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Preface

Environmental stresses, such as drought, salinity, or floods, induce the generation of
reactive oxygen species (ROS) which causes severe damage to cell membrane
integrity by accelerating lipid peroxidation. Growing evidence has suggested that
ROS play a critical role as the signaling molecules throughout the entire cell death
pathway. Though ROS act as a signaling molecule, they can cause oxidative burst if
there is an imbalance between ROS generation and their scavenging. Oxidative
stresses also decrease the efficiency of PSI and PSII by disrupting the electron
transport chain and chloroplast integrity. Moreover, under severe stress conditions,
the generation of ROS often exceeds beyond the antioxidant potential of the plants,
resulting in oxidative damages. To counteract the detrimental effect of ROS, plants
are inherited with an intricate and vibrant antioxidant defense system, composed of
enzymatic (catalase, peroxidase, superoxide dismutase, glutathione reductase, gluta-
thione S-transferase, guaiacol peroxidase, monodehydroascorbate reductase,
dehydroascorbate reductase, etc.) and nonenzymatic (glutathione, ascorbate, α-
tocopherol, carotenoids, flavonoids, etc.) antioxidants, which scavenge and/or
reduce excess ROS and improve plant tolerance to abiotic stresses. Stress tolerance
in most crop plants is positively correlated with an efficient oxidative system.
Therefore, studying the efficiency of antioxidant defense systems in plants is neces-
sary for facilitating the plant’s nature of adaptation against abiotic stresses.

Knowledge about the oxidative mechanisms in plants may contribute to the
development of plants, adapted to the environment and resistant to pathogens.
During the last decades, antioxidant enzymes have been used to develop transgenic
plants that have increased tolerance to several stresses. The ROS production, major
antioxidant enzymes as well as nonenzymatic antioxidants involved in detoxifica-
tion, and defense under stresses are the major areas to be elucidated.

The book comprises 20 chapters (review articles) written by experts, highlighting
the various enzymatic and nonenzymatic antioxidants, defense mechanisms, and
adaptation strategies employed by plants to avoid the stressful conditions. We are
hopeful, this volume would furnish the need of all researchers who are working or
have interest in this particular field.

We are highly grateful to all our contributors for accepting our invitation and for
not only sharing their knowledge and research but also venerably integrating their
expertise in dispersed information from diverse fields in composing the chapters and
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enduring editorial suggestions to finally produce this venture. We also thank
Springer-Nature team for their generous cooperation at every stage of the book
production.

Lastly, thanks are also due to well-wishers, research students, and editors’ family
members for their moral support, blessings, and inspiration in the compilation of this
book.

Aligarh, Uttar Pradesh, India Tariq Aftab
Jeddah, Saudi Arabia Khalid Rehman Hakeem
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An Overview of Roles of Enzymatic
and Nonenzymatic Antioxidants in Plant 1
Shashi Kant Sharma, Devendra Singh, Himanshu Pandey,
Raj Babar Jatav, Virendra Singh, and Devendra Pandey

Abstract

The postindustrial age radically altered global climate conditions, posing a
difficult task for plants and crops to thrive under stress environments like high
temperatures, salt, waterlogging, heavy metals, drought, and so on. A small
period of poor weather had a substantial impact on the development and growth
of plants, eventually influencing crop quality, yield, and agricultural
sustainability as a whole. Plant cells produce free oxygen (O2) radicals and
their derivatives, known as reactive oxygen species (ROS), as by-products of
other reactions in such hostile environments. Furthermore, these ROS molecules
are used as signaling molecules in plants for signal transduction in response to
changing environmental conditions. The cytoplasmic balance that triggers the
antioxidant defense mechanisms is disrupted as a result of the excessive accumu-
lation of ROSs inside the cell. Plants have developed a complicated ROS
scavenging system to avoid sensitive cellular components from being damaged
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by reactive oxygen species. Enzymatic antioxidants, like catalase (CAT), peroxi-
dase (POD), superoxide dismutase (SOD), glutathione peroxidases (GPX), and
ascorbate peroxidases (APX), and nonenzymatic antioxidants, like glutathione,
ascorbate, tocopherols, and phenolic compounds, are important antioxidants that
play key roles in eliminating superoxide (O2

�) and (H2O2). The antioxidant
capacity of plants is the sum of the activities of all enzymatic and nonenzymatic
antioxidant systems. This chapter seeks to provide fundamental information on
enzymatic and nonenzymatic antioxidants, their occurrence, characteristics, and
the antioxidant defense system involved in reactive oxygen species (ROS) detox-
ification under various stresses, as well as their interactions with cellular
components.

Keywords

ROS · Abiotic stress · Oxidative stress · Enzymatic antioxidants · Nonenzymatic
antioxidants

1.1 Introduction

Based on their biochemical nature, antioxidants are divided into two categories:
enzymatic and nonenzymatic. While substantial anabolic and catabolic reactions are
occurring, these chemicals are engaged in the detoxification of free radicals or
reactive oxygen species (ROS). Both classes of antioxidants are capable of effi-
ciently neutralizing ROS and converting them into relatively stable nontoxic
molecules, preventing oxidative damage to cellular apparatuses. As a result,
antioxidants are the most important first line of defense against the oxidative
stress-induced cell damage. Antioxidants, both enzymatic and nonenzymatic, are
electron-rich compounds that readily share electrons with highly energetic ROS and
free radicals, stabilizing cellular randomness.

Furthermore, they may interfere with the oxidizing chain reaction in order to
reduce free radical damage (Apel and Hirt 2004). Antioxidants are also known as
ROS scavengers because they use dynamic and synergistic processes to keep the
intracellular concentration of ROS in check. It (antioxidant) is a substance that may
scavenge reactive oxygen species (ROS) without being converted into a harmful
radical (Noctor and Foyer 1998). As a result, antioxidant enzymes are crucial for
sustaining good cellular and systemic health and well-being. All highly reactive,
oxygen-containing molecules, including the free radicals, are referred to as ROS.
The hydroxyl radical (OH�), singlet oxygen, superoxide anion radical, H2O2 (hydro-
gen peroxide), hypochlorite radicals, lipid peroxides, and nitric oxide radical are all
examples of reactive oxygen species. All have the ability to react with membrane
lipids, enzymes, and other molecules, resulting in the loss of critical cellular
structures and functions and a variety of negative consequences for plants and
animals. As previously stated, free radicals or ROS are highly reactive compounds
that are released directly or as a by-product during normal metabolic processes in
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various cellular compartments like mitochondria, chloroplast, peroxisomes, and
apoplast (Panieri and Santoro 2015), but their synthesis is accelerated during
extreme conditions. Because these compounds have a lone pair of electrons, they
are very unstable and thus highly reactive (Del Río and López-Huertas 2016).
ROS-induced oxidative stress is a well-controlled process, and the balance
in-between the ROS and its quenching define a plant’s and any other organism’s
well-being. If antioxidants reach a condition of disequilibrium, meaning they are
unable to destroy free radicals, the cell and tissue suffer oxidative damage. The
degree of oxidative stress caused by free radicals/ROS is determined by their
concentration, kind, synthesis site, and developmental stage (Møller et al. 2007).
Plants exposed to ROS for a long time period can suffer considerable damage to their
cell machinery and biomolecules, including protein oxidation, lipid peroxidation
(Mittler 2002), PCD (programmed cell death), and inhibition of the enzymes and
also damages nucleic acid, which can lead to tissue necrosis or plant death (Fig. 1.1)
(Pérez-Pérez et al. 2012).

1.2 Enzymatic Antioxidants

Several enzymes, like GPX, SOD, glutathione reductase, APX, and CAT (catalase),
are the enzymatic components of the antioxidant defense system found in diverse
subcellular compartments. In plants under oxidative stress, these enzymatic antioxi-
dant molecules are critical for maintaining cellular homeostasis.

Fig. 1.1 Illustrative representation of different agents generating free radicals and reactive oxygen
species in plants and different antioxidants scavenging agents
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1.2.1 SOD (Superoxide Dismutases)

SODs are enzymes which can catalyze the dismutation/partitioning of O2
� to H2O2

and molecular oxygen (O2). Because O2
� is a typical consequence of oxygen

metabolism, SOD is thought to be the first line of defense against the reactive O2

species-induced damage. By neutralizing the superoxide radical, the Haber–Weiss
reaction eliminates the possibility of hydroxyl ion production. These enzymes are
classed as metalloenzymes based on metal cofactors, subcellular distribution, and
protein folds. Cu-/Zn-containing SODs have been found in prokaryotic and eukary-
otic organisms, and in plant cells, they can be found in the cytoplasm, extracellular
space, or chloroplasts and can also be found in lysosomes, cytoplasm, and nuclear
compartments in mammalian cells. Plant cytoplasm and chloroplasts have been
found to have Fe-containing SODs. MnSODs are found in all kingdoms but particu-
larly in eukaryotic mitochondria, where they play a critical role in preserving
mitochondria by scavenging ROS (Pilon et al. 2011) and initiating cellular differen-
tiation (Moller 2001, 2012). According to Feng et al. (2016), SODs are found in
different organisms, such as mammals, yeast, bacteria, and plants. Multiple genes
producing SODs exist in plants, and their expression can be influenced by develop-
mental stage, tissue type, and environmental cues (Scandalios 2005; Menezes-
Benavente et al. 2004). There are nine SOD genes in tomatoes, which are unevenly
distributed across 12 chromosomes and include four Cu/ZnSODs, one MnSOD, and
three FeSODs (Feng et al. 2016). Various investigations revealed that different types
of SOD genes had varied levels of expression under harsh environmental conditions.
Underwater stress, for example, the expression patterns of the banana genes like
MaCSD1B and MaMSD1A, which are involved in SOD production, were utterly
incompatible (Feng et al. 2015).

Furthermore, SODs with the same cofactor may not necessarily have the same
role in various species. MnSOD expression was not affected by oxidative stress in
Arabidopsis, but it was affected significantly by drought and cold stress in wheat and
salt stress in pea (Baek and Skinner 2003). Additionally, alternative splicing and
miRNAs have been implicated in the regulation of SOD gene expression (Lu et al.
2010). Various plant species, such as Populus trichocarpa, Sorghum bicolor, Musa
acuminata, and Arabidopsis thaliana, have been found to contain the SOD genes
(Srivastava et al. 2009).

1.2.2 CAT (Catalases)

These are tetrameric enzymes, with iron as a prosthetic group attached to each
monomer; they catalyze the energy-efficient disproportionation of H2O2 into water
molecules (H2O) and molecular oxygen (Regelsberger et al. 2002; Zamocky et al.
2008). In contrast to H2O2, it has a lower affinity for R-O-O-R (organic peroxides)
and also has a higher turnover rate among antioxidant enzymes and is unique among
antioxidant enzymes because it does not need a reducing counterpart. Unfavorable
conditions necessitate increased energy generation, and expenditure by plants and
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other organisms leads to an increase in catabolic reactions, which yields H2O2. CATs
are predominantly attached to peroxisomes, where they execute β-oxidation of fatty
acid, photorespiration, and purine catabolism, all of which produce a considerable
amount of H2O2 (Mittler 2002). Hydrogen peroxide (H2O2) is also a key signaling
molecule in plant development and plant response to the environment (Mhamdi et al.
2010). Plants have numerous CATs, each produced by a separate gene, that respond
differently to different stressors that are known to cause ROS. Recent investigations
reveal that CAT is also prevalent in other subcellular compartments like the
mitochondria, chloroplast, and cytosol, albeit no evidence of substantial CAT
activity has been observed (Mhamdi et al. 2010). CAT1 is mostly expressed in
plant pollen and seeds; on the other side, CAT2 is not only expressed in photosyn-
thetic tissues (mostly) but also expressed in seeds and roots, while CAT3 is predom-
inantly expressed in vascular tissues and leaf in angiosperms (McClung 1997;
Frugoli et al. 1996).

1.2.3 APX (Ascorbate Peroxidases)

Ascorbate peroxidases are the heme peroxidase superfamily that is involved in the
recycling of AsA and the response to environmental stress in plants (Ishikawa and
Shigeoka 2008; Lazzarotto et al. 2011). These enzymes catalyze the conversion of
H2O2 to water and monodehydroascorbate (MDHA) using ascorbate (AsA) as an
electron donor (Caverzan et al. 2012). Plants have five different isoforms of APX,
which are found in diverse subcellular compartments like the cytosol, mitochondria,
peroxisomes, and chloroplast (Sharma and Dubey 2005). These enzymes are divided
into groups based on the amino acids they contain and the cell compartments in
which they are found. Several abiotic stressors in plants have varied effects on the
APX genes (Rosa et al. 2010; Caverzan et al. 2014). APXs, CATs, and SODs must
be in balance to determine the effective intracellular level of H2O2 and oxygen, and
variations in this equilibrium appear to trigger compensation processes (Apel and
Hirt 2004; Scandalios 2002, 2005). Under a normal and stressful environment, APX
is a key component of the ASC–GSH (ascorbate–glutathione) cycle, which
eliminates excess H2O2 from plant cells (Mittler and Zilinskas 1991). Because
APX is more broadly distributed and also has a higher affinity for hydrogen peroxide
than CAT, it is a more effective H2O2 scavenger during stressful situations. APX is a
chloroplastic isoenzyme expressed by a single gene in higher plants (apx1).

1.2.4 GPx (Glutathione Peroxidases)

The term glutathione peroxidases collectively describe the group of phylogenetically
related nonheme and thiol-containing peroxidase enzymes. It was called after GPx-1,
the mammalian tetrameric seleno enzyme, which was the first to be defined and
reported. More than 700 members of the GPx family have been identified so far,
overall domains of life. G. C. Mills discovered its activity in red blood cells in 1957,
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where it protected hemoglobin from oxidative degradation. The biological function
of GPxs is to catalyze the H2O2 reduction or lipid hydroperoxides into H2O or the
corresponding alcohols by using GSH (glutathione) as a reducing agent. The cata-
lytic moiety of selenium was later identified as selenocysteine, the 21st naturally
occurring amino acid. Selenocysteine was recommended as a way to ensure a rapid
reaction with the hydroperoxide and glutathione reducibility. GPx1 is found in the
mitochondria, chloroplasts, and cytosol of a wide range of plants and animals, and it
serves as an antioxidant in several cellular compartments. In human beings, there are
eight distinct glutathione peroxidase isoforms (GPx1-8) that have been found. The
mechanism of reaction comprises oxidation of the selenol of a selenocysteine residue
by H2O2. The RSeOH (selenenic acid) group is formed as a result of this action. A
two-step mechanism converts selenenic acid back to selenol, starting with a reaction
with GSH to create the GS-SeR and H2O. The GS-SeR intermediate is reduced back
to selenol by a second GSH molecule, releasing a by-product GS-SG.

1.3 Nonenzymatic Antioxidants

Antioxidants that are generally nonenzymatic in nature are found in all subcellular
parts of plants. These antioxidants help to detoxify reactive O2 species and free
radicals and can also help to reduce the substrates from antioxidant enzymes (Mittler
2002). The primary cellular redox buffers GSH and ascorbate, along with
carotenoids, tocopherol, and polyphenolic compounds, are different forms of non-
enzymatic defense pathways (Scandalios 2002).

1.3.1 Vitamin C (Ascorbic Acid)

Ascorbate is a well-known vitamin having anti-oxidizing properties that have been
found in a variety of organelles and even apoplast. It occurs in different reduced and
oxidized forms, as ascorbic acid (90% of the ascorbate pool) and mono- and
dehydroascorbic acid (Smirnoff 2011). The ratio of oxidized to reduced ascorbate
is a key element that influences plant oxidative stress resistance (Conklin et al. 2000;
Cruz-Rus et al. 2012). Glutathione reductase, dehydroascorbate reductase, and
monodehydroascorbate reductase are among the NAD(P)H-dependent enzymes
that keep AsA in its reduced state (Mittler 2002; Foyer and Noctor 2011). According
to the Horemans et al. (2000), the mitochondria are the major site for ascorbate
production, from which it is transferred to other cell organs via a proton-electron
gradient. Due to its ability to transfer electrons in enzymatic and nonenzymatic
processes, AsA is a critical component for ROS detoxification in the aqueous phase.
AsA can quickly remove O2

�, hydroxide ions, and 1O2, and therefore, it can reduce
H2O2 to H2O by the ascorbate peroxidase mechanism, protecting membranes
(Blokhina et al. 2003). In the ascorbate–glutathione cycle, APX utilizes two AsA
molecules to decrease H2O2 to water, with the intermediate monodehydroascorbate,
which is a short-lived radical that is further disproportionated into dehydroascorbate
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(DHA) and AsA. Furthermore, it plays a crucial role in the dynamic and control of
the cell cycle, the advancement of the G1 to S stage of the cell division pathway, and
cellular elongation, as well as many photosynthetic functions (Smirnoff 2011).
Although the exact biosynthetic process for ascorbate is unknown, it is speculated
that D-glucose may be used as a precursor.

1.3.2 Glutathione

Glutathione (GSH) oxidation by ROS results in the formation of GSSG, which is
present in all plant cell compartments. In cellular compartments, GSH, together with
its oxidized counterpart, GSSG, maintains a redox balance. It has been revealed that
the GSH/GSSH pair is involved in gene regulation and cell cycle pathways (Mittler
2002). The antioxidant glutathione and ascorbic acid are prolific and stable, and they
have the right redox potential to react with different varieties of substrate and
compounds. Glutathione is a tripeptide molecule made up of three amino acids,
glutamine, cysteine, and glycine, that are found in all plant cell parts, including the
cytoplasm, vacuoles, chloroplasts, mitochondria, and endoplasmic reticulum (Millar
et al. 2003). In most plant cells, glutathione is the important source of nonprotein
thiols. Glutathione is appropriate for a wide range of metabolic actions in all
organisms due to the presence of a thiol group and its reactivity. The reduced form
of glutathione (GSH) is found at higher concentrations in chloroplasts. Unlike the
ascorbate biogenesis system, the glutathione biosynthetic pathway is well-
established and identical throughout all domains of life. The amino acids are linked
to produce the full tripeptide in two ATP-dependent stages catalyzed by GSHS and
γ-ECS. These events take place in chloroplastic and non-chloroplastic segments, and
glutathione concentrations and redox status play a crucial role in different pathways.
GSH is used to reduce DHA both in an enzymatic and nonenzymatic way in the
ascorbate–glutathione pathway, and it is then oxidized to GSSG. Glutathione reduc-
tase catalyzes the regeneration of GSH from GSSG, with NADPH as the reducing
agent. The cysteine residue in GSH’s tripeptide has a high reactivity potential. GSH
scavenges harmful H2O2 by reacting nonenzymatically with O2

�, OH�, and 1O2.
The ability of GSH to replenish another potent antioxidant, ascorbic acid, via the
ascorbate–glutathione cycle gives it a crucial role in antioxidative defense (Millar
et al. 2003). It has been observed that the antioxidant property of glutathione was
utilized to achieve transgenic lines of tobacco (Foyer and Noctor 2005), which can
withstand oxidative stress (Del Río and López-Huertas 2016). GSH has been
involved in sensing alterations in redox equilibrium and transferring these alterations
to appropriate target proteins, in addition to being a co-substrate and reducing agent
in defense against reactive oxygen species.
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1.3.3 Vitamin E

All types of tocopherols are methylated fat-soluble phenols that have similar to
vitamin E (Sharma et al. 2012). They primarily function as antioxidants in plants,
algae, and mammals, but they may also have additional functions. In lipid bilayers,
α-tocopherol is the most effective for the removal of peroxyl radicals. Tocopherols
are the most powerful scavengers of free radicals. At the energy of 323 kJ mol�1, the
hydroxyl bond present in vitamin E becomes weaker than in the majority of phenols
and readily liberates hydrogen atom and thereby helps in quenching peroxyl radicals
and other free radicals, decreasing their harmful effect (Lide 2006). The produced
tocopheryl radical is generally nonreactive, and through redox interaction with a
hydrogen donor such as ascorbate or other antioxidants, it reverts to tocopherol
(Igamberdiev and Hill 2004; Traber and Stevens 2011). Tocopherols are integrated
into cell membranes and thereby protect the chloroplast membrane from oxidative
damage due to their fat-soluble nature (Blokhina et al. 2003). α-Tocopherols are
significantly bioactive and prominent antioxidants in the chloroplast lamina and are
primarily utilized for defending them against the photooxidative effect. It has been
observed that a single α-tocopherol molecule may neutralize one 20 singlet oxygen
and also act as reusable chain reaction terminators for PUFA radicals synthesized
during oxidation of lipids (Hare et al. 1998; Wu and Tang 2004; Ledford and Niyogi
2005). Photosynthesis and other metabolic processes in chloroplasts produce ROS,
which causes lipid peroxidation in plant cells. To cope up with a range of abiotic
stress conditions, the content of α-tocopherol in photosynthetic plant tissues
increases dramatically (Noctor 2006). The ability of α-tocopherols to scavenge and
quench ROS aids in the modulation of signal transduction and the stabilization of
membranes (Kruk et al. 2005; Noctor 2006). They work as a free radical capturing
process by preventing the chain extension stage in lipid autooxidation. Plants
respond to oxidative stress by expressing genes involved in tocopherol production
(Table 1.1) (Giacomelli et al. 2007; Wu and Tang 2004).

1.3.4 Carotenoids

Carotenoids, also known as tetra terpenoids, are pigments that naturally occur in
plants and microorganisms (Otles and Cagindi 2008). To date, more than 750 natural
carotenoids have been discovered. These chemicals give different vegetables and
fruits their distinct colors. Xanthophylls and carotenes are the two broad categories
of carotenoids. Carotenoids are classified into two broad subclasses, xanthophylls
and carotenes; the former class contains oxygen, whereas the latter class is purely
hydrocarbons and contains no oxygen (Ngamwonglumlert et al. 2017). Carotenoids
found in the human diet may help to prevent cancer, age-related muscle degenera-
tion, atherosclerosis, and other disorders. These pigments are lipid-soluble and are
absorbed together with fats through the gut tract. Carotenoids have a variety of
beneficial activities in plants, including attracting pollinators, indicating fruit devel-
opment, assisting in photosynthesis, and protecting cells from light-induced damage
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in plants and in photosynthetic bacteria and algae (Lerfall 2016). The ability of
β-carotene to quench free radicals such as O2

�, OH�, and 1O2 without undergoing
any changes or degradation is largely due to its highly delocalized polyene backbone
or conjugated double bond structure, which is primarily responsible for its antioxi-
dant behavior. Carotenoids found in higher concentrations in particular tissues and
organs can protect lipids against oxidative damage.

1.3.5 Phenolic Compounds

Tannins, flavonoids, lignins, and stilbenes are examples of phenolic compounds,
which constitute a varied group of naturally occurring secondary metabolites com-
mon in plants. Multiple phenol rings distinguish these compounds, making them
suited for free radical scavenging in both de novo and in vitro conditions. Over 8000
phenolic bioactive substances have been detected in different plant families. Phenyl-
alanine/shikimic acid is the common intermediate precursor for all plant phenolic
compounds. Under in vitro conditions, polyphenols have been shown to be more
potent antioxidants than ascorbate and tocopherols. Phenols are the most significant
dietary elements for humans, providing bitterness, color, astringency, flavor, odor,
and oxidative stability in food (Schroeter et al. 2002). Antioxidative activities of
polyphenols are characterized by the presence of readily available donor hydrogen or
electron (Rice-Evans et al. 1997). In another way, phenols alter the peroxidation
kinetics of lipid membrane and packaging, thereby protecting the membrane integ-
rity (Schroeter et al. 2002). Furthermore, phenolics have been implicated in the H2O2

scavenging cascade in plant cells. Polyphenols play different functions in plants,
which include pigmentation to plants; increase and decrease of plant growth
regulators, for example, auxin; UV protectants against ionizing light; deterrence to
herbivores; phytoalexins; and signaling compounds in ripening and other plant
developmental activities (Huber et al. 2003; Lattanzio et al. 2006).

1.4 Conclusion

Antioxidants are created normally, but they are triggered and upregulated in stressful
situations, which help to retain the structural firmness of cell organelles while
probably reducing oxidative damage. Plant defense is aided by a number of antioxi-
dant enzymes. The production and activation of ROS scavenging enzyme systems in
transgenic plants to increase their tolerance to a variety of stress conditions. Further-
more, because numerous enzymes and their different isoforms are involved and
reactive oxygen species is only one of the major factors of plant resistance to
unfavorable environmental and biotic stimuli, further research is needed in this
field. The increasing number of articles addressing superoxide dismutase, common
antioxidant enzyme, ascorbate peroxidase, glutathione peroxidase enzyme, and
glutathione reductase enzymes demonstrates these enzymes’ favorable responses
to biotic and abiotic stressors. These findings highlight the need to investigate these
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enzymes in order to better understand their role in the scavenging of hazardous cell
products in a variety of species and the relationship between biological processes
and oxidative stress.
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