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The work presented in this book is the culmination of six years
work at the Optical Fibre Technology Centre, where all of the

authors have been based at one time or another. While most of us
have ended up in other departments, we would like to

acknowledge the role the OFTC played in making this work
possible. It has been an extraordinary place to work.



Preface

This book is intended to provide a concise and accessible introduction to mi-
crostructured polymer optical fibres (mPOF). Authors of books in any tech-
nical field need to make decisions about just how technical the explanations
should be, and we have taken the view that this book should be accessible
not only to academics but also, for example, to engineers who may wonder if
mPOF have anything to offer for their applications, or interested undergrad-
uate students. We have therefore aimed at conveying a correct conceptual
understanding of the ideas in the clearest possible way. Even within the the-
oretical sections of the book we have tried to avoid using equations as the
explanation of first resort. Indeed, often the same idea is explained in multi-
ple ways, first at a very conceptual level and then later in the book in more
detail. However, correctness is never sacrificed to achieve simplicity. Fuller
and more technical explanations can be found in the referenced scientific lit-
erature, and or in one of the several other books available in the general area
of microstructured fibres.

Much of the material in this book applies to microstructured fibres made
from any material, such as the explanations of how the fibres work, much
of the fabrication, the modelling techniques and some of the characterisation
techniques and applications. However the book is primarily about mPOF. The
community working in silica microstructured fibres (more commonly known as
“Photonic crystal fibres” or PCF) is much more extensive than that working
in polymers, and many of the applications they have explored have not been
attempted in mPOF, and in some cases are unsuitable for them. But while
mPOF is a younger technology, it also extends the scope of microstructured
fibres in important ways. The large suite of fabrication techniques available
in polymers mean not only that the fibres can be mass produced, but also
make it much easier to produce different hole structures. In silica, most mi-
crostructured fibres use the “stack and draw” technique, where a preform is
constructed by stacking capillaries and rods, which is then drawn to fibre.
This technique, while versatile in many ways, restricts the types of struc-
tures that can be made. By contrast, mPOFs can and have been made with a
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wide variety of hole arrangements. In addition, many of the applications that
are targeted in polymers require thick multimode fibres, often with extremely
large cores, while PCFs are usually single or few-moded and are no longer flex-
ible at large diameters. Finally, the material properties of polymer are very
different to those of silica, and they can be modified in many more ways, not
only by doping, but also by, for example, co-polymerisation or the attachment
of other active groups. The area of material modification (the topic of Chap-
ter 11) has not been treated extensively in the book primarily because little
work has been done in this area. One of our intentions in writing this book is
to stimulate interest in the field, and a greater involvement of chemists and
material scientists would be very welcome, though we add as a caveat that
any new materials used should remain drawable and preferably also highly
transparent.

The book is conceptually, though not formally divided into two parts. We
have tried to make each chapter relatively self contained, to make it easier to
extract the information quickly without extensive cross-referencing.

In the first part of the book we introduce the ideas behind microstruc-
tured fibres. A history and description of both polymer fibres (POFs) and mi-
crostructured optical fibres (MOFs) is given in Chapter 1. Chapter 2 focusses
on the basic concepts of waveguide theory, while Chapter 3, shows how the
properties of microstructured fibres differ from those of conventional fibres.
One of the challenges posed by the wealth of new and potentially complex
designs enabled by microstructured fibres has been to be able to understand
the effect of the fibre geometry on the optical properties. The modelling of
microstructured fibres in Chapter 4 compares the mathematical approaches
that have been used to model microstructured fibres, and extends them to
include approaches to design. The range of fabrication methods available to
mPOF fabrication is presented in Chapter 5 along with a discussion of the
control of hole deformation in Chapter 6. The first part of the book concludes
with a chapter on how to prepare mPOF for experiments and an outline of
the most common characterisation techniques in Chapter 7.

In the second part of the book we describe a number of applications that
use mPOF. The applications we have chosen are not comprehensive. We have
restricted ourselves to those where the results are more than preliminary,
or where the applications illustrate important new capabilities of the fibres.
In particular, we aim to show how the physical principles explained in the
first part of the book can be made technologically useful. Where possible we
have also tried to bench-mark the performance against conventional polymer
fibres where appropriate. The first two applications use microstructures by
themselves to achieve their effects, while the last two applications describe
modifications to the fibre by post-processing or doping.

Chapter 8 presents work on Hollow-Core mPOF (HC-mPOF), which is
particularly significant as it allows guidance of wavelengths where the poly-
mer is not considered transparent and in addition it provides a new route
to beating the lowest-loss record for conventional polymer fibre. Chapter 9,
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which presents a Graded Index Microstructured Polymer Optical Fibre for
large-core high-bandwidth FTTH applications. In Chapter 10 the fabrication
and characterisation of Bragg and Long Period Gratings in mPOF is de-
scribed. Chapter 11 outlines various doping methods that specifically use the
hole structure to introduce organic dyes and nanoparticles into mPOFs.

The area of microstructured polymer optical fibres is developing very
rapidly, and many of the results presented here will date quickly. While the
authors optimistically anticipate many further editions of this book, the de-
lay implicit in any publication can be considerable. To address this, we have
established a website where the latest results will be posted, together with
additional material such as animations, publications for downloading and rel-
evant news items. The web address is: www.mpof.net.au.
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Figure 3.4: A low contrast pho-
tonic bandgap fibre shows the
interaction of rod and core modes.
The wavelengths of light in the
core correspond to bandgaps in
the cladding structure.

Figure 8.7: The solid region sur-

rounding the core of a hollow core
fibre can support modes, as shown

here, which can couple light out of
the core.

Figure 3.5: Photonic bandgap effects seen in the spines of a seamouse (a)
and (b) and a cross-section through a spine showing the microstructure (c).

Figure 8.5: Different colours guided in the hollow core of a bandgap fibre
drawn to different diameters, changing through red, green, blue, blue-violet
and yellow (= red + green) as the structure size decreases.
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aa

Figure 11.2: (a) Cross-section of
a doped mPOF. Orange coloured
parts are Rhodamine doped.

Figure 11.3: Cross-section of a pre-
form prior to the dopant diffusion
fronts meeting at the core. The
green is the fluorescence of the dye.
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Figure 11.5: (a) The absorption spectrum of the Rhodamine 6G dye and
two fluorescence spectra corresponding to short (a few mm) and long (2 m)
fibres. (b) Photograph illustrating the re-absorption process.

Figure 11.7: Silica nanoparticles containing R6G and Rhodamine B and
their appearance under normal light and UV light.
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1

History and Applications of Polymer Fibres
and Microstructured Fibres

What’s past is prologue.

William Shakespeare, The Tempest

This chapter places the rest of the book in context. It describes the history and
state-of-the-art of both polymer fibres (POFs) and microstructured optical
fibres (MOFs). The physical properties of these fibre types differ considerably
in terms of the materials used and the possible waveguide geometries, and
these form the basis for the difference in their applications. This chapter
outlines both the physical differences and the major applications of each.
The applications of POFs are described in more detail because most of the
applications of microstructured fibres reappear in later chapters.

1.1 Considerations In The Early Stages Of Polymer
Fibre Development

Historically the important drawback of polymer fibres has been their relatively
low transmission compared to silica. This has, more than any other issue,
dominated the development of POF. It has spurred materials development
to reduce attenuation, and led to a gradual appreciation of the alternative
virtues of POF, such as their ability to remain flexible even with large cores,
the variety of fabrication techniques available for such fibres, and the fact that
they can incorporate many forms of dopant material.

The struggle to reduce transmission losses has been a dominating theme
during the development of all optical fibres. In the very earliest days, while the
major loss mechanisms were still unclear, there was a great deal of experimen-
tation with the materials used. In the early 1950s, some of the very first optical
fibres were made of polymer, with claddings made with liquid beeswax [Hecht
1999]. The coating was later changed to a liquid polymer which was cured
and painted black to prevent light leaking out. The requirement for painting
is itself highly suggestive of the poor quality of the optical guidance.



2 Microstructured Polymer Optical Fibres

In parallel to this polymer work, optical fibres were also being made of
silica, sometimes with polymer claddings. For more than a decade after these
early studies, the transmission of optical fibres of all types remained surpris-
ingly bad. When, in 1965 Charles Kao concluded that a loss of 20 dB/km was
needed for them to be practical for data transmission, that seemingly modest
figure was still 50× lower than what was possible using the best fibres at the
time [Hecht 1999]. Fortunately, Kao also supplied the insights into how to
achieve these lower losses. By greatly improving the purity of silica, he and
others were able to dramatically reduce the loss of silica fibres. The best silica
fibres now have a loss of some 0.15 dB/km at 1550 nm and form the backbone
of modern telecommunications systems.

This extraordinary success was deeply problematic for polymer optical fi-
bres, because the absorption loss of polymers is intrinsically much higher than
that of silica. Losses in all optical fibres are dominated at short wavelengths
by Raleigh scattering, but in polymers, absorption due to the harmonics of
the C-H vibration becomes very significant at wavelengths longer than about
600 nm. One approach to reducing this has been to shift the harmonics to
longer wavelengths by replacing hydrogen with something heavier, such as
deuterium or fluorine. The use of fluorination has substantially improved the
transmission of polymer fibres, not just by reducing the loss, but also by
extending their transmission window into the infrared. This is particularly
attractive because it allows the use of low-cost components such as sources
and detectors previously developed for use with silica fibres. This advantage
is offset by the additional cost of fluorination, always a difficult and expensive
process, which produces hydrofluoric acid as a by-product.

Theoretically, the best fluorinated material should have a loss approaching
that of silica [Koike 1998], though the best experimental results are about only
10 dB/km. For a variety of reasons, the most commonly used polymer for POF
remains polymethylmethacrylate (PMMA) which has a theoretical loss limit
of 106 dB/km at the most useful transmission window (650 nm). Other poly-
mers that have been used for POF include Polycarbonate and Polystyrene,
the former being used in applications that require higher thermal stability.
Figure 1.1 compares the transmission of fibres made from silica, fluorinated
polymer (the proprietary material CYTOP), and PMMA. Figure 1.2 shows
the transmission spectrum of PMMA in its transparency region.

Despite their high attenuation, POF have continued to be developed com-
mercially because they have some major advantages over silica. Figure 1.3
shows the transmission characteristics of PMMA based POF from the first
commercially available fibre, produced by DuPont in 1963. Processing im-
provements lowered the loss for PMMA step index fibres to around 150 dB/km
at 650 nm in the 1980s. Graded-index POF was first made in 1982 which by
1990 had achieved similar transmission characteristics to step index POF.
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Fig. 1.1. The transmission of fibres made from silica, fluorinated polymer (the
proprietary material CYTOP), and PMMA. After Murofushi [1996].

1.2 Fabrication Considerations For Polymer And Glass
Optical Fibres

Fabrication methods may not initially seem an important point of compari-
son between polymer and glasses, but in fact there are significant differences
between them which impact strongly on their applications. These are more
than simply cost related as the fabrication methods also define what kind of
fibres can be made using the two platforms. Understanding these constraints
is particularly significant for microstructured fibres, as in some cases these
allow the production of fibre types that would be very hard to produce by
any other means.

There are two general approaches to making optical fibres. In most cases,
particularly in silica, fibres are drawn from a “preform” – a short, fat version
of the fibre which contains the desired radial structure (see Chapter 5). In
other cases, the fibre is drawn directly from liquid material. In glasses, this
liquid is simply molten glass [Palais 1992], but for polymer fibres it may either
be molten polymer, or unpolymerised material [Daum et al. 2002].

Glass fibres are normally produced using preforms. The desired refractive
index profile is usually produced by doping with small amounts of materi-
als such as germanium or boron. The most important doping methods are
based around vapour deposition, in which layers of the desired material are
successively deposited and oxidised by a flame. This can be done in a very
controlled manner to produce a wide range of index profiles with very high


