

METAL ADDITIVE MANUFACTURING

METAL ADDITIVE MANUFACTURING

METAL ADDITIVE MANUFACTURING

Ehsan Toyserkani, Dyuti Sarker, Osezua Obehi Ibhadode, Farzad Liravi, Paola Russo, Katayoon Taherkhani

University of Waterloo Waterloo, Ontario Canada

This edition first published 2022 © 2022 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Ehsan Toyserkani, Dyuti Sarker, Osezua Obehi Ibhadode, Farzad Liravi, Paola Russo, and Katayoon Taherkhani to be identified as the authors of this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products, visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Toyserkani, Ehsan, author. | Sarker, Dyuti, 1983- author. |

Ibhadode, Osezua Obehi, 1989- author. | Liravi, Farzad, 1990- author. |

Russo, Paola, 1986- author. | Taherkhani, Katayoon, 1989- author. | John

Wiley & Sons, publisher.

Title: Metal additive manufacturing / Ehsan Toyserkani, Dyuti Sarker,

Osezua Obehi Ibhadode, Farzad Liravi, Paola Russo, Katayoon Taherkhani.

Description: Hoboken, NJ: Wiley, 2021.

Identifiers: LCCN 2021028894 (print) | LCCN 2021028895 (ebook) | ISBN

9781119210788 (cloth) | ISBN 9781119210849 (adobe pdf) | ISBN

9781119210832 (epub)

Subjects: LCSH: Additive manufacturing. | Metal powder products–Design and construction. | Powder metallurgy.

Classification: LCC TS183.25 .T69 2021 (print) | LCC TS183.25 (ebook) |

DDC 621.9/88-dc23

LC record available at https://lccn.loc.gov/2021028894

LC ebook record available at https://lccn.loc.gov/2021028895

Cover Design: Wiley

Cover Image: Courtesy of Ehsan Toyserkani (top); © MarinaGrigorivna/Shutterstock

Set in 10/12pt Times LT Std by Straive, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

In memory of

Professor Pearl Sullivan (1961–2020)

Former Dean of Faculty of Engineering, University of Waterloo, Canada

A true leader, an exemplary advocate for engineering education, and a great friend

Contents

	Preface Abbreviations		
1		litive Manufacturing Process Classification, Applications, Trends,	
	Opp	portunities, and Challenges	1
	1.1	Additive Manufacturing: A Long-Term Game Changer	1
	1.2	AM Standard Definition and Classification	4
	1.3	Why Metal Additive Manufacturing?	5
	1.4	Market Size: Current and Future Estimation	11
	1.5	Applications of Metal AM	12
		1.5.1 Medical and Dental	14
		1.5.2 Aerospace and Defense	15
		1.5.3 Communication	17
		1.5.4 Energy and Resources	18
		1.5.5 Automotive	19
		1.5.6 Industrial Tooling and Other Applications	20
		Economic/Environmental Benefits and Societal Impact	20
	1.7	AM Trends, Challenges, and Opportunities	23
	1.8	Looking Ahead	27
		References	28
2	Basi	ics of Metal Additive Manufacturing	31
	2.1	Introduction	31
	2.2	Main Metal Additive Manufacturing Processes	32
		2.2.1 Powder Bed Fusion (PBF)	32
		2.2.2 Directed Energy Deposition (DED)	41
		2.2.3 Binder Jetting (BJ)	49
		2.2.4 Emerging Metal AM Processes	55
	2 3	Main Process Parameters for Metal DED, DRE, and RI	62

viii Contents

		2.3.1	Main Output Parameters	64
		2.3.2	Combined Thermal Energy Source Parameters PBF and DED	65
		2.3.3	Beam Scanning Strategies and Parameters for PBF and DED	68
		2.3.4	Powder Properties for PBF, DED, and BJ	71
		2.3.5	Wire Properties for DED	76
		2.3.6	Layer Thickness for PBF, DED, and BJ	77
		2.3.7	Ambient Parameters for PBF, DED, and BJ	79
		2.3.8	Geometry-Specific Parameters (PBF)	80
		2.3.9	Support Structures for PBF	82
		2.3.10	Binder Properties for BJ	82
		2.3.11	Binder Saturation for BJ	84
	2.4	Materia	v	85
		2.4.1	Ferrous Alloys	86
		2.4.2	Titanium Alloys	86
		2.4.3	Nickel Alloys	86
		2.4.4	Aluminum Alloys	86
		Referen	· · · · · · · · · · · · · · · · · · ·	87
		11010101		0,
3	Mai	n Sub-S	ystems for Metal AM Machines	91
	3.1	Introdu		91
	3.2		Setup of AM Machines	92
		3.2.1	Laser Powder Bed Fusion (LPBF)	92
		3.2.2	Laser Directed Energy Deposition (LDED) with Blown Powder	
			Known as Laser Powder-Fed (LPF)	92
		3.2.3	Binder Jetting (BJ)	93
	3.3		Basics: Important Parameters Needed to be Known for AM	93
		3.3.1	Laser Theory	93
		3.3.2	Laser Components	100
		3.3.3	Continuous Vs. Pulsed Laser	101
		3.3.4	Laser Types	102
		3.3.5	Laser Beam Properties	109
	3.4		n Beam Basics	114
		3.4.1	Comparisons and Contrasts between Laser and Electron Beams	114
		3.4.2	Electron Beam Powder Bed Fusion Setup	114
		3.4.3	Electron Beam Mechanism	116
		3.4.4	Vacuum Chambers	119
	3.5	Powder	Feeders and Delivery Nozzles Technology	121
			Classification of Powder Feeders	121
		3.5.2	Powder Delivery Nozzles for DED	125
		3.5.3	Powder Bed Delivery and Spreading Mechanisms	128
		3.5.4	Wire Feed System	129
		3.5.5	Positioning Devices and Scanners in Laser-Based AM	130
		3.5.6	Print-Head in Binder Jetting	131
	3.6		ile Formats	133
		3.6.1	CAD/CAM Software	134
	3.7	Summa	· ·	134
		Referen	·	134

Contents ix

4			nergy Deposition (DED): Physics and Modeling of Laser/Electron				
	Bea	m Mate	erial Processing and DED	137			
	4.1	Introd	uction	137			
	4.2	Laser	Material Interaction and the Associated Significant Parameters to				
		Laser		140			
		4.2.1	Continuous Versus Pulsed/Modulated Lasers	141			
		4.2.2	Absorption, Reflection, and Transmission Factors	143			
			Dependencies of Absorption Factor to Wavelength and Temperature	144			
		4.2.4	Angle of Incidence	144			
			Surface Roughness Effects	147			
		4.2.6	Scattering Effects	147			
	4.3	E-bear	m Material Interaction	148			
	4.4	Power	Power Density and Interaction Time for Various Heat Source-based				
		Mater	ial Processing	149			
	4.5	Physic	cal Phenomena and Governing Equations During DED	150			
		4.5.1	Absorption	150			
		4.5.2	Heat Conduction	151			
		4.5.3	Surface Convection and Radiation	152			
		4.5.4	Fluid Dynamics	153			
		4.5.5	Phase Transformation	156			
		4.5.6	Rapid Solidification	158			
		4.5.7	Thermal Stresses	158			
		4.5.8	Flow Field in DED with Injected Powder	159			
	4.6	Mode	ling of DED	161			
		4.6.1	Analytical Modeling: Basics, Simplified Equations, and Assumptions	161			
		4.6.2	Numerical Models for DED	165			
		4.6.3	Experimental-based Models: Basics and Approaches	166			
	4.7	Case S	Studies on Common Modeling Platforms for DED	168			
		4.7.1	Lumped Analytical Model for Powder-Fed LDED	168			
		4.7.2	Comprehensive Analytical Model for Powder-Fed LDED (PF-LDED)	172			
		4.7.3	Numerical Modeling of LDED: Heat Transfer Model	184			
		4.7.4	Modeling of Wire-Fed E-beam DED (WF-EDED)	193			
		4.7.5	A Stochastic Model for Powder-Fed LDED	195			
	4.8	Summ	nary	200			
		Refere	ences	200			
5	Pow	der Be	d Fusion Processes: Physics and Modeling	203			
	5.1	Introd	uction and Notes to Readers	203			
	5.2	Physic	es of Laser Powder bed Fusion (LPBF)	204			
		5.2.1	Heat Transfer in LPBF: Governing Equations and Assumptions	205			
		5.2.2	Fluid Flow in the Melt Pool of LPBF: Governing Equations				
			and Assumptions	215			
		5.2.3	Vaporization and Material Expulsion: Governing Equations				
			and Assumptions	218			
		5.2.4	Thermal Residual Stresses: Governing Equations and Assumptions	219			
		5.2.5	Numerical Modeling of LPBF	220			
		5.2.6	Case Studies on Common LPBF Modeling Platforms	222			

x Contents

	5.3	Physics and Modeling of Electron Beam Additive Manufacturing	228
		5.3.1 Electron Beam Additive Manufacturing Parameters	228
		5.3.2 Emissions in Electron Beam Sources	230
		5.3.3 Mathematical Description of Free Electron Current	231
		5.3.4 Modeling of Electron Beam Powder Bed Fusion (EB-PBF)	233
		5.3.5 Case Studies	245
		5.3.6 Summary	249
		References	251
6	Bind	er Jetting and Material Jetting: Physics and Modeling	255
	6.1	Introduction	255
	6.2	Physics and Governing Equations	257
		6.2.1 Droplet Formation	257
		6.2.2 Droplet–Substrate Interaction	263
		6.2.3 Binder Imbibition	265
	6.3	Numerical Modeling	270
		6.3.1 Level-Set Model	270
		6.3.2 Lattice Boltzmann Method	274
	6.4	Summary	277
		References	277
7	Mate	rial Extrusion: Physics and Modeling	279
	7.1	Introduction	279
	7.2	Analytical Modeling of ME	281
		7.2.1 Heat Transfer and Outlet Temperature	281
		7.2.2 Flow Dynamics and Drop Pressure	283
		7.2.3 Die Swell	288
		7.2.4 Deposition and Healing	289
	7.3	Numerical Modeling of ME	291
	7.4	Summary	296
		References	296
8	Mate	rial Design and Considerations for Metal Additive Manufacturing	297
	8.1	Historical Background on Materials	297
	8.2	Materials Science: Structure–Property Relationship	298
	8.3	Manufacturing of Metallic Materials	299
	8.4	Solidification of Metals: Equilibrium	301
	8.5	Solidification in Additive Manufacturing: Non-Equilibrium	302
	8.6	Equilibrium Solidification: Theory and Mechanism	304
		8.6.1 Cooling Curve and Phase Diagram	304
	8.7	Non-Equilibrium Solidification: Theory and Mechanism	307
	8.8	Solute Redistribution and Microsegregation	308
	8.9	Constitutional Supercooling	312
	8.10	Nucleation and Growth Kinetics	314
		8.10.1 Nucleation	315
		8.10.2 Growth Behavior	319

Contents xi

	8.11	Solidification Microstructure in Pure Metals and Alloys	321
	8.12	Directional Solidification in AM	324
	8.13	Factors Affecting Solidification in AM	325
		8.13.1 Cooling Rate	325
		8.13.2 Temperature Gradient and Solidification Rate	326
		8.13.3 Process Parameters	329
		8.13.4 Solidification Temperature Span	329
		8.13.5 Gas Interactions	330
	8.14	Solidification Defects	330
		8.14.1 Porosity	330
		8.14.2 Balling	332
		8.14.3 Cracking	335
		8.14.4 Lamellar Tearing	337
	8.15	Post Solidification Phase Transformation	337
		8.15.1 Ferrous Alloys/Steels	337
		8.15.2 Al Alloys	338
		8.15.3 Nickel Alloys/Superalloys	341
		8.15.4 Titanium Alloys	350
	8.16	Phases after Post-Process Heat Treatment	357
		8.16.1 Ferrous Alloys	357
		8.16.2 Al Alloys	357
		8.16.3 Ni Alloys	357
		8.16.4 Ti Alloys	358
	8.17	Mechanical Properties	358
		8.17.1 Hardness	359
		8.17.2 Tensile Strength and Static Strength	363
		8.17.3 Fatigue Behavior of AM-Manufactured Alloys	365
	8.18	Summary	371
		References	375
9	Addi	tive Manufacturing of Metal Matrix Composites	383
	9.1	Introduction	383
	9.2	Conventional Manufacturing Techniques for Metal Matrix	
		Composites (MMCs)	384
	9.3	Additive Manufacturing of Metal Matrix Composites (MMCs)	385
	9.4	AM Challenges and Opportunities	386
	9.5	Preparation of Composite Materials: Mechanical Mixing	387
	9.6	Different Categories of MMCs	389
	9.7	Additive Manufacturing of Ferrous Matrix Composites	390
		9.7.1 316 SS-TiC Composite	390
		9.7.2 316 SS–TiB ₂ Composite	392
		9.7.3 H13–TiB ₂ Composite	392
		9.7.4 H13–TiC Composite	393
		9.7.5 Ferrous–WC Composite	393
		9.7.6 Ferrous–VC Composites	394

xii Contents

9.8	Additive Manufa	cturing of Titanium-Matrix Composites (TMCs)	395
	9.8.1 <i>Ti–TiC</i>	Composite	396
	9.8.2 <i>Ti–TiB</i>	Composites	396
	9.8.3 Ti–Hydi	roxyapatite (Ti–HA) Composites	399
		4V-Metallic Glass (MG) Composites	400
		$4V + B_4C$ Pre-alloyed Composites	401
		4V + Mo Composite	402
		re and Properties of Different TMCs	403
9.9		acturing of Aluminum Matrix Composites	403
		O_3 Composite	405
	9.9.2 AlSi ₁₀ M	Ig–SiC Composite	405
	9.9.3 AlSi ₁₀ M	g–TiC Composite	406
	9.9.4 2024Al-	-TiB ₂ Composite	406
	9.9.5 AlSi ₁₀ M	Ig-TiB ₂ Composite	407
	9.9.6 AA7075	i–TiB ₂ Composite	407
9.10	Additive Manufa	cturing of Nickel Matrix Composites	407
	9.10.1 Inconel	625–TiC Composites	408
	9.10.2 Inconel	625–TiB ₂ Composite	409
9.11	Factors Affecting	g Composite Property	409
		of Matrix and Reinforcing Elements	409
	9.11.2 Size of I	Reinforcing Elements	410
	9.11.3 Decomp	position Temperature	411
	9.11.4 Viscosit	y and Pore Formation	411
	9.11.5 Volume	of Reinforcing Elements and Pore Formation	412
	9.11.6 Buoyan	cy Effects and Surface Tension Forces	412
9.12	Summary		414
	References		417
10 Desig	n for Metal Addi	itive Manufacturing	421
10.1	Design Framewo	orks for Additive Manufacturing	421
	10.1.1 Integrat	ted Topological and Functional Optimization DfAM	422
	10.1.2 Additive	Manufacturing-Enabled Design Framework	422
	10.1.3 Product	Design Framework for AM with Integration of	
	Topolog	gy Optimization	424
	10.1.4 Multifur	nctional Optimization Methodology for DfAM	427
	10.1.5 AM Pro	cess Model for Product Family Design	427
10.2	Design Rules and	d Guidelines	427
	10.2.1 Laser P	Powder Bed Fusion (LPBF)	427
	10.2.2 Electron	n Beam Powder Bed Fusion (EB-PBF)	431
	10.2.3 Binder .	<i>Jetting</i>	433
	10.2.4 Technol	logies Compared	434
10.3	Topology Optimi	ization for Additive Manufacturing	434
	10.3.1 Structur	ral Optimization	435
	10.3.2 Topolog	gy Optimization	436
	10.3.3 Design-	Dependent Topology Optimization	444
	10.3.4 Efforts	in AM-Constrained Topology Optimization	450

Contents xiii

10.4	Lattice Structure Design	458
	10.4.1 Unit Cell	458
	10.4.2 Lattice Framework	459
	10.4.3 Uniform Lattice	460
	10.4.4 Conformal Lattices	462
	10.4.5 Irregular/Randomized Lattices	462
	10.4.6 Design Workflows for Lattice Structures	463
10.5	Design for Support Structures	473
	10.5.1 Principles that Should Guide Support Structure Design	474
	10.5.2 Build Orientation Optimization	474
	10.5.3 Support Structure Optimization	476
10.6	Design Case Studies	483
	10.6.1 Redesign of an Aerospace Bracket to be Made by LPBF	484
	10.6.2 Design and Development of a Structural Member in a Suspension	
	Assembly Using EB Powder Bed Fusion	487
	10.6.3 Binder Jetting of the Framework of a Partial Metal Denture	488
	10.6.4 Redesign of a Crank and Connecting Rod	490
	10.6.5 Redesign of a Mechanical Assembly	492
	10.6.6 Solid-Lattice Hip Prosthesis Design	498
10.7	Summary	501
	References	501
11 Mon	itoring and Quality Assurance for Metal Additive Manufacturing	507
11.1	Why are Closed-Loop and Quality Assurance Platforms Essential?	507
11.2	In-Situ Sensing Devices and Setups	509
	11.2.1 Types of Sensors Used in Metal AM	509
	11.2.2 Mounting Strategies for In-line Monitoring Sensors in Metal	
	AM Setups	521
11.3	Commercially Available Sensors	522
	11.3.1 LPBF Commercial Sensors	522
	11.3.2 LDED Commercial Sensors	525
11.4	Signal/Data Conditioning, Methodologies, and Classic Controllers for	
	Monitoring, Control, and Quality Assurance in Metal AM Processes	526
	11.4.1 Signal/Data Conditioning and Controllers for Melt Pool	
	Geometrical Analysis	526
	11.4.2 Signal/Data Conditioning and Methodologies for Temperature	
	Monitoring and Analysis	531
	11.4.3 Signal/Data Conditioning and Methodologies for the Detection	
	of Porosity	532
	11.4.4 Signal/Data Conditioning and Methodologies for Detection of	
	Crack and Delamination	537
	11.4.5 Signal/Data Conditioning and Methodologies for Detection of	
	Plasma Plume and Spatters	538
11.5	Machine Learning for Data Analytics and Quality Assurance in Metal AM	539
	11.5.1 Supervised Learning	539
	11.5.2 Unsupervised Learning	549

xiv Contents

Index	ĸ	591
	References	590
12.9	Summary	589
	12.8.3 AM Guidelines and Standards	588
	12.8.2 Personal Protective Equipment	588
	12.8.1 Engineering Controls	587
12.8	Comprehensive Steps to AM Safety Management	587
12.7	Human Health Hazards	587
	12.6.1 Combustibility	586
12.6	Powder Hazards	585
12.5	Electron Beam Safety	585
	12.4.4 Laser Protective Eyewear Requirements	584
	12.4.3 Eye Protection	584
	12.4.2 Laser Hazards	581
	12.4.1 Laser Categorization	579
	Laser Safety in Additive Manufacturing	579
	AM Process Hazards	578
12.2	Overview of Hazards	578
12.1	Introduction	577
2 Safet	v	577
	References	565
11.7	Summary	563
11.7	11.6.3 Correlation Between CT Scan and Analyzed Data	560
	11.6.2 In-Situ Sensors and Quality Assurance Algorithm	555
	11.6.1 Design of Experiments	554
11.6	- ···· · · · · · · · · · · · · · · · ·	553

Preface

Additive manufacturing (AM) promises to change the entire manufacturing enterprise over the next two decades. No longer limited to prototyping and low-volume manufacturing, AM is being adopted for *economies of scale* without compromising *economies of scope*. The need for the digitization of manufacturing, on-demand personalized manufacturing, distributed production, and rapid production in the event of crises have all elevated the position of AM in the medical and engineering sectors. AM is now a major research target for industrialized countries as they seek to regain leadership in advanced manufacturing through innovation. The global economy is on the verge of the next industrial revolution and sector after sector is pulling away from traditional, conventional production methods to engage in and utilize AM. However, this promise does come with many challenges, particularly for metal AM. Research and development activities are progressing at full steam to address multiple technical challenges, such as speed and productivity, quality assurance, standards, and end-to-end workflow.

A major skill sets gap currently hinders efforts to tackle these challenges. For companies seeking to embrace AM, this gap translates into a limited availability of expertise to draw an entry strategy to the AM industry. The wider adoption of AM will require overcoming the limited foundational understanding of AM that currently exists within the workforce. A thorough understanding of AM capabilities is necessary for technical experts to accurately communicate the pros and cons of AM to decision-makers, while preventing misconceptions and misinformation about AM capabilities. Currently, the knowledge gap is significantly impacting progress in the sector, as companies have difficulties in recruiting AM experts to help them develop effective designs for AM as well as meaningful business cases for metal AM.

This book is designed to help academia and industry move toward filling this gap. Enhancing AM skills will require the development of foundational knowledge of AM starting at the undergraduate level. To our knowledge, there is currently no textbook available that links the basics of fundamental undergraduate Engineering courses with metal AM processes. There is a clear need to customize undergraduate concepts in technical courses related to design, heat transfer, fluid mechanics, solid mechanics, and control, with respect to AM applications. Additionally, business- and management-oriented courses should include AM to facilitate the consideration

xvi Preface

of AM in conjunction with life cycle assessment and business model developments among students.

The development of this book was motivated by our desire to provide foundational material for a core undergraduate course in Mechanical and Manufacturing Engineering, and we envision its use in graduate courses as well. Universities globally are revising their curriculum to incorporate AM-related courses. This textbook may provide an introductory platform to be adopted in such courses to promote an appreciation for and grasp of AM among both undergraduate and graduate students. This book may also fill a gap for engineers working outside academia who want to appreciate AM processes by identifying links between traditional core physics and engineering concepts courses and AM. The book provides a step-by-step understanding of metal AM and a solid foundation of the topic for readers, who will subsequently be well equipped to explore AM research in greater depth.

For a broad range of readers, this book sheds light on various key metal AM technologies, focusing on basic physics and modeling. This textbook is not a literature survey, nor is it intended for readers with no engineering background. In contrast, it is an introduction to basic physical concepts and phenomena of metal AM processes and their applications. Relevant foundational concepts, such as energy deposition, powder bed fusion, and binder jetting processes, are explained in-depth and illustrated by case studies throughout the book. Additionally, two emerging processes for metal AM: material extrusion and material jetting, are described. Basic design for AM (DfAM) and quality assurance principles are also covered.

We would like to express our sincere gratitude to several people who helped in the preparation of this book. Special thanks to Francis Dibia, Ali Keshavarzkermani, Zhidong Zhang, Yuze Huang, Mazyar Ansari, Andrew Barlow, Misha Karpinska, Donovan Kwong, and Eniife Elebute, who helped us with some materials and produced some of the figures, as attributed in the book. In addition, we acknowledge all organizations, publishers, authors, and companies that permitted use of their figures, plots, and texts; they have been cited accordingly throughout the book. Last but not least, thanks to our families, who make it all worthwhile.

Like any first edition, this textbook may contain errors and typos. We openly welcome the reader's suggestions to be considered in the second edition of this textbook in which multiple problem sets for each chapter will be introduced.

January 2021 Ehsan Toyserkani, Dyuti Sarker, Osezua Obehi Ibhadode, Farzad Liravi,
Paola Russo, Katayoon Taherkhani
Waterloo, Ontario, Canada

Abbreviations

2D Two-Dimensional3D Three-Dimensional

3DQCN Three-Dimensional Quasi-Continuous Network

AI Artificial Intelligence
AE Auto-Encoder
Al Aluminum
AL Absolute Limits

ALE Arbitrary Lagrangian—Eulerian
AM Additive Manufacturing
AMCs Aluminum Matrix Composites
AMF Additive Manufacturing File Format

AMGTA Additive Manufacturer Green Trade Association

ANFIS Adaptive Neuro-Fuzzy Inference System

ANN Artificial Neural Network
ANOVA Analysis of Variance

ANSI American National Standards Institute

APG Absorptivity Profile Group

ASCII American Standard Code For Information Interchange

ASTM American Society for Testing and Materials

BD Big Data

BESO Bidirectional Evolutionary Structural Optimization

BJ Binder Jetting Binder Jet Printing BJP BP Backpropagation BSE **Backscattered Electrons** CAD Computer-Aided Design CAE Computer-Aided Engineering Compound Annual Growth Rate CAGR CAM Computer-Aided Manufacturing

xviii Abbreviations

CCD Charged-coupled device

CCT Continuous Cooling Transformation

CDA Constant Drawing Area

CET Columnar-to-Equiaxed Transition
CFD Computational Fluid Dynamics

CL Cathodoluminescence

CMOS Complementary Metal-Oxide Semiconductor

CNC Computer Numerical Control CNN Convolutional Neural Network

COLIN Convex Linearization
CS Crack Susceptibility
CT Computed Tomography
μCT micro Computed Tomography
CVD Chemical Vapor Deposition

CW Continuous Wave

DAE Differential-Algebraic Equation

DBN Deep Belief Network**DC** Direct Current

DDA Decreasing Drawing Area
DED Directed Energy Deposition
DEM Discrete/Dynamic Element Model

DfAM Design for AM

DfM Design for Manufacturing
DHA Dust Hazard Analysis

DL Deep Learning

DMLS Direct Metal Laser Sintering

DoD Drop-on-Demand
DoG Difference of Gaussian
DXF Drawing Exchange Format

EA Electrical Arc

EAM Embedded-Atom Method

EB Electron Beam

EBAM Electron Beam Additive Manufacturing
EB-DED Electron Beam Directed Energy Deposition
EBF3 Electron Beam Freeform Fabrication

EBF³ Electron Beam Fusion EBM Electron Beam Melting

EB-PBF Electron Beam Powder Bed Fusion EDM Electrical Discharge Machining

EIGA Electrode Induction Melting Inert Gas Atomization

EKF Extended Kafman Filter
ELT Effective Layer Thickness
EMFs Electric and Magnetic Fields

ESO Evolutionary Structural Optimization

FBG Fiber Bragg Gratings
FCC Face Centered Cubic
FCM Finite Cell Method

FDM Fused Deposition Modeling

FE Finite Element

FEA Finite Element Analysis

Abbreviations xix

FEG Field-Emission Gun **FEM** Finite Element Method FFT Fast Fourier Transformation FGM Functionally Graded Material **Functionally Graded Structures FGSs** FIS Fuzzy Inference System **FMC** Ford Motor Company FNFalse Negative FP False Positive FS Free Surface GD Gradient Descent GM General Motors

GMG Geometrically Modified Group

GP Gaussian Process
HA Hydroxyapatite
HAZ Heat-Affected Zone
HDR Heating Depth Ratio
HF Highly Filled

HIP Hot Isostatic Pressing
HPM Heaviside Projection Method
ICI Inline Coherent Imaging

IDAM Industrialization and Digitization of Additive Manufacturing

IDT Interdigitated Transducers

IN Inconel

IoT Internet of Things

ISO International Standards Organization
ISO International Standards Organization

KF Kafman Filter
KNN K-nearest neighbors
LaB₆ Lanthanum Hexaboride
LBM Lattice–Boltzmann Method
LCA Life Cycle Assessment
LCF Low Cycle Fatigue

LDED Laser Directed Energy Deposition
LENS Laser Engineered Net Shaping

LGA Lattice Gas Automata
LM Levenberg-Marquardt
LN Large Negative
LoF Lack of Fusion
LP Large Positive

LPBF Laser Powder Bed Fusion
LPM Laser Power Monitoring
LSF Level Set Functions
LSM Level Set Method
LWIR Long Wave Infrared

MAPE Mean Absolute Prediction Error

MC Metal Carbide
MD Molecular Dynamics
ME Material Extrusion
MG Metallic Glass

xx Abbreviations

MJ Material Jetting

MMA Method of Moving Asymptotes **MMCs** Metal Matrix Composites **MME** Metal Material Extrusion **MMP** Micro-Machining Process MMV Moving Morphable Voids MOV Main Oxidizer Valve MPC Metal-Polymer Composite **MPE** Maximum Permissible Exposure

MPM Melt Pool Monitoring

MS Multi-Speed

MSDS Material Safety Data Sheet MSE Mean Squared Error

MTPS Multifunctional Thermal Protection System

Nd Neodymium

NDT Non-Destructive Testing

NFPA National Fire Protection Association

nHA Nano-HydroxyapatiteNHZ Nominal Hazard Zone

Ni Nickle

NIR Near-Infrared

NIST National Institute of Standards and Technology

NN Neural Network NS Navier–Stokes

OCM Optimality Criterial Method
OCT Optical Coherence Tomography
OEM Original Equipment Manufacturers

OPD Optical Penetration Depth
OTLs Orthogonal Translational Lattices

PBF Powder Bed Fusion

PCA Principal Component Analysis
PDF Point Distribution Function

PF Powder-Fed

PI Proportional-Integral

PID Proportional–Integral–Derivative
PMC Polymer Matrix Composite
PMZ Partially Melted Zone

PPE Personal Protective Equipment
PPHT Post-Processing Heat Treatment
PREP Plasma Rotate Electrode Process

PSD Particle Size Distribution

PTA-DED Plasma Transferred Arc Directed Energy Deposition

PVD Physical Vapor Deposition

PW Pulsed Wave PZT Piezoelectric

R&D Research and development

RAMP Rational Approximation of Material Properties

RDM Relative Density Mapping **REP** Rotating Electrode Process

RF Radio Frequency

Abbreviations xxi

RGB Red-Green-Blue RLS Recursive Least Square RMSE Root Mean Square Error **RNN** Recurrent Neural Networks ROS Reactive Oxygen Species RTE Radiation Transfer Equation SAW Surface Acoustic Wave SD Signal Dynamics

SDAS Secondary Dendritic Arm Spacing

SE Secondary Electrons

SIMP Solid Isotropic Material with Penalization

SINH Sine Hyperbolic Function

SL Sheet Lamination

SLD Super-Luminescent Diode

SLD-OCT Super-Luminescent Diode—Optical Coherence Tomography

SLM Selective Laser Melting

SLP Sequential Linear Programming

SLR Single-Lens Reflex
SLS Selective Laser Sintering
SN Small Negative
SOM Self-Organizing Map

SP Small Positive

SQP Sequential Quadratic Programming SRAS Spatially Resolved Acoustic Spectroscopy

STF Short-Term Fluctuations

STL Standard Tessellation Language or StereoLithography

STP Standard for the Product Data

ST-PCA Spatially Weighted Principal Component Analysis

SVDSingular Value DecompositionSVMSupport Vector MachineTCPTopological Close-Packed

TEM Transverse Electromagnetic Modes
TGM Temperature Gradient Mechanism

Ti Titanium

TiC Titanium Carbide
Ti-HA Titanium-Hydroxyapatite
TMCs Titanium-Matrix Composites

TN True Negative TP True Positive

TPMS Triply Periodic Minimal Surface
TRL Technology Readiness Level
TTT Transformation Time Temperature

VC Vanadium Carbides

VED Volumetric Energy Density

VoF Volume-of-Fluid

VTM Virtual Temperature Method

WF Wire-Fed

WF-EDED Wire-Fed Electron Beam Directed Energy Deposition

XRD X-Ray Diffraction XRF X-Ray Fluorescence xxii Nomenclature

YAG Yttrium Aluminum Garnet YLF Yttrium Lithium Fluoride YVO4 Yttrium Orthovanadate

Nomenclature

 D_{ijmn}

 D_L

Unless otherwise stated in the text, these symbols have the following meanings

Characteristic length a Energy bilinear function for internal energy (Chapter 10) a Α Spot area – heat source interaction area A Filament or nozzle cross-section area (Chapter 7) A_{at} Attenuated area Cross-section area A_c A_{iet}^{liq} Intersection of melt pool area on substrate and powder stream A_{iet} Cross-section of powder stream on substrate A_G Property of filament material Einstein coefficients A_{ij}, B_{ij} A_S Surface area b Melt pool depth b Bias (Chapter 11) В Size of gap (Chapter 7) \boldsymbol{R} Magnetic field R Differential shape function matrix (Chapter 10) Speed of light cHeat capacity c_p cylFunction based on Bessel functions Speed of sound in the fluid C_{S} CDuty cycle CCompliance (Chapter 10) CaCapillary number C_s Solid composition C_L Liquid composition C_0 Nominal alloy composition or solute concentration d Spot size d Euclidean distance (Chapter 11) d_0 Droplet diameter Surface mean particle diameter $d_{3, 2}$ Semispherical droplet d_{con} Laser beam diameter DD Material matrix D_f Diffusion constant Tensor of elastic coefficients

Solute diffusion coefficient

Nomenclature xxiii

D_{\emptyset}	Diffusion coefficient
e e	When subscript or superscript, signifies a variable in its elemental form
e_i	Vector pointing
$\stackrel{\circ}{E}$	Laser beam energy
E	Electric field (Chapter 5)
E E	Young's modulus matrix (Chapter 10)
E_a	Energy of activation
E_b	E-beam energy
E_i	Input laser energy
E_{kin}	Kinetic energy
E_r	Reflected energy
E_t	Transmitted energy
E_i	Energy levels (Chapter 3)
$E_{specific}$	The energy enters the substrate from the surface in DED
-specific f	Frequency
f	Volume fraction (Chapter 10)
f_s	Fraction of solid
f_L	Fraction of liquid
f(R)	Function of surface roughness
$f_i(x, t)$	Density of particles moving in the e_i direction
$f_i^{eq}(x,t)$	Equilibrium distribution
$\stackrel{\circ}{F}$	Force
F_{O}	Fourier number
$\overline{\mathcal{F}}_0$	Zero-order Bessel function of its first kind
${\mathcal F}_1$	The first-order Bessel function of the first kind
F^{Cap}	Capillary force
F_{st}	Surface tension force
$F_{th} F^{Wet}$	Thermal stress load
F^{Wet}	Wetting force
g	Gravity
g_i	Effect of external forces
G	Temperature gradient
G_S	Gibbs free energy for solid
G_L	Gibbs free energy for liquid
G_z	Graetz number
ΔG	Total Gibbs free energy change
ΔG^*	Critical free energy change
$arDelta G_V$	Free energy change per unit volume
h	Plank's constant (Chapter 3)
h	Height of a hexahedral element (Chapter 10)
h_c	Heat convection coefficient
h_i	Convective heat loss (cooling) coefficients
h_a	Average heat transfer coefficient of convection
h_w	Distance between the nozzle and surface
h_r	Radiative heat transfer coefficient

xxiv Nomenclature

 h_{min} Minimum radius of the liquid column H Barrel length or height of track H^* Height of the melt polymer

ΔH Enthalpy differenceHDR Heating depth ratioI Intensity: energy per area

I Current in electron beam (Chapter 5) I(x) Indicator function (Chapter 11)

Intensity scale factor or initial intensity

 I_0 Hieristy scale factor of initial intensity I_b Beam current in the electron-beam process

J Free electron current k Propagation factor

k Equilibrium distribution coefficient (Chapter 8)

k Solute partition coefficient (Chapter 9)

K Thermal conductivity

KGlobal stiffness matrix (Chapter 10) K_c Conductivity matrix (Chapter 10) K_h Connective matrix (Chapter 10) K^* Modified thermal conductivity

 K_0 Bessel function of the second kind and zero order

l Layer thickness

l Load linear function for external work (Chapter 10)

L Transformation matrix

L Link intensity

 L_c Characteristic length based on domain size

 L_f Latent heat of fusion

 L_1^p Laguerre polynomial of order p and index 1

m Atomic mass

 m_b Mass of the ball (Chapter 9) m_b Deposited binder (Chapter 6)

 m_p Particle mass

 m_p Mass of the bound powder (Chapter 6)

 m_f Fluid mass m Mass flow rate M^2 Beam quality factor Ma Marangoni number n Reflection's index

N Matrix of shape function for mesh element

 N_i Number of atoms or electrons per unit volume in the energy levels

 N_L Amount of atoms per unit volume of liquid

 N_{lx} Neumann function

 $N_{\rm S}$ Amount of atoms per unit volume of solid

Nu Nusselt number

 N_{th} Shape vector for thermal expansion

Oh Ohnesorge number

Nomenclature xxv

Constant characteristic of the material (Chapter 4) p Pressure p Penalty value (Chapter 10) р Capillary force p_c Packing fraction $p^{'}$ Power P_{at} Attenuated laser power by particles P_{el} Power of electrical motor in FDM system P_I Net/average laser power P_{peak} Peak power per pulse P_{on} On the state of the laser power P_{off} Off state of the laser power P_{tot} Total delivered beam power P_e Peclet number Prandtl number PrPacking density of the powder PRPWPulsed wave laser $P(\infty)$ Value of the extrudate property after an infinite healing time Heat flux qQ Power generated per unit volume (in all chapters except Chapter 3) Q Beam propagation factor (Chapter 3) Q_c Total energy absorbed by the substrate Q_{ext} Extinct coefficient Q_I Laser energy Reflected energy from the substrate Q_{rs} Q_L Latent energy of fusion Volumetric flow rate Q_{ν} Radius of nucleus (Chapter 8) r^* Critical nucleus radius Ball mill radius r_b Filament radius r_f Beam radius of the waist r_{0l} Radius of powder spray jet r_{jet} Beam spot radius on the substrate r_l Powder stream diameter r_s Powder particle radius r_p R Reflectivity R Solidification rate where it is referred to R_c Clad surface curvature Radius of curvature R_{cur} Re Reynolds number Re^* Property-based Reynolds number R_h Heat load by convection

 $R_h(t)$

 R_{L}

Intrinsic healing function

Local growth rate

xxvi Nomenclature

 R_N Nominal growth rate

 R_r Radius of the actuating motor R_{pore} Effective pore diameter in the bed R_q Heat load by surface conduction R_O Heat load by volume conduction

 $\begin{array}{ccc} s & & \text{Hatch spacing} \\ s_0 & & \text{Specific surface area} \\ S & & \text{Binder saturation} \end{array}$

 S_{ii} Lateral distance between neuron i and j (Chapter 11)

 S_{max} Spreading ratio

 S_{meas} Amount of signal (Chapter 11) S_{\emptyset} Source term corresponding to \emptyset

 $S(\phi)$ Shape factor SS Scan speed

S Strain rate deformation tensor ΔS Expansion of surface area

t Time and/or laser interaction time

 t^* Dimensionless time $t_c = t_u$ Viscous time

 t_{CDA} Corresponding penetration time

 t_f Solidification time t_I Inertial-capillary time t_V Viscous-capillary time

T Temperature

 T_{α} Reference temperature T_{ave} Average temperature T_{in} Filament temperature T_{g} Glass transition temperature

T_{out} Outlet temperature

 $T_{\dot{m}}$ Temperature of the liquefier wall

 T_d Drying time

 T_e Equilibrium temperature T_l Liquidus temperature T_0 Ambient temperature T_m Materials melting point T_p Maximum temperature ΔT Undercooling temperature ΔT_{tot} Total undercooling temperature

 ΔT_C Undercooling temperature: solute diffusion ΔT_T Undercooling temperature: thermal diffusion Undercooling temperature: attachment kinetics

 ΔT_R Undercooling temperature: solid–liquid boundary curvature TEM_{pl} Gaussian–Laguerre transverse electromagnetic modes

U Beam velocity

U Travel velocity vector

Greek Symbols xxvii

$oldsymbol{U}$	Global displacement vector (Chapter 10)
U_p	Particle velocity vector
U_s	Rate of solidification
v	Scanning speed
v_c	Collision velocity
v_{j}	Jet velocity
v_p	Velocity of the particle
v_{print}	Velocity of the print head
\dot{V}	Volume of melt pool
$oldsymbol{V}$	Design volume (Chapter 10)
V_a	Acceleration voltage
V_S	Volume of nucleus
VED	The energy enters the substrate from the surface in LPBF
w	Track or melt pool width
W	Neuron weight (Chapter 11)
w_i	Weight factor
W	Laser pulse width
We	Weber number
X_{s+c}	Weight percent of element <i>X</i> in the total surface of the clad region
X_c	Weight percent of element <i>X</i> in the powder alloy
X_s	Weight percent of element <i>X</i> in the substrate
y	Dendrite arm spacing (Chapter 8)
z	Distance from the surface
z_0	Waist location with respect to an arbitrary coordinate along the propagation axis
Z	Printability of a liquid
_	

Greek Symbols

 Z_h

 α

α_t	Coefficient of thermal expansion
β	Absorption factor
β	Absorption factor
β_p	Powder particles' absorbed coefficient
$\hat{\beta_w}$	Substrate laser power absorptivity
γ	Surface tension
γ	Net electron beam energy (Chapter 5)
γ_E	Specific surface energy
γ_{SL}	Solid-liquid interfacial free energy
γ_{SV}	Solid-vapor interfacial energy
γ_{LV}	Liquid-vapor interfacial energy
γ	Shear rate
Γ	Torque of electrical motors in FDM
Γ	Surface function (Chapter 10)
δ	Solid/liquid interface thickness
δ	Dirac delta function (Chapter 6)

Heat penetration depth

Thermal diffusivity

xxviii Greek Symbols

ε	Total strain
ϵ_c	Cooling rate
ε_t	Emissivity
ε^M	Mechanical strains
ε^T	Thermal strains
$arepsilon_p$	Equivalent plastic stress
ϵ_0	Vacuum permittivity
$\boldsymbol{\varepsilon_{m}}$	Mechanical strain
$\varepsilon_{ m th}$	Thermal strain
Σ	Covariance matrix
$\overline{\eta}$	Dynamic viscosity
η	Powder catchment efficiency (wherever it refers to throughout chapters)
ή	Numerical damping coefficient for OCM (Chapter 10)
ή	Learning rate (Chapter 11)
η_e	Absorption efficiency for electron beam
η_d	Dynamic viscosity
η_p	Powder catchment efficiency
$\overset{i_{P}}{ heta}$	Representing different angles based on figures
θ	Wetting angle (Chapter 2)
θ	Far-field divergence angle (Chapter 3)
θ	Dimensionless temperature in numerical models (Chapter 7)
$ heta_{jet}$	Angle between powder jet and substrate
θ_d	Dynamic wetting angle
θ_{eq}	Steady-state angle
Θ	Dimensionless temp in analytical models
λ	Wavelength
λ	Lagrange multiplier (Chapter 10)
λ_n	Roots of zero-order Bessel function of its first kind
μ	Viscosity
μ	Membership function (Chapter 11)
υ	Frequency (Chapter 3)
v	Kinematic viscosity
ho	Density
$ ho_b$	Density of binder
$ ho_{pb}$	Powder bed density
$ ho_c$	Density of melted powder alloy
$ ho_s$	Density of substrate material
$ ho_s$	Packing density of the pores (Chapter 6)
σ	Stefan–Boltzmann constant
σ	Covariance (Chapter 11)
σ_c	Charge density
σ_{ij}	Elastic stress
τ	Thermal time constant
$ au_c$	Dimensionless capillary time
ϕ	Different label for angles as indicated in the associated figures