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Preface

This volume is the result of research activities that took place during the first
workshop for Women in Commutative Algebra at Banff International Research
Station for Mathematical Innovation and Discovery. The workshop brought together
researchers from a diverse list of institutions and fostered research collaborations
among women at different career stages and from different research backgrounds.

This volume has several purposes. First and foremost, it is a celebration of the
high-level research activities that took place at the workshop. Further it wants to
testify to the successful model behind the high research achievements, a model
put in place by several fields in mathematics and, with Emily E. Witt, brought
to commutative algebra by the hard work of Karen Smith, Sandra Spiroff, Irena
Swanson, to whom we are extremely grateful. We have intended this volume
to support and expand the goal of the workshop in re-enforcing the network of
collaborations among women in commutative algebra by displaying in one place
those connections, and bringing in new ones. The volume indeed contains articles
or research advances that were made by the research groups, as well as some
contributions related to the area of commutative algebra and, survey articles.

Commutative algebra is the study of the properties of rings that historically rose
in algebraic and arithmetic geometry. With the development of several techniques
and a rich theory, commutative algebra has become a thriving research area that
feeds to and from several fields of mathematics such has topology and combina-
torics, beyond the classical algebraic and arithmetic geometry. It would not be fair
not to mention that significant advances have been made recently in the field with
the the breakthrough of new techniques in positive and mixed characteristic methods
and homological algebra, and the consequent solution of long-standing conjectures.

The volume reflects the ripple effect of such breakthroughs that have inspired
a great deal of activities in commutative algebra. Our volume delivers readings
that span from case studies to survey articles and cover a wide range of topics
in commutative algebra. The study of characteristic p rings is present in this
volume through the classification of Frobenius forms in certain dimension, the
Frobenius singularities of certain varieties, and through a comprehensive survey
of the Hilbert–Kunz function; further, the reader can find results of a homological
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vi Preface

flavor in the articles that deliver resolutions of powers of the homogeneous maximal
ideal of graded Koszul algebras, the construction of the truncated free resolution
for the residue field, or the notion of Tor-independent modules; finally, the volume
contains several articles that expand on the connection between homological and
combinatorial invariants.

Syracuse, NY, USA Claudia Miller
Fairfield, CT, USA Janet Striuli
Lawrence, KS, USA Emily E. Witt
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On Gerko’s Strongly Tor-independent
Modules

Hannah Altmann and Keri Sather-Wagstaff

Keywords Differential graded algebras · Semidualizing modules · Syzygies ·
Tor-independent modules

1 Introduction

We are interested in how existence of certain sequences of modules over a local
ring (R,mR) imposes restrictions on R. Specifically, we investigate what Gerko [6]
calls strongly Tor-independent R-modules: A sequence N1, . . . , Nn of R-modules
is strongly Tor-independent provided TorR�1(Nj1 ⊗R · · · ⊗R Njt , Njt+1) = 0
for all distinct j1, . . . , jt+1. Gerko is led to this notion in his study of Foxby’s
semidualizing modules [5] and Christensen’s semidualizing complexes [3]. In
particular, Gerko [6, Theorem 4.5] proves that if R is artinian and possesses a
sequence of strongly Tor-independent modules of length n, then mnR �= 0. (Note that
Gerko’s result only assumes the modules are finitely generated and strongly Tor-
independent, not necessarily semidualizing.) This generalizes readily from artinian
rings to Cohen–Macaulay rings; see Proposition 5.1 below.

Our goal in this paper is to prove the following non-Cohen–Macaulay comple-
ment to Gerko’s result.

Theorem 1.1 Assume (R,mR) is a local ring. If N1, . . . , Nn are non-free, strongly
Tor-independent R-modules, then n � ecodepth(R).
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2 H. Altmann and K. Sather-Wagstaff

Here ecodepth(R) = βR0 (mR)−depth(R) is the embedding codepth of R, where
βR0 (mR) is the minimal number of generators of mR . Note that our result does not
recover Gerko’s, but compliments it. Our proof is the subject of Sect. 5 below.

Part of the proof of our result is modeled on Gerko’s proof with one crucial
difference: where Gerko works over an artinian ring, we work over a finite dimen-
sional DG algebra. See Sects. 2 and 3 for background material and foundational
results, including our DG version of Gerko’s notion of strong Tor-independence.
Theorem 4.7 is our main result in the DG context, which is the culmination of
Sect. 4. Our proof relies on a DG syzygy construction of Avramov et al. [2].

2 DG Homological Algebra

Let R be a nonzero commutative Noetherian ring with identity. We work with
R-complexes indexed homologically, so for us an R-complex X has differential
∂Xi : Xi → Xi−1. The supremum and infimum of X are respectively

sup(X) = sup{i ∈ Z | Xi �= 0} inf(X) = inf{i ∈ Z | Xi �= 0}.

The amplitude of X is amp(X) = sup(X) − inf(X). Frequently we consider these
invariants applied to the total homology H(X), e.g., as sup(H(X)).

As we noted in the introduction, the proof of Theorem 1.1 uses DG techniques
which we summarize next. See, e.g., [1, 4] for more details.

A differential graded (DG) R-algebra is an R-complex A equipped with an R-
linear chain map A⊗R A→ A denoted a⊗a′ �→ aa′ that is unital, associative, and
graded commutative. We simply write DG algebra when R = Z. The chain map
condition here implies that this multiplication is also distributive and satisfies the
Leibniz Rule: ∂(aa′) = ∂(a)a′ + (−1)|a|a∂(a′) where |a| is the homological degree
of a. We say that A is positively graded provided Ai = 0 for all i < 0. For example,
the trivial R-complex R is a positively graded DG R-algebra, so too is every Koszul
complex over R, using the wedge product. The underlying algebra associated to A
is the R-algebra A� =⊕

i∈ZAi .
If R is local, then a positively graded DG R-algebra A is local provided H0(A)

is Noetherian, each H0(A)-module Hi(A) is finitely generated for all i � 0, and the
ring H0(A) is a local R-algebra.

Let A be a DG R-algebra. A DG A-module is an R-complex X equipped with
an R-linear chain map A ⊗R X → X denoted a ⊗ x �→ ax that is unital and
associative. For instance DG R-modules are precisely R-complexes. We say that X
is homologically bounded if amp(H(X)) <∞, and we say that X is homologically
finite ifH(X) is finitely generated overH0(A). We write�nX for the nth shift of X
obtained by (�nX)i = Xi−n and ∂�

nX
i = (−1)n∂Xi−n. Quasiisomorphisms between

R-complexes, i.e., chain maps that induce isomorphisms on the level of homology,
are identified with the symbol 	.

Let A be positively graded and let X be a DG A-module such that inf(X) >
−∞. We say that X is semifree if the underlying A�-module X� is free. In this case
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a semibasis for X is a set of homogeneous elements of X that is a basis for X�

over A�. A semifree resolution of a DG A-module Y with inf(H(Y )) > −∞ is

a quasiisomorphism F
	−→ Y such that F is semifree. The derived tensor product

of DG A-modules Y and Z is Y ⊗L
A Z 	 F ⊗A Z where F

	−→ Y is a semifree

resolution of Y . We say that Y is perfect if it has a semifree resolution F
	−→ Y such

that F has a finite semibasis.
Let A be a local DG R-algebra, and let Y be a homogically finite DG A-

module. By [2, Proposition B.7] Y has a minimal semifree resolution, i.e., a semifree

resolution F
	−→ Y such that the semibasis for F is finite in each homological degree

and ∂F (F ) ⊆ mAF .

3 Perfect DG Modules and Tensor Products

Throughout this section, let A be a positively graded commutative homologically
bounded DG algebra, say amp(H(A)) = s, and assume that A �	 0.

Most of this section focuses on four foundational results on perfect DG modules.

Lemma 3.1 Let L be a non-zero semifree DG A-module with a semibasis B
concentrated in a single degree n. Then L ∼= �nA(B). In particular, inf(H(L)) = n
and sup(H(L)) = s + n and amp(H(L)) = s.
Proof It suffices to prove that L ∼= �nA(B). Apply an appropriate shift to assume
without loss of generality that n = 0.

The semifree/semibasis assumptions tell us that every element x ∈ L has
the form

∑finite
e∈B aee; the linear independence of the semibasis tells us that this

representation is essentially unique. Since A is positively graded, we have L−1 = 0,
so ∂L(e) = 0 for all e ∈ B. Hence, the Leibniz rule for L implies that

∂L

(
finite∑

e∈B
aee

)

=
finite∑

i

∂A(ae)e +
finite∑

i

(−1)|ae|ae∂L(e) =
finite∑

i

∂A(ae)e.

From this, it follows that the map A(B) → L given by the identity on B is an
isomorphism. �

Proposition 3.2 Let L be a non-zero semifree DG A-module with a semibasis B
concentrated in degrees n, n + 1, . . . , n + m where n,m ∈ Z and m � 0. Then
inf(H(L)) � n and sup(H(L)) � s + n+m, so amp(H(L)) � s +m.
Proof It suffices to show that inf(H(L)) � n and sup(H(L)) � s + n + m. We
induct on m. The base case m = 0 follows from Lemma 3.1.

For the induction step, assume that m � 1 and that the result holds for semifree
DG A-modules with semibasis concentrated in degrees n, n+1, . . . , n+m−1. Set

B ′ = {e ∈ B | |e| < n+m}
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and let L′ denote the semifree submodule of L spanned over A by B ′. (See the
first paragraph of the proof of [2, Proposition 4.2] for further details.) Note that L′
has semibasis B ′ concentrated in degrees n, n + 1, . . . , n + m − 1. In particular,
our induction assumption applies to L′ to give inf(H(L′)) � n and sup(H(L′)) �
s + n+m− 1.

IfL = L′, then we are done by our induction assumption. So assume thatL �= L′.
Then the quotient L/L′ is semifree and non-zero with semibasis concentrated
in degree n + m. So, Lemma 3.1 implies that inf(H(L/L′)) = n + m and
sup(H(L/L′)) = s + n+m. Now, consider the short exact sequence

0→ L′ → L→ L/L′ → 0. (1)

The desired conclusions for L follow from the associated long exact sequence in
homology. �


Now, we use the preceding two results to analyze derived tensor products.

Lemma 3.3 Let L be a non-zero semifree DG A-module with a semibasis B
concentrated in a single degree, say n, and let Y be a homologically bounded DG
A-module. ThenL⊗L

AY 	 �nY (B). In particular, inf(H(L⊗L
AY )) = inf(H(Y ))+n

and sup(H(L⊗L
A Y )) = sup(H(Y ))+ n and amp(H(L⊗L

A Y )) = amp(H(Y )).

Proof Immediate from Lemma 3.1. �

Proposition 3.4 Let L be a non-zero semifree DG A-module with a semibasis B
concentrated in degrees n, n+1,. . . n+m where n,m ∈ Z andm � 0, and let Y be a
homologically bounded DG A-module. Then inf(H(L⊗L

AY )) � inf(H(Y ))+n and
sup(H(L⊗L

A Y )) � sup(H(Y ))+n+m, so amp(H(L⊗L
A Y )) � amp(H(Y ))+m.

Proof As in the proof of Proposition 3.2, we induct on m. The base case m = 0
follows from Lemma 3.3.

For the induction step, assume m � 1 and the result holds for semifree DG
A-modules with semibasis concentrated in degrees n, n + 1, . . . , n + m − 1 and
Y ∈ Db(A). We work with the notation from the proof of Proposition 3.2, and we
assume that L �= L′. The exact sequence (1) of semi-free DG modules gives rise to
the following distinguished triangle inD(A).

L′ ⊗L
A Y → L⊗L

A Y → (L/L′)⊗L
A Y →

Another long exact sequence argument gives the desired conclusion. �

We close this section with our DG version of strongly Tor-independent modules.

Definition 3.5 The DG A-modules K1, . . . , Kn are said to be strongly Tor-
independent if for any subset I ⊂ {1, . . . , n} we have amp(H(⊗L

i∈IKi)) � s.
Remark 3.6 It is worth noting that the definition ofK1, . . . , Kn being strongly Tor-
independent includes amp(H(Ki))) � s for all i = 1, . . . , n. Also, if K1, . . . , Kn
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are strongly Tor-independent, then so is any reordering by the commutativity of
tensor products.

4 Syzygies and Strongly Tor-independent DG Modules

Throughout this section, let (A,mA) be a local homologically bounded DG algebra,
say amp(H(A)) = s, and assume that A �	 0 and mA = A+. It follows that A0 is a
field.

The purpose of this section is to provide a DG version of part of a result of
Gerko [6, Theorem 4.5]. Key to this is the following slight modification of the
syzygy construction of Avramov et al. mentioned in the introduction.

Construction 4.1 Let K be a homologically finite DG A-module. Let F 	 K be a
minimal semifree resolution of K , and let E be a semibasis for F . Let F (p) be the
semifree DG A-submodule of F spanned by E�p := ∪m�pEm.

Set t = sup(H(K)), and consider the soft truncation K̃ = τ�r (F ) for a
fixed integer r � t . Note that the natural morphism F → K̃ is a surjective
quasiisomorphism of DG A-modules, so we have K̃ 	 F 	 K . Next, set L = F (r),
which is semifree with a finite semibasis E�r . Furthermore, the composition π of
the natural morphisms L = F (r) → F → K̃ is surjective because the morphism
F → K̃ is surjective, the morphism L → F is surjective in degrees � r , and
K̃i = 0 for all i > r . Set Syzr (K) = ker(π) ⊆ L and let α : Syzr (K)→ L be the
inclusion map.

Proposition 4.2 Let K be a homologically finite DG A-module. With the notation
of Construction 4.1, there is a short exact sequence of morphisms of DG A-modules

0→ Syzr (K)
α−→ L

π−→ K̃ → 0 (2)

such thatL is semifree with a finite semibasis and where K̃ 	 K and Im(α) ⊆ A+L.
Proof Argue as in the proof of [2, Proposition 4.2]. �


Our proof of Theorem 1.1 hinges on the behavior for syzygies documented in the
following four results.

Lemma 4.3 Let K be a homologically finite DG A-module with amp(H(K)) �
s and K ′ = Syzr (K) where r � sup(H(K)). Then sup(H(K ′)) � s + r and
inf(H(K ′)) � r . Therefore, amp(H(K ′)) � s.
Proof Use the notation from Construction 4.1. Then sup(H(L)) � s + r by
Proposition 3.2. Also, by definition we have sup(H(K̃)) = sup(H(K)) � r � r+s.
The long exact sequence in homology coming from (2) implies sup(H(K ′)) � s+r .
Also, inf(H(K ′)) � inf(K ′) � r because πi is an isomorphism for all i < r

by Construction 4.1. So, amp(H(K ′)) = sup(H(K ′))−inf(H(K ′)) � s+r−r = s.
�
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Proposition 4.4 Let K be a homologically finite DG A-module and set K ′ =
Syzr (K) where r � sup(H(K)). Let Y be a homologically bounded DG A-module
and assume that K,Y are strongly Tor-independent. Then sup(H(K ′ ⊗L

A Y )) �
sup(H(Y ))+r and inf(H(K ′⊗L

AY )) � inf(H(Y ))+r . So, amp(H(K ′⊗L
AY )) � s;

in particular, K ′, Y are strongly Tor-independent.

Proof Let G
	−→ Y be a semifree resolution of Y . Let K̃ and L be as in Construc-

tion 4.1. As K,Y are strongly Tor-independent we have sup(H(K̃ ⊗A G)) � s.
Also, Proposition 3.4 implies sup(H(L ⊗A G)) � sup(H(Y )) + r . To conclude
the proof, consider the short exact sequence

0→ K ′ ⊗A G→ L⊗A G→ K̃ ⊗A G→ 0 (3)

and argue as in the proof of Lemma 4.3. �

Proposition 4.5 Let K1,K2, . . . , Kn be strongly Tor-independent, homologically
finite DGA-modules for n ∈ Z

+ andK ′i = Syzri (Ki)where ri � sup(H(Ki)). Then
K ′1, . . . , K ′m,Km+1, . . . , Kn are strongly Tor-independent for all m = 1, . . . , n.

Proof Induct on m using Proposition 4.4. �

Proposition 4.6 Let K1,K2, . . . , Kj be strongly Tor-independent DG A-modules,
and set K ′i = Syzri (Ki) where ri � sup(H(Ki)) for i = 1, 2, . . . , j . If mnA = 0,

then m
n−j
H(A)H(⊗L

i=1,...,jK
′
i ) = 0.

Proof ShiftKi if necessary to assume without loss of generality that inf(H(Ki)) =
0 for i = 1, . . . , j . For i = 1, . . . , j let Gi

	−→ K ′i be semifree resolutions, and
consider the following diagram with notation as in Construction 4.1.

(4)

Notice, Im(αi) ⊆ K ′i ⊆ mALi for i = 1, 2, . . . , j .
Set G = ⊗i=1,...,j−1Gi and consider the following commutative diagram

where θ = ⊗i=1,...,j−1αi and β is induced by θ ⊗ αj .
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Claim: H(β) is 1-1. Notice that Hi(G⊗A Gj ) = 0 for all i < r1+ . . .+ rj , so it
suffices to show that Hi(β) is 1-1 for all i � r1 + . . .+ rj . To this end it suffices to
show Hi(G⊗ αj ) and Hi(θ ⊗ Lj ) are 1-1 for all i � r1 + . . . + rj . First we show
this for Hi(G⊗ αj ). Consider the short exact sequence

0→ G⊗A Gj G⊗αj−−−→ G⊗A Lj → G⊗A K̃j → 0. (5)

Proposition 4.4 implies

sup(H(G⊗A K̃j )) � r1 + . . .+ rj−1 + sup(H(K̃j )) � r1 + . . .+ rj .

Thus, the long exact sequence in homology associated to (5) implies Hi(G⊗A αj )
is 1-1 for all i � r1 + . . .+ rj as desired.

Next, we show Hi(θ ⊗ Lj ) is 1-1 for i � r1 + . . . + rj . Consider the exact
sequence

0→ G⊗A Lj θ⊗Lj−−−→ (⊗i=1,...,j−1Li)⊗A Lj → (⊗i=1,...,j−1K̃i)⊗A Lj → 0.
(6)

The first inequality in the next display follows from Proposition 3.4

sup(H((⊗i=1,...,j−1K̃i)⊗A Lj )) � sup(H(⊗i=1,...,j−1K̃i))+ rj
� r1 + . . .+ rj−1 + rj .

Thus, the long exact sequence in homology associated to (6) implies Hi(θ ⊗ Lj ) is
1-1 for all i � r1 + . . .+ rj . This establishes the claim.

To complete the proof it remains to show m
n−j
H(A)H((⊗L

i=1,...,j−1K
′
i )⊗L

AK
′
j ) = 0.

SinceH(β) is 1-1, we haveH((⊗L
i=1,...,j−1K

′
i )⊗L

A K
′
j ) isomorphic to a submodule

of H(mjA((⊗i=1,...,j−1Li) ⊗A Lj )). So it suffices to show that mn−jH(A) annihilates

H(m
j
A((⊗i=1,...,j−1Li)⊗A Lj )); this annihilation holds because mnA = 0. �


Here is the aforementioned version of part of [6, Theorem 4.5].

Theorem 4.7 Let K1, . . . , Kn be strongly Tor-independent non-perfect DG A-mo-
dules. Then mnA �= 0, therefore, n � s.

Proof Suppose mnA = 0. Proposition 4.6 implies that 0 = m0
H(A)H(⊗L

i=1,...,nK
′
i ) =

H(⊗L
i=1,...,nK

′
i ). Since each Ki has a minimal resolution for i = 1, . . . , n, we must

have H(K ′l ) = 0 for some l. Hence, Kl has a semifree basis concentrated in a
finite number of degrees. This contradicts our assumption that Ki is not perfect for
i = 1, . . . , n. Therefore, mnA �= 0.

Now we show n � s. Soft truncate A to get A′ 	 A such that sup(A′) = s. Thus,
ms+1
A′ = 0. The sequence of n strongly Tor-independent non-perfect DG A-modules
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gives rise to a sequence of n strongly Tor-independent non-perfect DG A′-modules.
Since mn

A′ �= 0 and ms+1
A′ = 0, we have n � s. �


5 Proof of Theorem 1.1

Induct on depth(R).
Base Case: depth(R) = 0. LetK denote the Koszul complex overR on a minimal

generating sequence for mR . The condition depth(R) = 0 implies

amp(H(K)) = ecodepth(R) = amp(K). (7)

Claim: The sequence K ⊗L
R N1, . . . , K ⊗L

R Nn is a strongly Tor-independent
sequence of DG K-modules. To establish the claim we compute derived tensor
products where both

⊗L are indexed by i ∈ I :

⊗L
K(K ⊗L

R Ni) 	 K ⊗L
R (

⊗L
R Ni).

From this we get the first equality in the next display.

amp(H(
⊗L
K(K ⊗L

R Ni))) = amp(H(K ⊗L
R (

⊗L
R Ni)))

= amp(H(K ⊗R (⊗i∈I Ni)))

� amp(K ⊗R (⊗i∈I Ni))

= amp(K)

= amp(H(K))

The second equality comes from the strong Tor-independence of the original
sequence. The inequality and the third equality are routine, and the final equality
is by (7). This establishes the claim.

A construction of Avramov provides a local homologically bounded DG algebra
(A,mA) such that A 	 K �	 0 and mA = A+; see [7, 8]. The strongly Tor-
independent sequence K ⊗L

R N1, . . . , K ⊗L
R Nn over K gives rise to a strongly

Tor-independent sequence M1, . . . ,Mn over A. Now, Theorem 4.7 and (7) imply
n � amp(H(A)) = amp(H(K)) = ecodepth(R). This concludes the proof of the
Base Case.

Inductive Step: Assume depth(R) > 0 and the result holds for local rings S with
depth(S) = depth(R)−1. For i = 1, . . . , n letN ′i be the first syzygy ofNi . Since the
sequence N1, . . . , Nn is strongly Tor-independent, so is the sequence N ′1, . . . , N ′n.
Moreover, strong Tor-independence implies that

⊗
i∈I N ′i is a submodule of a free

R-module, for each subset i ∈ {1, . . . , n}.
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Use prime avoidance to find anR-regular element x ∈ mR−m2
R . SetR = R/xR.

Note that depth(R) = depth(R)− 1 and ecodepth(R) = ecodepth(R). The fact that
each

⊗
i∈I N ′i is a submodule of a free R-module implies that x is also

⊗
i∈I N ′i -

regular. It is straightforward to show that the sequence R ⊗L
R N

′
1, . . . , R ⊗L

R N
′
n is

strongly Tor-independent over R. By our induction hypothesis we have

n � ecodepth(R) = ecodepth(R)

as desired. �

We conclude with the generalization of Gerko’s result [6, Theorem 4.5] from

artinian rings to Cohen–Macaulay rings mentioned in the introduction. In prepara-
tion, recall that the Loewy length of a finite length R-moduleM is



R(M) = min{i � 0 | miRM = 0}.

The generalized Loewy length of R is then



R(R) = min{

R(R/〈x〉) | x is a system of parameters of R}.

Notice that when R is artinian, i.e., when R has finite length as an R-module, the
generalized Loewy length ofR equals the Loewy length ofR, so the symbol 

R(R)
is unambiguous.

Proposition 5.1 Assume that R is Cohen–Macaulay and that K1, . . . , Kn are non-
free, finitely generated, strongly Tor-independent R-modules. Then n � 

R(R).
Proof We induct on d = dim(R). In the base case d = 0, the ring R is artinian,
so Gerko’s result [6, Theorem 4.5] says that mnR �= 0. By the definition of Loewy
length, this is exactly the desired conclusion.

For the induction step, assume that d � 1, and that our result holds for Cohen–
Macaulay local rings of dimension d − 1. Let x = x1, . . . , xd be a system of
parameters of R such that 

R(R) = 

R/〈x〉(R/〈x〉). Since R is Cohen–Macaulay,
this is a maximal R-regular sequence. Furthermore, the definition of generalized
Loewy length implies that 

R/〈x1〉(R/〈x1〉) � 

R/〈x〉(R/〈x〉) = 

R(R).

Replace the modules Ki with their first syzygies if necessary to assume without
loss of generality that x1 is Ki-regular for i = 1, . . . , n. From this, it is straightfor-
ward to use the assumptions on theKi to conclude thatK1/x1K1, . . . , Kn/x1Kn are
non-free, finitely generated, strongly Tor-independent R/〈x1〉-modules. Thus, our
induction hypothesis implies that n � 

R/〈x1〉(R/〈x1〉) � 

R(R), as desired. �


Acknowledgement We are grateful to the anonymous referee for their thoughtful comments.
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Properties of the Toric Rings of a
Chordal Bipartite Family of Graphs

Laura Ballard

1 Introduction

In recent decades, there has been a growing interest in the investigation of algebraic
invariants associated to combinatorial structures. Toric ideals of graphs (and the
associated edge rings), a special case of the classical notion of a toric ideal,
have been studied by various authors with regard to invariants such as depth,
dimension, projective dimension, regularity, graded Betti numbers, Hilbert series,
and multiplicity, usually for particular families of graphs (see for example [2, 3, 5, 7–
10, 12, 14, 16–19, 22, 23, 26]). We note in Remarks 2.6 and 2.14 that the family we
consider does not overlap at all or for large n with those considered in [5, 8, 9], and
[23]; it is more obviously distinct from other families that have been studied. We
think it fitting to mention that the recent book by Herzog et al. [15] also investigates
toric ideals of graphs as well as binomial ideals coming from other combinatorial
structures.

In this work, we consider a family of graphs with iterated subfamilies and develop
algebraic properties of the toric rings associated to the family which depend only on
the number of vertices (equivalently, the number of edges) in the associated graphs.
In the development of this project, we were particularly inspired by the work of
Jennifer Biermann, Augustine O’Keefe, and Adam Van Tuyl in [3], where they
establish a lower bound for the regularity of the toric ideal of any finite simple graph
and an upper bound for the regularity of the toric ideal of a chordal bipartite graph.
Our goal is to construct as “simple” a family of graphs as possible that still yields
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interesting toric ideals. It is our hope that our process and results will lead to further
generalizations of properties of toric ideals for other (perhaps broader) families of
graphs, or for graphs containing or arising from such graphs.

Herein, we introduce the infinite family F of chordal bipartite graphs Gtn, where
n determines the number of edges and vertices and t determines the structure of the
graph, and establish some algebraic properties of the toric ringsR(n, t) associated to
the graphs Gtn. The use of bipartite graphs makes each R(n, t) normal and Cohen–
Macaulay by [25] and [15]; we use the latter in Sect. 3. Our main results prove to be
independent of t and depend only on n.

In Sect. 2, we construct the family F of graphs Gtn from a family of ladder-like
structures Ltn so that the toric ideals of the Gtn are generalized determinantal ideals
of the Ltn. The ladder-like structures associated to a subfamily F1 ⊂ F, introduced
in Example 2.4, are in fact two-sided ladders (for large n), so that the family of rings
R(n, t) is a generalization of the family of ladder determinantal rings coming from
F1. While the rings arising from F1 come from a distributive lattice and have easily
derived properties (see for example [15]), we show that the rings associated to F do
not naturally arise from any lattice in general, and merit closer study.

In Sect. 3, we establish some algebraic properties of the R(n, t), particularly
Krull dimension, projective dimension, multiplicity, and regularity. To do so, we
prove that the determinantal generators of the defining ideal IGtn are a Gröbner basis
(it follows immediately from [15] that R(n, t) is Koszul) and work with the initial
ideal in>IGtn . We also develop a system of parameters Xn that allows us to work
with Artinian reductions in part of our treatment, and their Hilbert series.

Our first result gives an alternate proof for the Krull dimension of the toric
ring R(n, t) = S(n)/IGtn , already known due to a result of Villarreal for bipartite
graphs [27, Prop 3.2]. Here, the ring S(n) = k[x0, x2, x3, . . . , x2n+3, x2n+4] is the
polynomial ring over the edges of Gtn and IGtn is the toric ideal of Gtn.

Theorem 1.1 (Theorem 3.4) The dimension of R(n, t) is

dimR(n, t) = n+ 3.

As a corollary, since R(n, t) comes from a bipartite graph and is hence Cohen–
Macaulay (Corollary 2.16), we obtain the projective dimension of R(n, t).

Corollary 1.2 (Corollary 3.5) The projective dimension of R(n, t) over S(n) is

pdS(n) R(n, t) = n+ 1.

We then develop a linear system of parameters for R(n, t), using differences of
elements on antidiagonals of the ladder-like structure Ltn.

Proposition 1.3 (Proposition 3.10) Let R(n, t) = S(n)/IGtn . Then the image of

Xn = x0, x2 − x3, x4 − x5, . . . , x2n − x2n+1, x2n+2 − x2n+3, x2n+4
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in R(n, t) is a system of parameters for R(n, t).

SinceR(n, t) is Cohen–Macaulay, the linear system of parameters above is a regular
sequence (Corollary 3.12).

With the aim of obtaining the multiplicity and regularity of R(n, t), we form an
Artinian quotient of R(n, t) by the regular sequence above and call it ̂R(n, t). We
note that ̂R(n, t) does not denote the completion, and explain the choice of notation
in Definition 3.7.

Using a convenient vector space basis for ̂R(n, t) established in Lemma 3.13, we
show the coefficients of the Hilbert series for ̂R(n, t).

Theorem 1.4 (Theorem 3.16) If R(n, t) = S(n)/IGtn and ̂R(n, t) ∼=
R(n, t)/(Xn), we have

dimk(̂R(n, t))i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 i = 0

1

i!
i∏

j=1

(n+ j − 2(i − 1)) 1 � i � n/2+ 1

0 i > n/2+ 1.

As a corollary, we obtain the regularity of R(n, t), which is equal to the top nonzero
degree of ̂R(n, t).

Corollary 1.5 (Corollary 3.18) For Gtn ∈ F,

regR(n, t) = �n/2� + 1.

We include an alternate graph-theoretic proof of the result above at the end of this
work. Beginning with an upper bound from [3] (or equivalently for our purposes,
one from [14]) and then identifying the initial ideal in>IGtn with the edge ideal of a
graph, we use results from [4] (allowing us to use in>IGtn instead of IGtn ) and then
[13] for a lower bound which agrees with our upper bound.

From a recursion established in Lemma 3.15, we go on to prove a Fibonacci
relationship between the lengths of the Artinian rings ̂R(n, t) in Proposition 3.19,
and obtain the multiplicity of R(n, t) as a corollary. In the following, we drop t for
convenience.

Corollary 1.6 (Corollary 3.21) For n � 2, there is an equality of multiplicities

e(R(n)) = e(R(n− 1))+ e(R(n− 2)).

In particular,

e(R(n)) = F (n+ 3) = (1+
√

5)n+3 − (1−√5)n+3

2n+3
√

5
.
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For more background, detail, and motivation, we refer the reader to [1], but note
that different notation and indexing conventions have been employed in this work.
Throughout, k is a field.

2 The Family of Toric Rings

In the following, we define a family of toric rings R(n, t) coming from an iterative
chordal bipartite family of graphs, F. We show that although one subfamily of these
rings comes from join-meet ideals of a (distributive) lattice and has some easily
derived algebraic invariants, this is not true in general. The reader may find the
definition of the toric ideal of a graph in Sect. 2.2, when it becomes relevant to the
discussion. We recall for the reader that a chordal bipartite graph is a bipartite graph
in which every cycle of length greater than or equal to six has a chord.

2.1 The Family F of Graphs

Below, we define the family F of chordal bipartite graphs iteratively from a family
of ladder-like structures Ltn. We note that the quantities involved in the following
definition follow patterns as follows:

n �n/2� + 2 �n/2� + 2
0 2 2
1 2 3
2 3 3
3 3 4
...

...
...

Definition 2.1 For each n � 0 and each t ∈ F
n+1
2 , we construct a ladder-like

structure Ltn with (�n/2� + 2) rows and (�n/2� + 2) columns and with nonzero
entries in the set {x0, x2, x3, . . . , x2n+4}. To do so, we use the notation t̂ ∈ F

n
2 for

the first n entries of t , that is, all except the last entry. The construction is as follows,
where throughout, indices of entries in Ltn are strictly increasing from left to right in
each row and from top to bottom in each column. We note that Ltn does not depend
on t for n < 2, but does for n � 2.

• For n = 0, the ladder-like structure L0
0 = L1

0 is

x0 x2

x3 x4
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• For n = 1, to create Lt1 (regardless of what t is in F
2
2), we add another column

with the entries x5 and x6 to the right of Lt̂0 to obtain

x0 x2 x5

x3 x4 x6

• For 2 � n ≡ 0 mod 2 (≡ 1 mod 2), to createLtn, we add another row (column)
with the entries x2n+3, x2n+4 below (to the right of)Lt̂n−1 in the following way:

◦ The entry x2n+4 is in the ultimate row and column, row �n/2�+2 and column
�n/2� + 2.

◦ The entry x2n+3 is in the new row (column) in a position directly below (to
the right of) another nonzero entry in Ltn.

· If the last entry of t is 0, x2n+3 is directly beneath (to the right of) the first
nonzero entry in the previous row (column).

· If the last entry of t is 1, x2n+3 is directly beneath (to the right of) the second
nonzero entry in the previous row (column).

In this way, the entries in t determine the choice at each stage for the placement of
x2n+3.

Remark 2.2 We note a few things about this construction for n ≡ 0 mod 2 (≡ 1
mod 2), which may be examined in the examples below:

• We note that x2n+4 is directly beneath (to the right of) x2n+2.
• We note that the only entries in row �n/2� + 1 (column �n/2� + 1) of Lt̂n−1 are
x2n−1, x2n, and x2n+2, so that the choices listed for placement of x2n+3 are the
only cases. In particular, tn+1 = 0 if and only if x2n+3 is directly beneath (to the
right of) x2n−1, and tn+1 = 1 if and only if x2n+3 is directly beneath (to the right
of) x2n.

• Finally, we note that the only entries in column �n/2�+ 2 (row �n/2�+ 2) of Ltn
are x2n+1, x2n+2, and x2n+4, and that the only entries in row �n/2� + 2 (column
�n/2� + 2) of Ltn are x2n+3 and x2n+4.

Example 2.3 We have

L
(1,1,1)
2 =

x0 x2 x5

x3 x4 x6

x7 x8

L
(0,0,0)
2 =

x0 x2 x5

x3 x4 x6

x7 x8

In either of the cases above, we could go on to construct Lt̂3 and Lt4 in the
following way: For n = 3, place x10 to the right of x8 and place x9 to the right
of either x5 or x6, depending whether the last entry of t̂ is 0 or 1, respectively. Then
for n = 4, place x12 below x10 and place x11 below either x7 or x8, depending
whether the last entry of t is 0 or 1, respectively.
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Example 2.4 In fact, when the entries of t are all ones, we see that L(1,1,...,1)n has
a ladder shape (is a two-sided ladder for n � 3), shown below in the case when
2 � n ≡ 0 mod 2:

x0 x2 x5

x3 x4 x6 x9

x7 x8 x10 x13

x11 x12 x14 x17

x15 x16 x18
. . .

x19 x20
. . . x2n+1

. . .
. . . x2n+2

x2n+3 x2n+4.

We denote the subfamily of graphs coming from t = (1, 1, . . . , 1) by F1 ⊂ F.
When the entries of t are all zeros, L(0,0,...,0)n has the following structure, shown

below in the case when 2 � n ≡ 0 mod 2:

x0 x2 x5 x9 x13 x17 x21 · · · x2n+1

x3 x4 x6

x7 x8 x10

x11 x12 x14

x15 x16 x18

x19 x20 x22

x23 x24
. . .

...
. . . x2n+2

x2n+3 x2n+4.

For a more varied example, we have L(1,0,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0)16 below:

x0 x2 x5 x9

x3 x4 x6

x7 x8 x10 x13 x17

x11 x12 x14

x15 x16 x18 x21 x25 x29 x33

x19 x20 x22

x23 x24 x26

x27 x28 x30

x31 x32 x34

x35 x36.
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Definition 2.5 If we associate a vertex to each row and each column and an edge to
each nonzero entry of Ltn, we have a finite simple connected bipartite graphGtn. The
set Vr of vertices corresponding to rows and the set Vc of vertices corresponding to
columns form a bipartition of the vertices ofGtn. We say a graphG is inF ifG = Gtn
for some n � 0 and some t ∈ F

n+1
2 .

Remark 2.6 We note that by construction Gtn has no vertices of degree one, since
each row and each column of Ltn has more than one nonzero entry. This ensures that
for large n our family is distinct from that studied in [5], since a Ferrers graph with
bipartitation V1 and V2 with no vertices of degree one must have at least two vertices
in V1 of degree |V2| and at least two vertices in V2 of degree |V1|, impossible for our
graphs when n � 3, as the reader may verify. We also use the fact that Gtn has no
vertices of degree one for an alternate proof of the regularity of R(n, t) at the end of
this work.

Example 2.7 When n = 5, G(1,1,...,1)5 ∈ F1 is

1

1 2

2

3

3

4

4

5

0 2

5

3 4

6
9

78 1013

11 1214

We develop properties of the Ltn which allow us to show in Sect. 2.2 that certain
minors of the Ltn are generators for the toric rings of the corresponding graphs Gtn.

Definition 2.8 For this work, a distinguished minor of Ltn is a 2-minor involving
only (nonzero) entries of the ladder-like structure Ltn, coming from a 2× 2 subarray
of Ltn.

Proposition 2.9 For each i � 1 and each f ∈ F
i+1
2 , the entry x2i+3 and the entry

x2i+4 each appear in exactly two distinguished minors of Lfi . For i ≡ 0 mod 2
(≡ 1 mod 2), these minors are of the form
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s2i := x2i+1x2i+3 − xj2i x2i+4

coming from the subarray
[
xj2i x2i+1

x2i+3 x2i+4

] ([
xj2i x2i+3

x2i+1 x2i+4

])

for some j2i ∈ {0, 2, 3, . . . , 2i − 2} and
s2i+1 := x2i+2x2i+3 − xj2i+1x2i+4

coming from the subarray
[
xj2i+1 x2i+2

x2i+3 x2i+4

] ([
xj2i+1 x2i+3

x2i+2 x2i+4

])

for some j2i+1 ∈ {2i − 1, 2i}, and the only distinguished minor of Ltn with indices
all less than 5 is s1 := x2x3 − x0x4.

Proof The last statement is clear by Definition 2.1; we prove the remaining
statements by induction on i. For i = 1, we have the distinguished minors s2 =
x3x5 − x0x6 and s3 = x4x5 − x2x6 coming from the subarrays

[
x0 x5

x3 x6

]

and

[
x2 x5

x4 x6

]

where j2 = 0 ∈ {0} and j3 = 2 ∈ {1, 2}, so we have our base case. Now suppose
the statement is true for i with 1 � i < n, and let n ≡ 0 mod 2 (≡ 1 mod 2) and
t ∈ F

n+1
2 .

Case 1: If tn+1 = 0, then by Remark 2.2, x2n+3 is in the same column (row)
as x2n−1. By induction, we have the distinguished minor s2n−2 = x2n−1x2n+1 −
xj2n−2x2n+2 coming from the subarray

[
xj2n−2 x2n+1

x2n−1 x2n+2

] ([
xj2n−2 x2n−1

x2n+1 x2n+2

])

.

Then in fact we have a subarray of the form

⎡

⎣
xj2n−2 x2n+1

x2n−1 x2n+2

x2n+3 x2n+4

⎤

⎦
([
xj2n−2 x2n−1 x2n+3

x2n+1 x2n+2 x2n+4

])

,
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so that we have the distinguished minors

s2n = x2n+1x2n+3 − xj2n−2x2n+4

s2n+1 = x2n+2x2n+3 − x2n−1x2n+4

with

j2n = j2n−2 ∈ {0, 2, 3, . . . , 2n− 4} ⊂ {0, 2, 3, . . . , 2n− 2}

by induction and with

j2n+1 = 2n− 1 ∈ {2n− 1, 2n}.

Since the only entries in row �n/2� + 2 (column �n/2� + 2) of Ltn are x2n+3 and
x2n+4 and since the only entries in column �n/2� + 2 (row �n/2� + 2) of Ltn are
x2n+1, x2n+2, and x2n+4 by Remark 2.2, these are the only distinguished minors of
Ltn containing either x2n+3 or x2n+4, as desired.

Case 2 for tn+1 = 1 is analogous and yields

j2n = j2n−1 ∈ {2n− 3, 2n− 2} ⊂ {0, 2, 3, . . . , 2n− 2}

and

j2n+1 = 2n ∈ {2n− 1, 2n}. �


Definition 2.10 Define the integers j2i , j2i+1 for j2, . . . , j2n+1 as in the statement
of Proposition 2.9. We note in the remark below some properties of the jk .

Remark 2.11 From the proof of Proposition 2.9, we note that j2 = 0, j3 = 2, and
that for i � 2, we have the following:

ti+1 = 0 ⇐⇒ j2i = j2i−2 ⇐⇒ j2i+1 = 2i − 1

ti+1 = 1 ⇐⇒ j2i = j2i−1 ⇐⇒ j2i+1 = 2i.

For the sake of later proofs, we extend the notion of jk naturally to s1 = x2x3−x0x4
and say that j1 = 0, and note the following properties of the jk for 1 � k � 2n+1:

• We have j2i ∈ {j2i−2, j2i−1} and j2i � 2i − 2. Indeed, for i = 1, j2 = j1 = 0,
and for i � 2, this is clear from the statement above.

• We have j2i+1 ∈ {2i − 1, 2i}. Indeed, for i = 0, j1 = 0 ∈ {−1, 0}, for i = 1,
j3 = 2 ∈ {1, 2}, and for i � 2, this follows from the statement above.

• The j2i form a non-decreasing sequence. Indeed, for i � 2, either j2i = j2i−2 or
j2i = j2i−1 � 2i − 3 > 2i − 4 � j2i−2.
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Remark 2.12 We also note from the proof above that the following is a subarray of
Ltn for all i ≡ 0 mod 2 (≡ 1 mod 2) such that 1 � i � n, which we use in the
proof of the proposition below:

⎡

⎣
xj2i x2i+1

xj2i+1 x2i+2

x2i+3 x2i+4

⎤

⎦
([
xj2i xj2i+1 x2i+3

x2i+1 x2i+2 x2i+4

])

Proposition 2.13 For n � 0, each graph Gtn ∈ F is chordal bipartite with vertex
bipartition Vr ∪ Vc of cardinalities

|Vr | =
⌊n

2

⌋
+ 2

|Vc| =
⌈n

2

⌉
+ 2.

Proof We already know by Definition 2.5 that every graph Gtn is bipartite for
n � 0, with the bipartition above coming from the rows and columns of Ltn.
The cardinalities of the vertex sets follow from Remark 2.2. We prove the chordal
bipartite property by induction on n. It is clear for i = 0 and i = 1 that Gfi is
chordal bipartite for f ∈ F

i+1
2 , since these graphs have fewer than six vertices. Now

suppose Gfi is chordal bipartite for i with 1 � i < n ≡ 0 mod 2 (≡ 1 mod 2),
and consider Gtn for t ∈ F

n+1
2 . We know that the following array (or its transpose)

is a subarray of Ltn by Remark 2.12, and we include for reference the corresponding
subgraph of Gtn with vertices labeled by row and column.

⎡

⎣
xj2n x2n+1

xj2n+1 x2n+2

x2n+3 x2n+4

⎤

⎦

1

1 2

2

3

2

2 + 1

2 + 1

2 + 2

2 + 3

2 + 4


