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Preface

Diatoms comprise a large, unicellular eukaryotic algal group that thrives mainly in aque-
ous environments: in fresh water, and in ponds, lakes and oceans. They may be attached to 
benthic substrates, in moist habitats or in floating debris and on macrophytes, and as phy-
toplankton; they form a substantial basis of aquatic food webs. They are ubiquitous, being 
distributed among various ecological locations. Among this group are some extremophiles 
with varying features, such as living in high temperatures, surviving desiccation, or in ice 
and at extreme ranges of pH. Some 20%–30% of the oxygen we breath is produced by dia-
tom photosynthesis. 

Vegetative cells of diatoms are diploid (2N), and meiosis can take place, producing male 
and female gametes fusing to zygotes which grow to auxospores.

One of their specific features is that their chemical composition includes siliceous (glassy) 
cell walls (frustules). Their exoskeleton is made of two halves called “valves” that fit inside 
one another, secured by silica “girdle bands”. 

Diatoms’ fine structure is very impressive as revealed by transmission electron micro-
scope, scanning microscope, and atomic force micrographs. The appearance of their cells 
is strikingly unique, and their shells are beautiful attractive shapes, with 60,000 to 200,000 
species.

Why Valve Morphogenesis is Important?

Because there is so much detail in their silica wall shapes, spanning 8 orders of magni-
tude, diatoms are model organisms for single-cell morphogenesis. The problem of single 
cell morphogenesis has a long history, as yet unsolved, and perhaps diatoms rather than 
desmids and ciliates will now lead the way, especially given their 200 million years fossil 
record. This may further be because diatoms serve as a source of biofuel, food supplements 
and lipids and serve as significant material for nanotechnology. Thus, they are of very wide 
interest. 

This volume focuses on the morphogenesis of diatoms, namely, the formation of their 
shape and the initial developmental steps. 

The chapters were contributed by experts on morphological diatoms. The authors stem 
from the USA, Russia, Denmark, Germany, Greece, Israel, and Portugal.



xvi  Preface

Topics Addressed in This Volume

Topics include computer simulation of morphogenesis, silicic acid to silica frustules, inhibi-
tion in valve morphogenesis, pores within frustules, mesopores of pennate diatoms, frustule 
photonics and light harvesting, clonal chains, silica cell wall, geometric models of centric 
diatoms, morphology, surface features, buckling of valve morphogenesis, on mantle pro-
files, genetic-biochemical approaches, modeling silicon pools, valve morphogenesis, dia-
tom teratology in taxonomy, phenotypic plasticity, geometric and morphometric analysis, 
silica morphogenesis in sister algae, and the uncanny symmetry of some diatoms.

This volume is the third book in the series Diatoms: Biology and Applications. The first 
book, Diatoms: Fundamentals and Applications appeared in 2019, and was edited by Joseph 
Seckbach and Richard Gordon. The second book, Diatom Gliding Motility, was published in 
September 2021 and is edited by Stanley A. Cohn, Kalina M. Manoylov and Richard Gordon.

We would like to thank the authors, the reviewers, the guest editor (Vadim V. Annenkov), 
and our publisher Martin Scrivener of Massachusetts, USA.

Joseph Seckbach
Hebrew University Jerusalem, Israel

September 2021
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Introduction for a Tutorial on Diatom Morphology 
Kalina Manoylov1* and Mohamed Ghobara2

1Dept. of Biological & Environmental Sciences, Georgia College and State University,  
Milledgeville, GA, United States

2Department of Physics, Freie Universitat Berlin, Berlin, Germany

Abstract
Diatoms are an exceptionally successful group of unicellular microalgae with a large contribution 
of global primary production in aquatic environments and contributing a significant amount of 
oxygen to both hydro- and atmospheres. They are fascinating throughout their life and even after 
death, thanks to their unique cell walls made from ornamented silica. The diatoms include centric 
species, which may have radial or polar symmetry, and pennates, which include araphid, mon-
oraphid, and biraphid species. Several applications have utilized diatomite, i.e., the fossil form of 
diatom frustules. To date, many diatoms’ secrets have been understood; however, there are still 
more hidden. Thus, there is a need for more research on diatom basic biology and applications. 
Seeking this goal, more people should be encouraged to work on diatoms. Often novice research-
ers are overwhelmed by the terminology associated with the diverse morphology, the discrepancy 
between expected features for published descriptions, and the actual observation of those complex 
3D organisms, which can be a barrier for more progress. Here, we provide a brief introduction to 
the beginners with a guide to approach the complex diatom morphology focusing on the tools that 
can be used for its study.

Keywords:  Diatom morphology, tutorial, LM and SEM, frustule morphology

1.1	 Diatoms in Brief 

Diatoms are unicellular, eukaryotic, microscopic algae (range from 1.5 µm to 5 mm 
in length, or diameter [1.9]), which maintain large population numbers and contrib-
ute considerably to the carbon and oxygen cycle on a global scale [1.8]. This ecologi-
cally successful group of algae is present in all aquatic habitats e.g. [1.1, 1.2] and even 
extends to humid terrestrial places. In aquatic habitats, diatoms are present in the pho-
tic zone, i.e., the region of water that light strongly penetrates, as well as in the benthic 
zone, i.e., the lowest level of water adjacent to the bottom with dim light conditions, 
depending on water column height and water’s turbidity. Diatoms can exist as planktonic 

*Corresponding author: kalina.manoylov@gcsu.edu

mailto:kalina.manoylov@gcsu.edu
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(i.e., suspended in the water column), benthic (i.e., living near the bottom), epiphytic 
(i.e., adhered to aquatic plants [1.19], Figures 1.2c–d), or epizoic (i.e., adhered to a wide 
range of marine organisms such as crustaceans, mollusks, and vertebrates [1.19, 1.38]), or 
epilithic (i.e., attached completely or partially to submerged rocks). The adhesion ability 
of some diatoms is related to their mucilage secretion from specialized areas within their 
rigid cell walls (such as examples shown in Figures 1.1d and 1.2c–d). Some diatoms can 
form colonies in different arrangements such as chains and ribbons (examples shown in 
Figures 1.1 and 1.2).

Diatoms are a unique group of microalgae for several reasons, but one of the most 
notable and unique differences is the glass cell walls they possess [1.45]. This cell wall is 
called the “frustule” and is composed of amorphous hydrated silica that gives it unique 
properties. In general, the frustule is composed of two pieces that fit together like a petri-
dish, meaning that the lower part of the frustule, called the hypotheca, sits inside of the 
upper part of the frustule, called the epitheca. The frustule volume extends by adding 
strips of silica called girdle bands (cingulum) to the mantle, i.e., the curved edge of the 
valve. It should be noted that there are plenty of frustule morphologies that vary between 
taxa. 

Diatoms reproduce both asexually (visible in Figure 1.6) and sexually. Most of the time, 
they reproduce asexually via binary fission through adding new hypovalves to the parent 
valves. Those new hypovalves are synthesized inside the silica deposition vesicle (SDV). 
Only after the new hypovalves have completely synthesized and the protoplast cleavage, as 
well as the exocytosis of siliceous parts, has occurred, the final splitting apart will occur, 
leaving two daughter diatoms in place. Because the SDV forms inside of each new cell 

(a) (b) (c)

(d) (e) (f)

Figure 1.1  Living diatoms as observed under LM, brightfield. (a) Two living cells of Actinoptychus senarius 
(Ehrenberg) Ehrenberg at the valve view. (b) The valve view of a single living cell of Coscinodiscus wailesii 
Gran and Angst. (c) The girdle view of a single living cell of Coscinodiscus granii L.F. Gough. (d) Two living 
cells of Achnanthes brevipes C. Agardh at the girdle view attached to each other with a prolonged stalk for the 
attachment to the substrate. (e) A living colony of Stephanopyxis turris (Greville) Ralfs with visible linking 
spines. (f) A living colony of Odontella longicruris (Greville) M.A. Hoban with discoid chloroplasts. Copyright 
reserved Mary Ann Tiffany, used with her permission. The identification was carried out by Mary Ann Tiffany. 
All the scale bars are 50 µm.
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before splitting into two, each new cell creates a new interior of the petri-dish structure. 
What this means is that the cell that originally contained the upper part of the petri dish 
(the epitheca) remains the same size, whereas the cell that originally contained the lower 
part of the petri-dish (the hypotheca) becomes smaller, since it has now built a smaller 
hypovalve to fit into it. Repeated cell division, therefore, leads to some part of the resulting 

(a)

(c)

(e) (g)

(f)

(h)

(d)

(b)

10 µm

10 µm

10 µm

10 µm

10 µm

10 µm

10 µm

10 µm

Figure 1.2  Live centric (a, b) and pennate (c–h) diatoms. (a, b) Pleurosira laevis (Ehrenberg) Compère shown 
from girdle view, frustules with numerous girdle bands in straight filaments with discoid chloroplasts, chains 
connected with mucilage pads released from ocelli; in (b), visible diameter size restoration within the chain; 
(c, d) Epiphytic diatoms on Cladophora glomerata (Linnaeus) Kützing, in (c) focus on Cocconeis spp. With 
visible one flat C-shaped plastid; in (d) focus on Rhoicosphenia spp.; (e) Cymbella sp. partial valve and girdle 
views, visible chloroplast bridge connecting the chloroplast plates; (f) Eunotia cf. camelus Ehrenberg in girdle 
view with visible discoid chloroplasts; (g) Amphora ovalis (Kützing) Kützing with H shaped chloroplast; 
(h) Rhoicosphenia sp. girdle view with visible lobes of the plastid. Scale bars, 10 µm. These micrographs were 
obtained and identified by KMM. 
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population becoming smaller and smaller. Were asexual reproduction the only method by 
which diatoms reproduces, this could lead the population eventually to become vulnerable 
to dying out, but diatoms are ingenious and have gotten around this problem. At some 
point, sexual reproduction is initiated by a number of steps, including meiotic divisions 
to produce male and female gametes. These cells can find each other, fuse to form a zygote 
and create a structure known as an auxospore, out of which a new large cell of the diatom 

(a) (b)

3 5

2

1

4

1

Figure 1.3  Specific diatom morphology gleaned from images with whole and partial valves views of Navicula 
oblonga (Kützing) Kützing; (a) live linear-lanceolate cell with visible two plates like brown chloroplasts, 
visible linear striae, and proximal raphe ends deflected slightly toward the secondary side. (b) Valve view 
after cleaning, axial area is linear, widening toward the central area and about twice the width of the raphe. 
The central area orbicular. The raphe is lateral, becoming filiform near the proximal ends, which are simple. 
Central striae do not reach valve edge. These micrographs were obtained and identified by KMM.
Details shown:
1. Central area is more or less orbicular and two to three times wider than the axial area. Proximal raphe ends 
are simple and barely wider than the raphe. Striae are finely lineate and the individual areolae are difficult to 
distinguish.
2. Round, subsidiary vacuoles on each side of the nucleus visible behind the glass cell wall and chloroplasts; 
axial area outlines by lineate striae.
3. Terminal bent striae (terminal striae convergent at the margins and bent back toward the central area). 
Striae are radiate next to the axial area.
4. Voigt discontinuity identifies the secondary side of the valve morphogenesis. Ontogeny in diatoms varies 
with morphology; in Naviculoid diatoms, the secondary side shows the completion of silica deposition around 
the raphe. 
5. Distal raphe positioned on the broad, rounded apices and curved toward the primary side of the valve in the 
opposite direction when compared to the proximal raphe ends. Scale bars, 10 µm.
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species will form, restoring its optimal size, which also depends on the environmental cir-
cumstances surrounding the auxospores. Some new research proposes chemical communi-
cation with pheromones between the male and female gametes [1.20].

Frustule morphogenesis, deposits SDVs and needs more research with new tools. 
However, it has been established that the silica morphogenesis of centric species will begin 
at the center of the valve, and it begins by creating a primary rib in pennate species [1.21]. 
Completion of the sternum around the raphe slit morphologically can be identified with 
the Voight discontinuity (Figure 1.3b). From that onset within the mother frustule, the 
silica will continue to form outward to complete the shape as well as inward to create more 
layers, with the oldest silica being on the most outside layer [1.46]. The silicic acid (or its 
anions) is taken from the environment, condensed, associated with proteins synthesized by 
the endoplasmic reticulum and packaged in a globular vesicle in the Golgi apparatus. Then 
finally, these vesicles (silica deposition vesicles) are transported by microtubules, likely in a 
genetically predetermined pattern, and delivered to the new valve interface. These are not 
the only groups that pull silicic acid (an inorganic compound contains silicon) out of the 
water and use it to make a frustule, but diatoms do it uniquely.

Diatom frustules are porous with multilayer, multiscalar porosity, a property that is 
unique for each species, giving frustules their beautiful ornamentation [1.17]. The major 
bigger pores within the valves are called “areolae” and usually arranged in rows known as 
“striae”, which could be either branched or not. In the most general way, diatoms can be 
divided into centric and pennate diatoms, which are classified based on the valve symme-
try. Centric diatoms are radially symmetric and lack raphes. Pennate diatoms usually have 
bilateral symmetry and there can be no, one, or two raphes. Pennate diatoms can further 
be classified based on variations in the position of the raphe on valve. The raphe is used for 
motility [1.4] and attachment [1.12]. Sometimes, the frustules are also covered in spines, 
which can allow some species to hook together and form chains (Figure 1.1e).

The frustule’s morphological features of diatoms are required for identification. 
Specialized terminology has been collected in [1.5–1.7, 1.15, 1.16], and a general guide to 
the literature is in [1.10]. Characters continue to be discovered and new descriptive termi-
nologies are proposed [1.23].

1.2	 Tools to Explore Diatom Frustule Morphology 

The beauty of diatoms was missed until the early, curious microscopists started observing 
ambiguous glassy microorganisms under their optical microscopes in the 18th century [1.22, 
1.38]. Although the light microscope (LM) helped us to reveal the diatoms’ world, diatom 
frustules also helped the microscopists in developing and testing the quality and resolution 
of their optical microscopes [1.24, 1.25]. Since the nineteenth century, several works have 
been published on diatoms, its morphology, and taxonomy by remarkable workers including 
Kützing, Schmidt, Ehrenberg, Grunow, Hustedt, Krammer, Lange-Bertalot, and more (see 
references in Round et al. [1.38]). They described both living cells and clean frustules exten-
sively using LM. The unique structure of diatom frustules under LM, with a variety of shapes 
and symmetries, has captured a wide interest; however, most of the diatom’s real art, at the 
nanoscale, was kept hidden. The limitations for observing frustule ultrastructure, especially 
details below 200 nm, were solved after the invention of the electron microscope [1.26].  
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In 1936, the transmission electron microscope (TEM) was used to capture the first micro-
graph of a diatom frustule [1.26, 1.27], using it as a test object for the quality and resolution 
of TEM. After that TEM was used to explore diatom ultrastructure. Following, the scanning 
electron microscope (SEM) was invented and used extensively as a more effective tool for 
exploring frustules morphology and ultrastructure [1.24, 1.28, 1.36, 1.38].

The details observed using the SEM and TEM reflected the beauty of diatoms when 
many hidden details became observable. For instance, some bright striae under an optical 
microscope appear as arrays of fine pores under the electron microscope (Figure 1.5a). 
It was, to some extent, a kind of revolution for diatom classification and taxonomy with the 
morphological details that became available down to 15 nm with SEM and below 10 nm 
with TEM (Figure 1.5b). Nowadays, the observation of diatom frustule morphology and 
ultrastructure using LM, SEM, and TEM became routine work for people working on ecol-
ogy, environment, forensic, nanotechnological, and other applications that concern frustule 
ultrastructure, monitoring diatom species, and taxonomy.

Although 2D information can be collected from LM and TEM and the 3D-shape 
appeared under SEM, the information about the surface topology, internal ultrastructure, 
and siliceous element relationships within diatom frustules was missing. Therefore, more 
tools were evolved and involved in the exploration and understanding of the 3D complex 
ultrastructure of the frustule, which could be the reason for their various natural features, 
including unique photonic, mechanical, and hydrokinetic properties [1.9, 1.45]. The new 
tools include the atomic force microscope (AFM) and the focused ion beam SEM (FIB-
SEM) [1.32, 1.34, 1.35, 1.41]. 

(a)

(h) (i) (j) (k) (l)
(m)

(b)

(c) (d)
(e) (f)

(g)

Figure 1.4  Cleaned diatoms in valve (g, h–j, m–r, u, v) and girdle views (a–f, k, l, s, t, w, x). (a–e, g) 
Rhoicosphenia spp., frustules are clavate and strongly flexed, one valve is concave with long raphe branches and 
the other valve convex with shortened raphe, different depth pseudosepta visible; (f, k, l) Gomphonema spp. 
showing valve heterogeneity; (h) Gomphonella olivacea (Hornemann) Raben. (i) Planothidium lanceolatum 
(Bréb. Ex Kütz.) Lange-Bert, rapheless valve shown with asymmetrical central area containing depression; 
(j) Geissleria cascadensis (Sovereign) Stancheva and S. A. Spaulding, valves elliptic, with cuneate apices, coarse 
areolae, three pairs of annulae are present at each apex; (m) Planothidium delicatulum (Kütz.) Round and 
Bukht. Rapheless valve shown, lacking a central area and two middle striae spaced distantly.� (Continued)
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In 1992, the first observation of diatoms using an AFM has been done [1.33]. In general, 
AFM is used as an advanced tool to explore diatom ultrastructure providing information 
in the Z-direction, with the ability to understand the surface topology of the frustule parts 
with a nanoresolution. For instance, AFM observations of Coscinodiscus sp. clean valves 
revealed a distinct dome topology for the cribellum, which was not observed before [1.34]. 
At the beginning of the current century, AFM was used in several works for understand-
ing the nanoscale ultrastructure and topology of frustule surfaces in a 3D manner. Today, 
AFM is also used to explore the organic envelope, micromechanical properties, and to 

(n)

(s) (t) (u) (v) (w) (x)

(o)
(p)

(q) (r)

Figure 1.4 (Continued)  Cleaned diatoms in valve (g, h–j, m–r, u, v) and girdle views (a–f, k, l, s, t, w, x). 
(n) Gomphonema sp. valve heteropolar wider in the middle, axial area narrow, central area irregular outlined 
by two shortened striae and opposite to a single striae finishing with an isolated pore, striae parallel toward the 
headpole, radiate toward the foot pole; (o) Amphora ovalis, dorsal fascia visible and dorsal striae interrupted 
transapically by intercostal ribs; (p) Gomphonema micropus Reichardt lanceolate valve with headpole widely 
drawn out and wider than foot pole, striae radiate, central area unilaterally rectangular with shortened 
central stria, on the opposite side longer striae finishing with a stigmoid; (q) Navicula genovefae Fusey valve 
linear-lanceolate with rostrate broadly rounded apices, punctate striae radiate and curved, becoming nearly 
parallel at the apices, less dense around the well-defined central area; (r) Cocconeis placentula Ehrenb. Valves 
elliptic, striae radiate and interrupted by a hyaline ring positioned close to the valve margin, siliceous bridges 
(imbriae extending from valvocopula) visible; (s) Amphora pediculus (Kütz.) Grunow focus from dorsal site 
of two frustules; (t, u) Caloneis sp. on girdle view striae continue on valve mantle, on the linear valve view 
with rounded apices, axial area is narrow, broadening to a transverse fascia; (v) Navicula cryptocephala Kütz. 
Valve lanceolate with protracted apices and visible large, circular central area; (w) Mastogloia pseudosmithii 
Sylvia S. Lee, E. E. Gaiser, Van de Vijver, Edlund, and S. A. Spaulding, evenly sized partecta (chambers on 
the valvocopula) on both valves; (x) Navicula cf. tripunctata (O.F. Müll.) Bory. Scale bar, 10 µm. These 
micrographs were obtained and identified by KMM. 
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understand the biomineralization processes of diatom frustules [1.35]. Luís et al. [1.35] can 
be considered a good review for starting AFM studies on diatom frustules. 

Furthermore, diatom valves seem to have a complex inner ultrastructure that can-
not be understood completely by observing the internal and external view of a given 
valve surface using the previously mentioned tools. Although the multilayer, multisca-
lar porosity can be observed easily using such techniques, the internal anatomy and 
relations of the siliceous elements of the frustule cannot be understood [1.41]. It was 
usual to wish that the observation of a broken valve or girdle band at the right site and 
right angle would help, otherwise, the complex inner structure remained unseen [1.41].  

Epivalve of the
parent cell

Hypovalve of
the parent cell

Hypovalve of
the new lower
daughter cell

Hypovalve of
the new upper
daughter cell

3 µm

Figure 1.6  A cross-section at the center of Coscinodiscus sp. cell collected and treated while binary fission 
process was in progress, fabricated and captured by FIB-SEM. Reproduced from Xing et al. [1.42] under 
a Creative Commons Attribution 4.0 International license.

(a) (b)

HV mag spot
20.00 kV 20 000 × 5.0 8.3 mm

WD det HPW 9/25/2017 5 µm

5:19:49 PM20.7 µmLFD

200 nm

Figure 1.5  (a) SEM of a single cleaned partially open frustule, two overlapping valves, of Nitzschia palea 
(Kützing) W. Smith, and scale bar is 5 µm. The rows of pores (striae) that observed here cannot be observed 
under LM for this species. (b) TEM of a close-up in Navicula sp. valve showing the hymenate pore occlusions 
that will not be observed under SEM; scale bar is 200 nm. These micrographs were obtained and identified 
by MG.
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Thus, another advanced method was required for understanding the inner structures and 
spatial relationships of the siliceous elements of a given diatom frustule. The FIB-SEM 
was introduced as a solution for such a problem by cutting the diatom frustule parts at 
nanoresolution to reveal the inner complex ultrastructure of a given valve or frustule 
(Figure 1.6) [1.41]. Suzuki et al. [1.40] was the first work introduced using FIB-SEM for 
making a cross-section in diatoms. Only a few articles are available using FIB-SEM and 
the field is still growing. The acquired data using FIB-SEM could be used to reconstruct 

Table 1.1  A summary of the major tools used to study diatom frustule morphology and its 
ultrastructure.

LM TEM SEM AFM FIB-SEM

The date of 
first known 
observation of 
diatoms using 
the tool

Anonymous, 1703 
[1.22]

Krause, 1936 
[1.27]

Mid of 1960s [1.24] Linder et al., 
1992 [1.33]

Suzuki et al., 2001 
[1.40]

Up-to-date 
resolution

The maximum 
resolution of 
the common 
compound 
optical 
microscope 
can be around 
200 nm. 
Recently, the 
resolution 
was enhanced 
(down to 97 
nm) using 
special kind of 
lenses [1.37]. 

Up-to-date, the 
highest TEM 
resolution 
could be 
down to 50 
picometer or 
even lower 
[1.29].

The details less than 
15 nm was not 
resolved under 
most of SEMs. 

Recently, an outbreak 
has been achieved, 
and the resolution 
of SEM could be 
below 1 nm [1.39].

Recently, the 
resolution 
can be below 
1 nm.

Having SEM as the 
microscope 
part of the 
device. Thus, 
the resolution is 
dependent on 
this SEM. 

When we should 
use?

Observation of 
the presence 
or absence of 
diatoms in a 
sample.

Identification of 
diatoms on the 
genus level.

Enumeration 
of diatom 
frustules 
for different 
purposes.

Observation 
of the fine 
porosity 
(mesopores) 
present in 
some genera, 
like raphid 
pennates 
(Figure 1.5b).

Observation of 
thin cross-
sections in 
a valve or a 
girdle band.

Observation 
of the 
cytoplasmic 
components 
of thin cross-
sections of 
living cells 
(living cells 
anatomy).

Observation of the 
outer ultrastructure 
including most 
porosity.

Observation of 
the overall 3D 
ultrastructure of 
the frustule or 
different parts.

Identification at 
the species and 
subspecies level.

Observation 
of the 3D 
topology 
of a diatom 
frustule or its 
components.

Measuring forces 
related with 
both living 
diatoms and 
its cleaned 
frustules.

Understanding 
the inner 
ultrastructure 
of diatom 
frustule or its 
parts by cutting 
cross-sections 
through it.

Observation of 
the siliceous 
elements 
structural 
relations within 
the frustule.

Observation of 
the whole 3D 
ultrastructure 
of the frustule 
via the 3D 
reconstruction.

(Continued)
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the overall 3D geometry of diatoms to carry out further computational simulations nec-
essary for diatom nanotechnology applications. 

Finally, all the techniques mentioned were summarized in Table 1.1 to help beginners 
and students choose between different tools on-demand.

1.3	 Diatom Frustule 3D Reconstruction

Toward the complete understanding of the 3D structure of a given diatom frustule, a com-
prehensive 3D model can be created from the data collected from different characterization 
techniques. This approach, which is designated as the 3D reconstruction of diatom frustules, 
can be used for different purposes but is mainly for computer modeling. Oncoming tools 
for the 3D reconstruction of diatom frustules are FIB-SEM [1.32, 1.42] and digital holo-
graphic microscopy (DHM) combined with SEM [1.30]. The combination of DHM and 
SEM or AFM might give the ability to model and visualize microscopic 3D objects with a 
high resolution in all directions [1.30]. Hildebrand et al. [1.32] introduced the ability for 
the 3D reconstruction of subcellular architecture using FIB-SEM with new insights into the 
architecture and synthesis process of both the siliceous and organic components inside the 

Table 1.1  A summary of the major tools used to study diatom frustule morphology and its 
ultrastructure. (Continued)

LM TEM SEM AFM FIB-SEM

The disadvantages The observations 
for most of the 
ultrastructure 
details will be 
limited.

Either the girdle 
view or the 
valve view will 
be available.

Only the tiniest 
parts of 
the valve, 
like pore 
occlusions, 
will be 
observed.

The high energy 
electron beam 
may damage 
some sensitive 
samples, so 
it should be 
used wisely.

The samples must 
be coated with a 
conductive layer, 
which in turn 
could change the 
nano texture of the 
frustule silica and 
probably pore sizes, 
thus the thickness 
and smoothness 
of the conductive 
layer should be 
optimized and be 
thin as possible 
without getting 
nanoparticles on 
the top.

The high energy 
electron beam may 
also damage some 
sensitive samples

The regular resolution 
keep the pore 
occlusions of 
very fine porosity 
(below 10 nm)  
hidden.

The frustules 
must fix to 
the substrate 
before 
measuring.

A very sensitive 
tool with 
complicated 
precautions 
to follow 
to get the 
desired 
results.

This technique 
sometimes 
needs more 
sophisticated 
preparation 
of the samples 
and more 
sophisticated 
work to 
reconstruct the 
frustule or its 
parts, however 
it worth.

Related with the 
presence of the 
device, which 
usually is not 
available for all 
research groups.


