley is famously recognized by
its plantation house adorned with large Tuscan columns
and lying at the end of a double row of 28 large live oak
trees. There is very little known of Antoine, in part
because he was a slave whose rights were largely
curtailed. However, his successful grafting of 126 pecan
trees laid the foundation for the development of the first
recognized pecan cultivar, ‘Centennial’. Antoine’s
techniques would be used as the basis for the
consistency that led to the development of the pecan
industry, not only in the United States, but also
throughout the world. That he was unheralded during his
time is largely due to the horrors and repressive nature
of American slavery. It is long past time that his
accomplishments, and the contributions of so many
unrecognized horticulturists to the betterment of our
crops, were recognized.

Keywords: Oak Alley; pecan; slavery; slave; Carya
illinoinensis
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I. BACKGROUND
Prior to the late 1800s, though pecans (Carya illinoinensis)
had been utilized by Native Americans for centuries and
were later a popular trade item among the early European
settlers of North America, pecans were not viewed as
having serious commercial potential due to their lack of
uniformity (Wells 2017). In 1794, French explorer and
botanist Andre Michaux first encountered the pecan near
Louisville, Kentucky. Twenty‐five years later, he would
encounter stands of wild pecan trees being cultivated by
Native Americans near Kaskaskia, Illinois. He wrote of the
pecan as being “more delicately” flavored than the walnuts
of Europe. He was concerned with the lack of precocity –
fruit production at an early age – in the pecan and
suggested the pecan could be improved by grafting onto
wild black walnut (Juglans nigra) (Bryant 2004).
However, there are no records of successful attempts at the
vegetative propagation of pecan trees until 1822 when Dr.
Abner Landrum budded pecan onto a wild hickory (Carya
spp.) rootstock in Edgefield, South Carolina. Landrum
himself was a fascinating man in his own right. A physician,
ceramic artist, amateur horticulturist, and publisher,



Landrum produced the first alkaline‐glazed stoneware
pottery in the New World, combining the techniques of
Europe and Asia and creating a viable alternative to lead‐
glazed pottery. This was significant because the lead glaze
used on most earthenware pottery produced in the south
during the 1700s and early 1800s was responsible for a
rash of lead poisoning cases throughout the region during
that same period. In addition, acids from the vinegar used
in preserving seemed to accelerate the process. Landrum’s
pottery would spread throughout the entire southern tier of
states to Texas during the late 1800s, saving countless
agonizing deaths in the region (Koverman 2009).
Landrum had previously attempted to bud both pecan and
walnut to hickory rootstock. In an article published in
American Farmer magazine, Landrum wrote “the pecan did
not take so well as the walnut but my trials were made
rather late in the season.” The following summer, he had
better success, stating “I have this summer budded some
dozens of pecan on the common hickory nut, without a
single failure as yet; and some of them are growing finely”
(Landrum 1822). Despite his success, Landrum’s attempts
at budding pecan failed to lead to any further development
in the form of nursery production, orchard establishment,
or cultivar development. As a result, the pecan was still
considered too unpredictable and nonuniform in its
production to be of any commercial value beyond those
nuts gathered from the wild and sold or traded.
When sugarcane planter, Jacques Telesphore Roman, the
owner of Oak Alley Plantation, died in 1848 of tuberculosis,
an inventory of his estate was conducted. This inventory
provides the only written record of a man named Antoine,
who, in the distasteful context of that time, was considered
a part of the inventory of Roman’s estate. Roman had
acquired the 9000 acre sugarcane plantation in 1836 and
promptly built the main house between 1837 and 1839. The



plantation later acquired the name Oak Alley, referencing
the 28 massive live oak trees lining the entrance to the
main house. A hospital, an overseer’s house, a 100‐stall
horse stable, a sugarhouse, and sawmill were also built.
Aside from these outbuildings and the opulence of the main
house, the plantation was home to 24 simple, wood‐frame
cabins, which housed the 113 people enslaved by Roman to
serve him and his family in the home and in the fields.
Antoine was listed among the 93 field slaves at Oak Alley.
The 1848 ledger records Antoine’s age at 38 years, which
suggests he was born in 1810. The notation beside his
name states that Antoine was “a Creole Negro gardener
and expert grafter of pecan trees.” According to Roman’s
ledger, this man’s life was valued at $1000 (Anonymous
2010) (Figure 1.1).

II. WORK AND RECOGNITION OF
‘CENTENNIAL’ PECAN
In the early 1840s, a pecan tree growing on the Nita
Plantation on the east bank of the Mississippi River, just
around a bend and upstream from Oak Alley Plantation,
consistently produced large, thin‐shelled pecans that were
favored by a local dentist, Dr. A.C. Colomb, who attempted
to graft cuttings from the tree onto other pecan trees.
Failing in this endeavor, Colomb collected graftwood
cuttings from the tree and gave them to J.T. Roman so that
Roman’s gardener, Antoine, could graft the wood onto trees
across the river at Oak Alley Plantation (Flack 1970).
Antoine began grafting Colomb’s cuttings onto trees near
the main house of Oak Alley. Initially, he was successful in
grafting 16 trees. Although the exact grafting method used
by Antoine is unknown (most likely some form of bark
graft), he would continue this work until 110 pecan trees
were successfully grafted in a large pasture near the river



on Oak Alley Plantation. All 126 trees were bearing pecans
by the end of the Civil War. Following the war, Oak Alley
went through a succession of owners, who cut down most
of these trees to plant sugarcane. By 1902, only two of the
original trees grafted by Antoine were still alive (Flack
1970).

Fig. 1.1. Main house, Oak Alley Plantation.
Source: Photograph courtesy of Oak Alley Plantation.

In 1876, the famed Centennial Exhibition was held in
Philadelphia. This was the first official World’s Fair held in
the United States, and such novel items as Alexander
Graham Bell’s telephone, the Remington typewriter, Heinz
ketchup, and the Wallace–Farmer electric dynamo, a
precursor to electric lighting, were displayed alongside the



torch of the as‐yet‐to‐be completed Statue of Liberty. One
of Oak Alley’s prior owners, Hubert Bonzano, happened to
serve on the Centennial Exposition’s board of managers.
Bonzano, a proud resident of Louisiana, began to
encourage the state to submit everything of interest that it
had to offer for display at the exhibition (Kilcer, personal
communication). Bonzano’s boosterism resulted in the
submission of a few pecans gathered from the remaining
pecan trees grafted by Antoine. Professor William Brewer,
chair of Agriculture at Yale’s Sheffield Scientific School,
awarded Bonzano a certificate for the pecans, commending
their “remarkably large size, tenderness of shell and very
specific excellence” (Taylor 1905). While this was a triumph
for Bonzano and generated recognition of the pecan, it is a
shame that the man known only as Antoine received no
recognition for his invaluable contribution.

Fig. 1.2. ‘Centennial’ pecan, the first recognized improved
pecan cultivar.

Source: USDA Yearbook of Agriculture (1904).

Antoine’s grafted trees were given the name ‘Centennial’ in
honor of the exhibition and the 100th anniversary of the
United States, becoming the first recognized pecan cultivar
to be named. The tree was first catalogued under this name
in 1885 by Richard Frotscher and William Nelson and was



sold through their nursery in New Orleans (Flack 1970)
(Figures 1.2 and 1.3).
The original “mother” ‘Centennial’ tree, from which the
graftwood used by Antoine was taken in the 1840s, was
destroyed on March 14, 1890. The Nita Crevasse, a 15  ft
deep gouge into the earth formed when a defective rice
flume was used for routing water from the river to the rice
fields, caused a breach in the levee. As the water flooded
in, the tree was swept away with the earth beneath it
(Taylor 1905) (Figure 1.4).

III. SIGNIFICANCE
While ‘Centennial’ is no longer a commercially planted
cultivar, it remains significant for the advancements made
through its development as the first recognized pecan
cultivar. Antoine’s successful grafting techniques brought
the potential for uniformity to the industry. Pecan growers
and nurserymen were shown the possibilities that exist in
selecting and asexually propagating the best seedling
trees.



Fig. 1.3. ‘Centennial’ pecan nuts.
Source: Photograph by USDA ARS‐Pecan Breeding and Genetics.


