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Preface

This book is an introduction to linear algebra. Its goal is to develop the stan-
dard �rst topics of the subject. Although there are many computations in the sec-
tions, which is expected, the focus is on proving the results and learning how to
do this. For this reason, the book starts with a chapter dedicated to basic logic,
set theory, and proof-writing. Although linear algebra has many important appli-
cations ranging from electrical circuitry and quantum mechanics to cryptography
and computer gaming, these topics will need to wait for another day. The goal here
is to master the mathematics so that one is ready for a second course in the sub-
ject, either abstract or applied. This may go against current trends in mathematics
education, but if any mathematical subject can stand on its own and be learned for
its own sake, it is the amazing and beautiful linear algebra.

In addition to the focus on proofs, linear transformations play a central role.
For this reason, functions are introduced early, and once the important sets ofℝn are de�ned in the second chapter, linear transformations are described in the
third chapter andmotivate the introduction ofmatrices and their operations. From
there, invertible linear transformations and invertible matrices are encountered in
the fourth chapter followed by a complete generalization of all previous topics in
the �fth with the de�nition of abstract vector spaces. Geometries are added to the
abstractions in the sixth chapter, and the book concludes with nice matrix repre-
sentations. Therefore, the book’s structure is as follows.

xi



xii PREFACE

Logic and Set Theory Statements and truth tables are introduced. This includes
logical equivalence so that the reader becomes familiarwith the logic of state-
ments. This is particularly important when dealing with implications and
reasoning that involves De Morgan’s laws. Sets and their operations follow
with an introduction to quanti�cation including how to negate both univer-
sal and existential sentences. Proof methods are next, including direct and
indirect proof, and these are applied to proofs involving subsets. Mathemat-
ical induction is also presented. The chapter closes with an introduction to
functions, including the concepts of one-to-one, onto, and binary operation.

Euclidean Space The de�nition ofℝn is the focus of the second chapter with the
main interpretation being that of arrows originating at the origin. Euclidean
distance and length are de�ned, and these are followed by the dot and cross
products. Applications include planes and lines, areas and volumes, and the
orthogonal projection.

Transformations andMatrices Now that functions have been de�ned and in-
teresting sets to serve as their domains and codomains have been given, lin-
ear transformations are introduced. After some basic properties, it is shown
that these functions have nice representations as matrices. The matrix op-
erations come next, their de�nitions being motivated by the de�nitions of
the function operations. Linear operators on ℝ2 and ℝ3 serve as important
examples of linear transformations. These include the re�ections, rotations,
contractions, dilations, and shears. The introduction of the kernel and the
range is next. Issues with �nding these setsmotivate the need for easier tech-
niques. Thus, Gauss–Jordan elimination and Gaussian elimination �nally
make their appearance.

Invertibility The fourth chapter introduces the idea of an invertible matrix and
ties it to the invertible linear operator. The standard procedure of how to �nd
an inverse is given using elementary matrices, and inverses are then used
to solve certain systems of linear equations. The determinant with its basic
properties is next. How the elementary row operations a�ect the determi-
nant is explained and carefully proved using mathematical induction. The
next section combines the inverse and the determinant, and important re-
sults concerning both are proved. The chapter concludes with some mathe-
matical applications including orthogonal matrices, Cramer’s Rule, and how
the determinant can be used to compute the area or volume of the image of
a polygon or a solid under a linear transformation.

Abstract Vectors Now that the concrete work has been done, it is time to gen-
eralize. Vector spaces lead the way as the generalization of ℝn, and these
are quickly followed by linear transformations between these abstract vec-
tor spaces. The important topics of subspace, linear dependence and linear
independence, and basis and dimension soon follow. The proof that every
vector space has a basis is given for the sake of completion, but, other than
for the result, the techniques are not pursued very far because this book is,
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after all, an introduction to the subject. Rank and nullity are de�ned, both in
terms of linear transformations and in terms of matrices. The chapter then
concludes with probably themost important topic of the book, isomorphism.
Along with isomorphism, coordinates, coordinate maps, and change of basis
matrices are presented. The section and chapter concludes with the discov-
ery of the standardmatrix of a linear transformation. Although there is more
to come, a standing ovation for the standard matrix and its diagram would
not be inappropriate.

Inner Product Spaces Although ℝn is usually viewed as Cartesian space, it is
technically just a set of n×1matrices. Any geometry that it has was given to
it in the second chapter, even though its geometry is a copy of the geometry
of Cartesian space. A close examination reveals that the geometry of ℝn is
based on the dot product. Mimicking this, an abstract vector space is given
its geometry with an inner product, which is a function de�ned so that it has
the same basic properties as the dot product. The vector space then becomes
an inner product space so that distances, lengths, and angles can be found
using objects like matrices, polynomials, and functions. Other topics related
to the inner product include a generalization of the orthogonal projection,
orthonormal bases, direct sums, and the Gram–Schmidt process.

Matrix Theory The book concludes with an introduction to the powerful con-
cepts of eigenvalues and eigenvectors. Both the characteristic polynomial
and the minimal polynomial are de�ned and used throughout the chapter.
Generalized eigenvectors are presented and used to writeℝn as a direct sum
of subspaces. The concept of similar matrices is given, and if a matrix does
not have enough eigenvectors, it is proved that such matrices are similar to
matrices with a nice form. This is where Schur’s Lemma makes its appear-
ance. However, if a matrix does have enough eigenvectors, the matrix is
similar to a very nice diagonal matrix. This is the last section of the book,
which includes orthogonal diagonalization, simultaneous diagonalization,
and a quick introduction to quadratic forms and how to use eigenvalues to
�nd an equation for a conic section without a middle term.

As with any textbook, where the course is taught in�uences how the book is
used. Manyuniversities and colleges have an introduction to proof course. Because
such courses serve as a prerequisite for any proof-intensive mathematics course,
the �rst chapter of this book can be passed over at these institutions and used only
as a reference. If there is no such prerequisite, the �rst chapter serves as a de-
tailed introduction to proof-writing that is short enough not to infringe too much
on the time spent on purely linear algebra topics. Wherever the book �nds itself,
the course outline can easily be adjusted with any excluded topics serving as bonus
reading for the eager student.

Now for some technical comments. Theorems, de�nitions, and examples are
numbered sequentially as a group in the now common chapter.section.number
format. Although some proofs �nd their way into the text, most start with Proof,
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end with , and are indented. Examples, on the other hand, are simply indented.
Some equations are numbered as (chapter.number) and are referred to simply us-
ing (chapter.number). Most if not all of the mathematical notation should be clear.
It was decided to represent vectors as columns. This leads to some interesting type-
setting, but the clarity and consistency probably more than makes up for any for-
matting issues. Vectors are boldface, such as u and v, and scalars are not. Most
sums are written like u1 + u2 +⋯ + uk. There is a similar notation for products.
However, there are times when summation and product notation must be used.
Therefore, if u1, u2, … , uk are vectors,k∑i=1ui = u1 + u2 +⋯+ uk and

∑i≠2ui = u1 + u3 +⋯+ uk,
and if r1, r2, … , rk are real numbers,

k∏i=1 ri = r1r2⋯rk and
∏i≠2 ri = r1r3⋯rk.

Each section ends with a list of exercises. Some are computations, some are
veri�cationswhere the job is tomake a computation that illustrates a theorem from
the section, and some involve proving results where remembering one’s logic and
set theory and how to prove sentences will go a long way.

Solution manuals, one for students and one for instructors, are available. See
the book’s page at wiley.com.

Lastly, this book was typeset using LATEX from the free software distribution of
TEX Live running in Arch Linuxwith the KDE Plasma desktop. The diagramswere
created using LibreO�ce Draw.

Michael L. O’Leary

Glen Ellyn, Illinois
September, 2020

http://wiley.com
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CHAPTER 1

Logic and Set Theory

1.1 Statements

A sentence that is true or false but not both is called a statement. Here are some
sentences, some of which are statements.

• Please read the linear algebra book.
— This is not a statement because it is a request. It is neither true nor false.

• All quadrilaterals have 4 sides.
— This is a true statement.

• Some triangles have 5 sides.
— This is a false statement.

• x + y = y + x.
—This is not a statement since the variables have not been assigned values.

• x + y = y + x for all integers x and y.
— This is a true statement.

• x + y = 10 for all real numbers y.
— This is not a statement because x has not been assigned a value.

1Linear Algebra, First Edition. Michael L. O’Leary. 
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc. 
Companion Website: www.wiley.com/go/o’leary/linearalgebra 
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Connectives

Let p and q represent sentences. These variables combinedwith the (logical) con-
nectives, which are ∼ (not), ∧ (and), ∨ (or), → (if. . . then), ↔ (if and only if),
can be used to represent compound sentences. To illustrate the meanings of the
connectives, let p be the statement, lines intersect in a point, and q be the sentence,
planes intersect in a line. These sentences can be combined using the connectives:∼p Lines do not intersect in a point.p ∧ q Lines intersect in a point, and planes intersect in a line.p ∨ q Lines intersect in a point, or planes intersect in a line.p → q If lines intersect in a point, then planes intersect in a line.p ↔ q Lines intersect in a point if and only if planes intersect in a line.

Let p and q be statements. This means that the truth value of p is either true
(T) or false (F). The same can be said of q. Joining p and q with a connective yields
a statement. The truth value of the resulting statement depends on the truth values
of p and q. A truth table is used to identify all of the statement’s possible truth
values.

De�nition 1.1.1

The sentence ∼p is the negation of p. If p is a statement, the truth table of∼p is: p ∼pT FF T
De�nition 1.1.2

The sentence p ∧ q is the conjunction of p and q, and the sentence p ∨ q
is the disjunction of p and q. If p and q are statements, the truth tables ofp ∧ q and p ∨ q are:p q p ∧ qT T TT F FF T FF F F

p q p ∨ qT T TT F TF T TF F F
De�nition 1.1.3

The sentence p → q is an implication or conditional sentence, where p is
called the antecedent and q is called the consequent. The sentence p ↔ q
is a biconditional. If p and q are statements, the truth tables of p → q andp ↔ q are:
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p q p → qT T TT F FF T TF F T
p q p ↔ qT T TT F FF T FF F T

Example 1.1.4

The sentence p ↔ (q ∨ ∼p) is read by assuming that parentheses work as
grouping symbols like in algebra and by attaching any ∼ to the �rst sentence
to its immediate right. This implies that p ↔ (q ∨ ∼p) is interpreted by
examining its sentences using an order starting with the variables:p, q, ∼p, q ∨ ∼p, p ↔ (q ∨ ∼p),
which, if p ↔ (q ∨ ∼p) is a statement, produces the truth table:p q ∼p q ∨ ∼p p ↔ (q ∨ ∼p)T T F T TT F F F FF T T T FF F T T F
Each column of the truth table on the right-hand side requires values from
columns to its left. For example, evaluating q ∨ ∼p requires the truth values
in the second and third columns.

Logical Equivalence

Two statements p and q are (logically) equivalent (written p ≡ q) means that
they always have the same truth values. This is often proved using a truth table.

Example 1.1.5

The sentence p ↔ q is the conjunction of two implications. Speci�cally,p ↔ q means p if q, and p only if q. The �rst implication is q → p, and the
second implication is p → q. Therefore, if p and q are statements,p ↔ q ≡ (p → q) ∧ (q → p).
This is con�rmed with the truth table:p q p↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔ q p → q q → p (p→→→→→→→→→→→→→→→→→ q) ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ (q →→→→→→→→→→→→→→→→→p)T T T T T TT F F F T FF T F T F FF F T T T T
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Example 1.1.6

Let p and q be statements.
• The converse of p → q is q → p.
• The contrapositive of p → q is ∼q → ∼p.

For example, given the implication

if lines intersect in a point, planes intersect in a line,

its converse is

if planes intersect in a line, lines intersect in a point,

and its contrapositive is

if planes do not intersect in a line, lines do not intersect in a point.

An implication and its converse are not logically equivalent, but an impli-
cation and its contrapositive are logically equivalent. The third and sixth
columns (in boldface) of the truth table show p → q ≡ ∼q → ∼p, while
the third and last columns show p → q ≢ q → p.p q p →→→→→→→→→→→→→→→→→ q ∼q ∼p ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼q→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼→ ∼p q → pT T T F F T TT F F T F F TF T T F T T FF F T T T T T
Example 1.1.7

There are some equivalences that are quite famous. Observe thatp → q ≡ ∼p ∨ q. (1.1)

This is seen by the truth table:p q p→→→→→→→→→→→→→→→→→ q ∼p ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼p ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ qT T T F TT F F F FF T T T TF F T T T
There are also DeMorgan’s Laws,∼(p ∧ q) ≡ ∼p ∨ ∼q, (1.2)∼(p ∨ q) ≡ ∼p ∧ ∼q,
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where (1.2) is con�rmed by the truth table:p q p ∧ q ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼(p ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧ q) ∼p ∼q ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼p ∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨ ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼qT T T F F F FT F F T F T TF T F T T F TF F F T T T T
To illustrate how De Morgan’s Law (1.2) works, use ≡ to assignp ≡ 2 + 2 = 4,q ≡ 3 + 5 = 10.
Then, (1.2) can be written as

it is false that both 2 + 2 = 4 and 3 + 5 = 10,
which is logically equivalent to2 + 2 ≠ 4 or 3 + 5 ≠ 10.
Another example is the Double Negation Rule,∼∼p ≡ p, (1.3)

which is proved by the simple truth table:p ∼p ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼pT F TT F TF T FF T F
Example 1.1.8

To understand the meaning of p → q, notice that in addition to (1.1),p → q ≡ ∼(p ∧ ∼q). (1.4)

This is proved by the truth table:p q p→→→→→→→→→→→→→→→→→ q ∼q p ∧ ∼q ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼(p ∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼∧ ∼q)T T T F F TT F F T T FF T T F F TF F T T F T
The statement ∼(p ∧ ∼q) claims that it is not the case that p is true but q is
false. This is the exact meaning of p → q. An alternate proof of (1.4) involves
applying De Morgan’s Law (1.2) and Double Negation (1.3) to obtain∼(p ∧ ∼q) ≡ ∼p ∨ ∼∼q ≡ ∼p ∨ q. (1.5)
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Then, (1.5) combined with (1.1) gives (1.4). Also, Double Negation (1.3) with
(1.4) implies that ∼(p → q) ≡ p ∧ ∼q, (1.6)

so to show that an implication is false, it must be demonstrated that the an-
tecedent can be true at the same time that the consequent is false.

Exercises

1. Determine the truth value of each sentence that is a statement.
(a) 42 + 13 = 55
(b) For all real numbers x, x < 5.
(c) Study linear algebra.

(d) There are seven prime integers.
(e) x = 7
(f) This statement is false.

2. De�ne: p ≡ The sum of two odd integers is an odd integer.q ≡ The angle sum of a rectangle is 2�.r ≡ The tangent function is di�erentiable everywhere.
For each of the given statements, write the statement using p, q, or r and the
appropriate logical connectives and �nd its truth value.
(a) The tangent function is di�erentiable everywhere, and the angle sum of

a rectangle is 2�.
(b) The sum of two odd integers is an odd integer, or the sum of odd integers

is an odd integer.
(c) If the angle sum of a rectangle is 2�, the tangent function is not di�eren-

tiable everywhere.
(d) The sum of two odd integers is an odd integer if and only if it is true that

the tangent function is di�erentiable everywhere.
(e) The tangent function is di�erentiable everywhere if and only if the an-

gle sum of a rectangle is 2�, and the sum of two odd integers is an even
integer.

(f) It is not the case that the angle sum of a rectangle is not 2�.
3. Write each sentence in the form if p then q and determine its truth value. Some

words may need to be changed so that the answer is grammatically correct.
(a) If a rectangle has adjacent congruent sides, a square has adjacent congru-

ent sides.
(b) Polynomials have at most two roots if quadratic polynomials have two

complex roots.
(c) Trigonometric functions are periodic only if polynomials are periodic.
(d) The derivative of a constant function is zero.
(e) A necessary condition for the opposite angles of a parallelogram to be con-

gruent is that parallel lines intersect.
(f) A su�cient condition for all systems of linear equations to have a solution

is that some systems of linear equations have a solution.
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4. Write the converse and contrapositive for the implications in Exercise 3.
5. Without using a truth table, explain the meaning of De Morgan’s Laws found

in Example 1.1.7.
6. Let p and q be true statements but r and s be false statements. Find the truth

values.
(a) (p ∧ q) ∨ r
(b) q ↔ (r ∨ ∼q)
(c) p → (q → [r → s])
(d) (∼p ∧ q) ∨ ([p → q] ∧ ∼s)
(e) ([p ∧ q] → q) ∧ (p → q)

(f) ∼∼p ↔ (q ∧ r)
(g) ([p → q] ∨ [q → r]) ∨ s
(h) (p → q) ∨ ([q → r] ∨ s)
(i) (p ∨ q) ∧ (q ∨ r)
(j) ([p ∨ q] ∧ q) ∨ ([p ∨ q] ∧ r)

7. Write the truth table.
(a) ∼p → p
(b) p → ∼q
(c) (p ∨ q) ∧ ∼(p ∧ q)
(d) (p → q) ∨ (q ↔ p)
(e) p → (q ∧ ∼p)
(f) (p → q) ∧ ∼p
(g) (∼p ∨ q) ∧ ([p → q] ∨ ∼p)

(h) (p ∧ q) ∨ r
(i) p ∧ (q ∨ r)
(j) (p ∨ q) → r
(k) p ∨ (q → r)
(l) (p → q) ∧ ∼(r ∨ p)
(m) (p → q) ↔ (r → s)
(n) p ∨ ([∼q ↔ r] ∧ q)

8. Prove the given famous logical equivalences.

(a) Associative Laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)
(b) Commutative Laws: p ∧ q ≡ q ∧ pp ∨ q ≡ q ∨ p
(c) Distributive Laws: p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

9. Prove using truth tables or by using logical equivalences as in Example 1.1.8.
(a) p ∨ ∼p ≡ p → p
(b) p ∧ q ≡ (p ↔ q) ∧ (p ∨ q)
(c) p ∨ ∼p ≡ (p ∨ q) ∨ ∼(p ∧ q)
(d) p → (q ∧ r) ≡ (p → q) ∧ (p → r)
(e) r ∧ (p → q) ≡ r ∧ (∼q → ∼p)

(f) (p ∧ q) → r ≡ (p ∧ ∼r) → ∼q
(g) (p ∨ q) ∨ r ≡ (q ∨ p) ∨ r
(h) ∼p ∧ ∼(q ∨ r) ≡ ∼(p ∨ [q ∨ r])
(i) ∼(p ∨ q) ∨ r ≡ (p ∨ q) → r
(j) (p ∧ q) ∧ r ≡ r ∧ (p ∧ q)

1.2 Sets and Quantification

A set is a collection of things called elements. Anything can be an element, but
in linear algebra, elements are typically numbers, matrices, functions, or vectors.
If a is an element of the setA, write a ∈ A. If both a and b are elements ofA, writea, b ∈ A. If c is not an element of A, write c ∉ A. If B is a set that has exactly the
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same elements as A, write A = B, which means that A is equal to B. If A ≠ B,
there is an element that is in one set but not the other. If A contains no elements,
write A = ∅, where ∅ is the empty set, the set with no elements.

Some examples of famous sets, written in roster form, are the following:

• {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} = the set of integers from 1 to 10.

• ℕ = {0, 1, 2, 3, … } = the set of natural numbers.

• ℤ = {… ,−2,−1, 0, 1, 2, … } = the set of integers.

• ℤ+ = {1, 2, 3, … } = the set of positive integers.

This approach to writing sets has the elements of each set found within braces and
uses ellipses (… ) to represent a repeating pattern. In general, writingA = {a1, a2, … , an}
means that A has n distinct elements, a1, a2, … , an, and writingA = {a1, a2, a3, … }
means that A has in�nitely many elements, a1, a2, a3, … , where ai ≠ aj if i ≠ j.

The problem with roster form is that it is not good for describing most sets, likeℝ = the set of real numbers.

What is needed is the ability to write a condition that describes exactly when an
element is in a set.

Universal Quantifiers

The statement
for all x ∈ ℝ, x + 42 = 42 + x, (1.7)

or, equivalently, x + 42 = 42 + x for every x ∈ ℝ, claims that x + 42 = 42 + x is
true for every substitution of a real number for x. Use the function notation p(x)
to represent x + 42 = 42 + x. Substitutions work and are denoted as expected.
For example, p(7) ≡ 7 + 42 = 42 + 7. Letting ∀ represent “for all,” write (1.7)
as (∀x ∈ ℝ)p(x). If x is assumed to be a real number, write (1.7) as (∀x)p(x), or
denote the inclusion of x in ℝ by writing (∀x)[x ∈ ℝ → p(x)].

De�nition 1.2.1

If A is a set, then (∀x ∈ A)p(x) ≡ (∀x)[x ∈ A → p(x)]. Both sentences
claim that p(a) is true for every a ∈ A. The symbol ∀ is called the universal
quanti�er.
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Example 1.2.2

The statement (∀x ∈ ∅)p(x) is true because x ∈ ∅ is false for all substitu-
tions of x, from which follows that x ∈ ∅ → p(x) is true for all substitutions
of x by De�nition 1.1.3.

Example 1.2.3(∀x ∈ ℝ)x + 10 = 5 is false because 1 + 10 ≠ 5 and 1 ∈ ℝ. The statement(∀x ∈ ℝ)(∀y ∈ ℝ)x + y = y + x
is true because (∀y ∈ ℝ)a + y = y + a (1.8)

is true for every a ∈ ℝ, and the reason that (1.8) is true is that the statementa + b = b + a is true for every b ∈ ℝ.
Example 1.2.3 suggests a method for proving true a statement with a universal

quanti�er. Consider (∀x ∈ ℝ)x + 0 = x. (1.9)

To prove it, let a ∈ ℝ. Because the only property that a is assigned is that it is a real
number, it is considered an arbitrary or randomly chosen real number. It is known
that 0 has the property that a + 0 = a. Thus, because a is arbitrary, (1.9) is true.

Existential Quantifiers

The statement
there exists x ∈ ℝ such that x + 27 = 42 (1.10)

or, equivalently, x + 27 = 42 for some x ∈ ℝ, claims that x + 27 = 42 is true for at
least one substitution of a real number for x. Letting ∃ represent “there exists” andp(x) represent x + 27 = 42, (1.10) can be written as (∃x ∈ ℝ)p(x). If x is assumed
to be a real number, write (1.10) as (∃x)p(x), or denote the inclusion of x in ℝ by
writing (∃x)[x ∈ ℝ ∧ p(x)].

De�nition 1.2.4

IfA is a set, then (∃x ∈ A)p(x) ≡ (∃x)[x ∈ A∧p(x)]. Both statements claim
that p(a) is true for at least one a ∈ A. The symbol ∃ is called the existential
quanti�er.

Example 1.2.5

For any sentence p(x), the statement (∃x ∈ ∅)p(x) is false. This is becausex ∈ ∅ is false for all substitutions of x, from which follows x ∈ ∅ ∧ p(x) is
false for all substitutions of x by De�nition 1.1.2.
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Example 1.2.6(∃x ∈ ℝ)x + 0 = x + 1 is false because there is no real number a such thata + 0 = a + 1. The statement(∃x ∈ ℝ)(∃y ∈ ℝ)x + y = 13
is true because (∃y ∈ ℝ)5 + y = 13 (1.11)

is true, and (1.11) is true because 5 + 8 = 13 is true.
Example 1.2.6 suggests amethod for proving true a statementwith an existential

quanti�er. Consider (∃x ∈ ℝ)x + 3 = 9. To prove it, it is enough to �nd a real
number a such that a + 3 = 9 is true. Taking a = 6 does it.
Negating Quantifiers

As observed in Example 1.2.3, the statement(∀x ∈ ℝ)x + 10 = 5
is false because 1 + 10 ≠ 5 and 1 ∈ ℝ. This means that(∃x ∈ ℝ)x + 10 ≠ 5
is true. Generalizing, (∀x ∈ A)p(x) is false if there exists a ∈ A such that p(a) is
false, which means that (∃x ∈ A)∼p(x) is true. The element a that demonstrates
that a statement starting with a universal quanti�er is false is a counterexample.

Likewise, as noted in Example 1.2.6,(∃x ∈ ℝ)x + 0 = x + 1
is false because a + 0 ≠ a + 1 for every real number a. This means that(∀x ∈ ℝ)x + 0 ≠ x + 1
is true. Generalizing, (∃x ∈ A)p(x) is false if there is no a ∈ A such that p(a) is
true, which means that (∀x ∈ A)∼p(x) is true. These two results are summarized
in the next theorem.

Theorem 1.2.7

Let p(x) be a sentence and let A be a set.

(a) ∼(∀x ∈ A)p(x) ≡ (∃x ∈ A)∼p(x).
(b) ∼(∃x ∈ A)p(x) ≡ (∀x ∈ A)∼p(x).
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Example 1.2.8

De Morgan’s Law (1.2) and (1.6) implies∼(∀x ∈ A)[p(x) → q(x)] ≡ (∃x ∈ A)∼[p(x) → q(x)]≡ (∃x ∈ A)[p(x) ∧ ∼q(x)],
and also by De Morgan’s Law,∼(∃x ∈ A)[p(x) ∧ q(x)] ≡ (∀x ∈ A)∼[p(x) ∧ q(x)]≡ (∀x ∈ A)[∼p(x) ∨ ∼q(x)].
A statement can have multiple quanti�ers. Consider 2x − 7y = 1. This line

can be graphed by writing an x-y table. Values for y-coordinates are calculated
based on the values chosen for x resulting in the points to be plotted. This process
demonstrates that (∀x ∈ ℝ)(∃y ∈ ℝ)2x − 7y = 1. (1.12)
The statement (1.12) has a universal quanti�er followed by the sentence(∃y ∈ ℝ)2x − 7y = 1,
and since there is no quanti�er on x, substitutions can be made for x. Conclude
that (1.12) is true because whenever x is replaced with an arbitrary real number, a
real number y can be found to satisfy 2x − 7y = 1. Speci�cally, that real number
is y = (2x − 1)∕7.

Example 1.2.9

Find the negation of (∃x ∈ A)(∀y ∈ A)[p(x) → q(y)].∼(∃x ∈ A)(∀y ∈ A)[p(x) → q(y)] ≡ (∀x ∈ A)∼(∀y ∈ A)[p(x) → q(y)]≡ (∀x ∈ A)(∃y ∈ A)∼[p(x) → q(y)]≡ (∀x ∈ A)(∃y ∈ A)[p(x) ∧ ∼q(y)].
Example 1.2.10

Prove or show false.
• (∀x ∈ ℝ)(∀y ∈ ℝ)x + y = 3
— Because 7 + 10 ≠ 3, the numbers 7 and 10 are counterexamples, so
the given statement is false.

• (∀x ∈ ℝ)(∃y ∈ ℝ)x + y = 3
— Let a ∈ ℝ. Then, (∃y ∈ ℝ)a + y = 3 states that there exists a real
number y such that a + y = 3, which is true because a + (3 − a) = 3.
This means that the given statement is true.

• (∃x ∈ ℝ)(∀y ∈ ℝ)x + y = 3
—The statement is false. To see this, take a ∈ ℝ. Then, a+(2−a) ≠ 3,
proving (∀x ∈ ℝ)(∃y ∈ ℝ)x + y ≠ 3 is true.

• (∃x ∈ ℝ)(∃y ∈ ℝ)x + y = 3
—This is true since 3 + 0 = 3.
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Set-Builder Notation

Let A be a set. Consider a sentence p(x) such that for every a,a ∈ A if and only if p(a) is true.
Such a sentence serves as a condition that an element must satisfy in order to be inA. For example, let E = {… ,−4,−2, 0, 2, 4, … } and p(x) be the sentence(∃n ∈ ℤ)x = 2n. (1.13)

Notice that p(x) completely describesE because the even integers are exactly those
elements a such that p(a) is true. In particular, p(0) and p(−10) are true but p(3)
is false. Thus, 0 and−10 are elements of E, but 3 is not. Sentences like p(x) can be
used to de�ne sets.

De�nition 1.2.11

Let A be a set. If p(x) is a sentence such that a ∈ A if and only if p(a), writeA = {x : p(x)}.
This is called set-builder notation. Read {x : p(x)} as “the set of all x such
that p of x.”

Using De�nition 1.2.11, write E with (1.13) using set-builder notation asE = {x ∶ (∃n ∈ ℤ)x = 2n} = {2n ∶ n ∈ ℤ}.
Example 1.2.12A = {−4, 4} is the set of roots of the polynomial x2 − 16. Using set-builder
notation, A can be written asA = {x ∶ x2 − 16 = 0 and x ∈ ℝ} = {x ∈ ℝ ∶ (x + 4)(x − 4) = 0}.
Example 1.2.13∙ ∅ = {x ∈ ℝ ∶ x ≠ x}.∙ {… ,−35 , −25 , −15 , 05 , 15 , 25 , 35 , … } = {n5 ∶ n ∈ ℤ}

.∙ {… , x − 4, x − 2, x, x + 2, x + 4,… } = {x + 2n ∶ n ∈ ℤ}.
Example 1.2.14∙ ℚ = {ab ∶ a, b ∈ ℤ and b ≠ 0} = the set of rational numbers.∙ ℝ = {a ∶ limn→∞ an = a ∧ (∀i ∈ ℤ+) ai ∈ ℚ} = the set of real numbers.∙ ℝ+ = {x ∶ x ∈ ℝ ∧ x > 0} = the set of positive real numbers.∙ ℂ = {a + bi ∶ a, b ∈ ℝ} = the set of complex numbers, where i2 = −1.


