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Preface
Diatoms comprise a large, unicellular eukaryotic algal
group that thrives mainly in aqueous environments: in fresh
water, and in ponds, lakes and oceans. They may be
attached to benthic substrates, in moist habitats or in
floating debris and on macrophytes, and as phytoplankton;
they form a substantial basis of aquatic food webs. They
are ubiquitous, being distributed among various ecological
locations. Among this group are some extremophiles with
varying features, such as living in high temperatures,
surviving desiccation, or in ice and at extreme ranges of
pH. Some 20%-30% of the oxygen we breath is produced by
diatom photosynthesis.
Vegetative cells of diatoms are diploid (2N), and meiosis
can take place, producing male and female gametes fusing
to zygotes which grow to auxospores.
One of their specific features is that their chemical
composition includes siliceous (glassy) cell walls
(frustules). Their exoskeleton is made of two halves called
“valves” that fit inside one another, secured by silica “girdle
bands”.
Diatoms’ fine structure is very impressive as revealed by
transmission electron microscope, scanning microscope,
and atomic force micrographs. The appearance of their
cells is strikingly unique, and their shells are beautiful
attractive shapes, with 60,000 to 200,000 species.
Why Valve Morphogenesis is Important?
Because there is so much detail in their silica wall shapes,
spanning 8 orders of magnitude, diatoms are model
organisms for single-cell morphogenesis. The problem of
single cell morphogenesis has a long history, as yet



unsolved, and perhaps diatoms rather than desmids and
ciliates will now lead the way, especially given their 200
million years fossil record. This may further be because
diatoms serve as a source of biofuel, food supplements and
lipids and serve as significant material for nanotechnology.
Thus, they are of very wide interest.
This volume focuses on the morphogenesis of diatoms,
namely, the formation of their shape and the initial
developmental steps.
The chapters were contributed by experts on morphological
diatoms. The authors stem from the USA, Russia, Denmark,
Germany, Greece, Israel, and Portugal.
Topics Addressed in This Volume
Topics include computer simulation of morphogenesis,
silicic acid to silica frustules, inhibition in valve
morphogenesis, pores within frustules, mesopores of
pennate diatoms, frustule photonics and light harvesting,
clonal chains, silica cell wall, geometric models of centric
diatoms, morphology, surface features, buckling of valve
morphogenesis, on mantle profiles, genetic-biochemical
approaches, modeling silicon pools, valve morphogenesis,
diatom teratology in taxonomy, phenotypic plasticity,
geometric and morphometric analysis, silica
morphogenesis in sister algae, and the uncanny symmetry
of some diatoms.
This volume is the third book in the series Diatoms: Biology
and Applications. The first book, Diatoms: Fundamentals
and Applications appeared in 2019, and was edited by
Joseph Seckbach and Richard Gordon. The second book,
Diatom Gliding Motility, was published in September 2021
and is edited by Stanley A. Cohn, Kalina M. Manoylov and
Richard Gordon.
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