Modern Parallel
Programming with
(++ and Assembly
Language

X86 SIMD Development Using AVX,
AVX2, and AVX-512

Daniel Kusswurm

Apress:

Modern Parallel
Programming with C++
and Assembly Language

Daniel Kusswurm

Apress-

Modern Parallel Programming with C++ and Assembly Language: X86 SIMD
Development Using AVX, AVX2, and AVX-512

Daniel Kusswurm
Geneva, IL, USA

ISBN-13 (pbk): 978-1-4842-7917-5 ISBN-13 (electronic): 978-1-4842-7918-2
https://doi.org/10.1007/978-1-4842-7918-2

Copyright © 2022 by Daniel Kusswurm

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Viktor Forgacs on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7918-2
https://﻿www.unsplash.com
https://orders-ny@springer-sbm.com﻿
https://﻿www.springeronline.com﻿
https://booktranslations@springernature.com
https://bookpermissions@springernature.com﻿
http://www.apress.com/bulk-sales
https://github.com/Apress
http://www.apress.com/source-code

Table of Contents

About the AUROFccccccmmiiemmmnsnssssnssssss s n s san s an s an s s nnnn s nnnnnnns xi
About the Technical ReVIEWETccussssmssssssssassssnsssssssssssssnssssssssasssssssssnsssassssnsnsas Xiii
AcknOowIedgmENtScuuermmisssssmsnnnmmmmsssssssssssnssssssssssssssssnnssessssssssssnnnnnssssssssssnnnnnnnnness XV
INtroduction........cccimnimmmmnmsnnne s ————————————— Xvii
Chapter 1: SIMD Fundamentalsccccurrrmmmsssssmmsnnmmmmsmssssssssssnssssssssssssssssssssssssssnns 1
WRAL IS SIMD? ...t sr s s ee e e nnnenens 1
Historical Overview of X86 SIMD ... 4
SIMD Data TYPES...ceerererrerrerrersessesssssessesssssessassessassssssssassas s s sss e s sas s s ssssasssssassassassasssssssnsnns 5
SIMD AFtRMELIC ... snn e 7
SIMD Integer AfthMELIC.cec et re e e e s a e e s e e s e e e e e e e sae e nnen 7

SIMD Floating-Point AfithmMELICceceeerere et sa e e sa e e a e ne e nnen 10
SIMD Data Manipulation Operationscccueeeerrrssessesses s se s e sennes 12
SIMD Programimingccceeeeeeesersersessesssnes 15
SUMMEAIY ...ttt e e s e e e e Re e R e Re e st eR e e e aenn e e nnennnaens 16
Chapter 2: AVX C++ Programming: Part 1........ccccusmmmmssnmmmssnsmsssnsssssssssssssssssnsssssns 17
INteger ArthMETIC.......ce e nn e r e nn e n e nnnnnnnan 17

101 T T=T T Lo) 1T SRS 17

11 o Lo ST L =T T O 22
Integer MURIPICAION.coie e e s a e s a e sa e e e e saesaenaen 24
Integer Bitwise Logical and Shift Operationsccoceeeeevereresece s 30
Bitwise LOGICal OPEIatiONSccoceurueererereeeiririse e n s 30

SHIft OPEIALIONS.....c.ceeeeeeeirireeecr e e e e e enp s 33

iii

iv

TABLE OF CONTENTS

C++ SIMD Intrinsic Function Naming Conventions...........cccccvveenereneniennscssesessessesensens 35
Image Processing Algorithms.........cooeoecccc e 37
Pixel Minimum and MaXimUM ..o s 37
PiX€l MEAN INTENSITYoveiererieeiriree et 45
31141 1P 2SS 50
Chapter 3: AVX C++ Programming: Part 2.........ccccevvmsssssssssssnnssmssssssssssssssssssssssnns 53
Floating-Point Operations...........c.ccuvvvrenininsensis s ses s neas 53
Floating-Point ArithMELIC......c.coee et a e e ae e e e saenannens 53
Floating-Point COMPAIEScccveeerererereeerreseresereesesesassesaesessesessessssessssessssessesssssssssessssessessssessssesansens 59
Floating-Point CONVEISIONS........cceueererereeerrerersesersesesesessessesessesessessssessssessesessessssessssessssessessssensssssansens 64
FIOAting-POoiNt ArTaYS........ccooieeicercirenires s sn s sn s nnnnnnnas 68
Mean and Standard DEVIALIONcococeeeerererererereseresese e 69
DiStanCe CalCUIALIONScocoeeeeerercreeese e e 78
Floating-Point MatriCesc.cccrrririeriersirser s 88
COIUMN IMBANS ...ttt s e e e e s s e e e e s R e e b e R e e e e s Re e e e s R e e e e neenn s 89
1141 1P 2SS 95
Chapter 4: AVX2 C++ Programming: Part 1.........cccccnmnnsssmmmsnmnnnsmsssssssssssssssssssnns 97
Integer ArthMETIC.......ccveeecere e e n e e 97
Addition and SUDIACTIONccccririii i ——————— 97
Unpacking and PACKINGccccceerererererereresereeserseseraesessesesessssessesessesessssassessssessesesssnsssssessesassesssneres 102
SiZ8 PrOMOTIONS....cvicisiiicsr s 107
IMAQE PrOCESSING....cueereererrerrerrersersersessessessessessesssssessessessssssssssssssessssssssssssssssssssnssnssnssans 113
PIXEI ClIPPING c.veueerererrerererereraeessesersesessesessessssessesesssssssssassessssessesessssessessssessssessssessesessesssssnsessssesseneres 114
RGB 10 GFAYSCAIEuceervrueererssseesesssse e seses s e ss s ss e e s se e s se b se b e s sb b s ae e e b ne e e ne e e e 119
=] T (0T SRS 128
PIXEl CONVEISIONScocueeeccceeseseseseseseseese e se e se s se e se s s s se s e ss s s s s s ss s s 137
SUMMAIY ...ttt e sr e sn e r s e s n e r e s e sr e e e nr s e s e e en e e e nn e e e e e nn e s e nnesnennnnnennnnnan 142

TABLE OF CONTENTS

Chapter 5: AUX2 C++ Programming: Part 2.........ccccccmmnnnsnnnmnssssnsnsssssssnssssssnsnnes 145
FIOAting-PoiNt ArTaYS........ccocvirircercer s sn s sn e sn s sn s sn s sn e sn e nnnnn 145
LEBAST SQUAIES.....cveveueeereeueeseresseese s e se s s e s se e e e s se et e s se e e e s b e e e e b e se e sE e s e Re e e e s e Re e e neenannneas 146
Floating-Point MatriCesc.ccververrerirserierserser s se s s sn s e sn e sns e 151
D U102 0o O 152
Matrix (4 x 4) MURIPIHCALIONcveceeeeeeecererer st e s see e re s e s sa s ae e ae e ae e saesa e saenees 161
Matrix (4 x 4) Vector MURIPICALIONcccceveeeeecerere et ra s ae e sa e e sae s 169
LD 1= T 181
SUMMEAIY ...ttt a e e e ae e e e a e e aeen e e e ae e s e nnennanns 188
Chapter 6: AUX2 C++ Programming: Part 3.........ccccccemmnmnnmmnmnsssssnnnnsssssssssssssnnns 189
CoONVOIULION PHIMETc.cieeee et r s s e 189
L0 L0 T T 0 (g 189
CONVOIULION MATN: 2D.......cocoeeeeerereseeseese e e 192
1D CONVOIULIONSc.eeeeiererircer s sn s sr e nn s sn s r e nn s nn e nn e nnenan 194
2D CONVOIULIONScoverrecrreerseressesse s sse e ses e sse s s e ess e e sss e sse e s e esesessessssesnesssssssansanens 206
NONSEPArADIE KEIMEIcveeeeererecererers e re s vas s e e e ae e e sas e e vesasss e sesasassesesasassenenasassenenens 206
L o L= Lo L= =T - PR 215
SUMMEAIY ...ttt a e e e ae e e e a e e aeen e e e ae e s e nnennanns 222
Chapter 7: AVX-512 C++ Programming: Part 1cccccvnemmmnnsssemnsnsssssnnssssssnnns 223
AVX-512 QVEIVIBW.....covruerreerueresessesesessesessesssessessssesse e ssssss s sssssssessssesssssssssssssssesssnesnes 223
Integer ArthMETIC.......ccc e sr e sr e sn e nn e nnenan 224
BaSiC AFTNMELIC ... 224
Merge Masking and Zero MaSsKINGcerueeeeererreenererinesesesesesesesesse s e e s e ssssssesesssssssssens 230
IMAQE PrOCESSING....cueiuereereirrerierrersersesse e ssesaessessssasssssassaesassaesassaesassaesassassassassassassssnsnns 237
RGB 10 GIAYSCAILceceeeceeereeeseeeseeseseseeseseesesese e e e e e s e e ss s e e s s e e s s s s s s s s e s s s sessssssaeas 237
=T I 1= 310 o T 240
210 TS L) O 247
SUMMEAIY ...ttt a s e a e b e ae e e a e e s n e e ae e s nnennanns 255

TABLE OF CONTENTS

vi

Chapter 8: AUX-512 C++ Programming: Part 2........cccccuseemmmnssssnnnsnssssssnsssssnnnns 259
Floating-Point Arithmetic.........c.ccocrcrincrcr e e 259
BaSiC AFTNMELIC ... 259
COMPArE OPEIALIONScveeecerereeerere et a e e b se e sese e e s e ae e e s s ne e e e nnannnnas 265
FIOAting-POoiNt ArTaYS......c.cvirieriirirer s sn s sn s sn s sn s sn s sn s sa e 269
Floating-Point MatriCesc.ccuerrrreriersensessinsesse s se e e e e snssns s snnnns 272
COVATIANCE MALTIX......eeeereeresesesesesesesesesese s se e 272
MatriX MURIPCATION ..o e sa e e e s 279
Matrix (4 x 4) Vector MURIPlICALION.........ccoceerrierercre e ses s sn e sn s sra s 283
010 110 0] 289
1D CONVOIULIONS.......vceeeereeeecsereeie e e e e b e e b e se e b s e ae e e s s ne e e nennennneas 289
2D CONVOIULIONS......c.cieieeeereriecsesee e s e e bR e e e e s R e se e e s e e e e s enn s 294
31111 P 7SS 300
Chapter 9: Supplemental C++ SIMD Programmingccccccsmssrssssssssssssnssssesssssas 303
USING CPUID.........ooeieceeetreres e ss s e ss s sne s sn s saenn s nne s nan e 303
Short Vector Math LiDrary ... e ssesesnens 315
Rectangular to Polar CoOrdinates..........ovveveerereererererr s sse e sse e sas e ssesessesesassassesassesasnenes 316
BOOY SUMTACE AFBA.......coviviuecrirrrieesisis e se s s e s a bbb e sb b s b e b b e e n e e e e 325
1111 112 SRS 331
Chapter 10: X86-64 Processor ArchiteCture.......ccuseemrmssssnnnnsssssnnsssssssnnsssssssnnns 333
DAtA TYPLS ...eererereri st e e n e n e n e n e n e nn e nnennennenan 333
Fundamental Data TYPESccceueerererereieririree s se s 334
NUMEKICAl DALA TYPESvveeeeerereeeiresreesese e bbb s ae e e s ne e e e s sennnens 335
SIMD DALA TYPES ..ueueereeueererresesisessssesesessess e e sssss e s se e e e se e e e se e e e s s e se e e s e se e e e nRe e sesessase e e nsannaes 335
IS (] 10 OO 335
Internal ArChiteCIUNE........covv s 336
GENEral-PurpoSe REJISIEIS........coecereeere sttt ae s e e ae e e sesae e s s e s e e ae e sae e sae e enenaenees 337
INSTAUCEION POINTENviccisriccss s 338
RFLAGS REJISTEN ... ccveereertrerecereeereesestesesseses e sassessesesaesessesassesassessssessssessssessessssessesesssesssessesassessnnenes 338
Floating-Point and SIMD REgISTEIS.......ccccvrerrrerrererererererererersssessesessesessessssesssessesessesessssessessssessenees 340

TABLE OF CONTENTS

IMXCSR REGISTEveueeertiueererisse st a s e s a s et e e et e b b d b e ae et b b e e e b e e e 342
INSTrUCHION OPEraANGS.......coveeeeeeeeeecec e sn e sn e snennenan 343
MEMOrY AQArESSINGccccvverrerierrerierrerser st s e se e e e e s e s e sn e e s sn e e e saesaesaesnenens 344
CONItION COUESccevrreirerreererreeresesese e e e e s e se s ne s e sns e snnns 346
SUMMEAIY ...t a s s ae e e r e s e a e e ae e s nnnnnnnnas 347
Chapter 11: Core Assembly Language Programming: Part 1cccccicmrvinennens 349
Integer ArthMETiC.......occoeeeeecer e sr e sn e nnenn 349

Addition and SUDTIACTION ... 350

MURTPICALION ...t eene e 353

DIVISION ...ttt e e e R e e A e Re e R A e Re e e R Re e e e Re e n e 357
Calling Convention: Part 1cccevevennnnnnrnse s sse s s ssessssssssssassasssssasssssassnnns 362
Memory AddresSing MOUES........c.cvcerrerrersessersesses s ses s se e e s sn e s snssnssnssnssnssnannns 368
0] 0T 0L SRS 373
CONItioN COUEScovrueererueererseeressee e se e se e se s e e sas e sae e snens 376
R3] (] 10T 381
SUMMEAIY ...t ae e e r e s n e s ae e s nnnnnnnas 386
Chapter 12: Core Assembly Language Programming: Part 2ccccccmrvinenncns 389
Scalar Floating-Point Arithmeticccccevevrrrce e 389

Single-PreciSion AFTNMELIC ..o s 389

Double-Precision ArithMETICcoeureeeerreecrire e 393

0] 10 LTSS 397

COMVEISIONSecucereeucceseeseesesesse e se e e e e s e ae e e e s ae e e e s Re e sE e s b e Re e s e s R e Re e sEeEeRe e e senne e e nensennneas 400
Scalar FIoating-Point ArTays........ccccevvvrnrrsrnnen s ses e s e s sssssssens 409
Calling Convention: Part 2...........ccoeeierninesnere s sns s s s 411

STACK FIAMES......cecvceeeeeeteectceete et b bbb bbb e s e s e s s b s b e s e s nsnsesnsnsnsesnsnsas 412

Using Nonvolatile General-Purpose REGISIErS.......uuvrriiiiererinisieserisisesesesssss e sesss e sessssssseens 416

Using Nonvolatile SIMD REGISIEIScccceerirrriererirrnsneririns s ses s e s s e s sssssesessssssesssssssssssens 420

Macros for Function Prologues and EPIlOQUESccceerernernsncsesesesesesss e sesss s sesssssssessssesssnenns 425
1111 11T SRS 431

vii

TABLE OF CONTENTS

Chapter 13: AVX Assembly Language Programming: Part 1ccecemnrnssnnnnnn 433
Integer ArthMETIC.......ccoeeee e s r e sr e sn e sn e nnenens 433
Addition and SUDTFACTIONccecviieecece e sr e sr e sr e e e sr e sa e sa e sa e saennenn 433
MURTPICALION ...ttt e e e s e e 437
Bitwise LOgICal OPEratioNSccceeeerueerererreeseririee s 441
Arithmetic and LOgICal SNIfSc.coreiirieerecr e e 443
Image Processing Algorithms.........ccvvercrencscrr s sae e 444
Pixel Minimum and MaXimUIM ... s e ss e s e s s sessssssaeas 444
e B T= T Ty 1 448
SUMMEAIY ...t e a e s a s e ae e s e a e e s e n e e aenn e e nnennanas 453
Chapter 14: AVX Assembly Language Programming: Part 2cccuccennrnsssnnnnns 455
Floating-Point Operations..........cccucceecieenicscsscrr e 455
Floating-Point ArthmEtiC.......coceviie e s 455
Fl0ating-Point COMPAIEScccverereerererereresersesersssessesessesassessesessesessesessessssessssessssessssssssssssesassessenenes 461
FIoating-Point ArTays........ccocvcrircircr s sn s sn s sn s sn e snenn 465
Mean and Standard DeViation ... 466
Distance CalCUIALIONS ..o e e 470
Floating-Point MatriCescccverrrrerrrsirirsirrer s se e e s sn s see e 477
SUMMEAIY ...t a e e a e e ae e e r e e e e n e aenn s e nnernanas 481
Chapter 15: AVX2 Assembly Language Programming: Part 1ccccviinnnnnns 483
Integer ArthMETIC.......cce e sr e sr e n e sn e nn e nnenrnnnn 483
BaSIC OPEIAtiONS........cceeerriueiererrsieeresis et a e a e e b e e b e bR R a e e R e 483
T 72= 3 o (0] 1110 110 OO 486
IMAQE PrOCESSING....ceiueeeereerrerrerreererressessessessessessessessessessesaessssasssesresresnesnesnesnssnnsnensansans 490
PIXEI CIIPPING ..ttt e s e e bese e b s e ae e e b e ne e e nennennneas 491
RGB 10 GFAYSCAIEceereeeecereeieeesi e sb s e s e e s ne e e e ne e s e 495
PiXEl CONVEISIONSveeiueiierircriec st ss st st sa s et d e b et a e e bbb e e e e 501
31111 P 7SS 504

viii

TABLE OF CONTENTS

Chapter 16: AVX2 Assembly Language Programming: Part 2ccccerrvsnnnnnns 505
FIOAting-PoiNt ArTaYS........ccocvirircercer s sn s sn e sn s sn s sn s sn e sn e nnnnn 505
Floating-Point MatriCesc.ccvvrverrerierrerersirrer s sn e e e snssne e 510
D U102 0o O 510
Matrix (4 x 4) MURIPIHCALIONcveceeeeeeecererer st e s see e re s e s sa s ae e ae e ae e saesa e saenees 514
Matrix (4 x 4) Vector MURIPIICALIONcceveeerecerere et se e a e e ae e e sa e e es 518
SigNAl ProCESSING.....ccuierrrireririrse et s e sa s sn s s re s a s nr s ne e 525
1111 11T SRS 530
Chapter 17: AVX-512 Assembly Language Programming: Part 1.........ccccvinennuns 533
Integer ArthMETIC.......ccoeeeeeeecec e sr e n e sn e sn e nnenen 533
BaSiC OPEIAtiONS........cocourueuecrerieeeiesise et a st e s s s e e s n e e e ne e e e 533
MaSKEA OPEIALIONS......cccoveuecrereeeeesereereeeses e a st e s e e se e b s s ae e e s s be e e e s nennneas 537
IMAQE PrOCESSING....cueiuereereirrerierrersersesse e ssesaessessssasssssassaesassaesassaesassaesassassassassassassssnsnns 542
=T I 1= 310 o 1 T 542
210 TS L) [546
SUMMEAIY ...ttt a e e e ae e e e a e e aeen e e e ae e s e nnennanns 552
Chapter 18: AVX-512 Assembly Language Programming: Part 2...........ccusueenne 553
Floating-Point Arithmetic.........c.ccocverirsrcr e e 553
BaSiC AFTNMETICccveeeeecereeie e e r e e n e r e 553
COMPArE OPEIAtIONScveveeeereeereererreserreresersesersesessesessesassesassesse e ssesessesessesasseraesesaesesaesesasssnseansessenenes 558
Floating-Point MatriCescccuerrrrrsrnerir s sn s e nn 561
COVArIANCE MAIFIX....c.cceiecieerir s e b e e e e bbb e e e e e e e e 561
MatriX MUBIPHCATION........vceeeeeee e e 568
Matrix (4 x 4) Vector MURPHCALION..........ccou i 573
SIGNAL PrOCESSINGcveveueerereeueeserseeeses e sese s e se e s e e e se e e e se e e e s e se e e s e se e e s e e Re e se e saa e e nessannaes 578
31111 P2 7SS 586
Chapter 19: SIMD Usage and Optimization Guidelinescccccvrsssssssennnnnssesssnns 587
SIMD USage GUIABIINESceceeverrerierrerierser s ses s ses e e s sessassassas s sss s s sssssssassssssssnsnnns 587
C++ SIMD Intrinsic Functions or x86 Assembly LANQUAQE..........ccceeerrererererrererrerserereesersesersesesserssees 588

ix

TABLE OF CONTENTS

SIMD Software Development GUIElINES.........ccccererererernsne e 589
Identify Functions for SIMD TECHNIQUEScceeerrrrrererersnseesessssesesssssesesessssssessssssssesssssssssssssssssssnnns 589
Select Default and Explicit SIMD InStruction Setsccvvvrevrierniersre e senaens 589
Establish Benchmark Timing ODJECTHIVES.ccvererererererereserrs s sesse s e e ssesessesessesassesassesssnenes 590
Code EXPliCit SIMD FUNCHONS.......cccovrereertrereererre e sessesessesessesssessssessesessessssessssessssessensssssassessssessenenns 590
Benchmark Code to Measure PerfOrmManCe.........ccuuvcvruneenesssnesessssssssesessssssessssssssesessssssssessssssssnnns 590
Optimize EXPlICIt SIMD COUEcceererrerererererrerersesessesessesessessesessesessesessessssessssessesessesssssssssessssesseneres 591
Repeat Benchmarking and Optimization STEPScccvvvverrierrierr e sa e sa s 591

Optimization Guidelines and TEChNIQUES........cccceeererererere e sre e e sessne e snenens 591
GENEIAI TECHNIQUEScueveeecereeeeeise e e s e b s s ae e e s s ne e e e e nannnens 591
Assembly Language Optimization TECRNIQUES.........ccceurueerererireiererre e 592

SIMD Code Complexity vS. PErformance..........cccvvvverversersensessensessesses s sessessessessessensens 594

SUMMEAIY ...t a e e e ae e e e re e s e n e ae e s e nnernanas 602

Appendix A: Source Code and Development TOOIS.........ccevemsssssssnnsnnnssessssssssnnses 603

Source Code Download and SETUPccvceerirernieresre e 603

DevelopmENt TOOISccccererierirer e sn s snesn e nnenn 604
Visual Studio and WINAOWScccoeeureiiierireeririreesesisse s e sessns 604
C 0 R 14 1o I T 1 GOSN 616

Appendix B: References and RESOUICESccrussmmrsssnsrsssnsssssnsssssnnssssnnssssnnssssanss 621

C++ SIMD Intrinsic Function Documentation............cceeeeeeeecsesecess s snnnens 621

X86 Programming REfErENCEScccvvrververierninrirserses s se s ssssas s 621

X86 Processor INformation...........cccecvcrsrsessesses s s 622

Software Development TOOIS.........ccccveerrcrreerr s 622

Algorithm RefErNCES.......covevereereererirre s sae s sa e saesa e sa s sn e sassn s sn s saesae s 622

CH+ REIBIENCES ...c.veceecrcee et r e n e n e 623

Utilities, TOOIS, aNd LiDraries.........cccvevveerirreerierreesierssesses e sseessesssessesssessesssssssssssssesssesns 624

About the Author

Daniel Kusswurm has over 35 years of professional experience as a
software developer, computer scientist, and author. During his career,

he has developed innovative software for medical devices, scientific
instruments, and image processing applications. On many of these
projects, he successfully employed C++ intrinsic functions, x86 assembly
language, and SIMD programming techniques to significantly improve
the performance of computationally intense algorithms or solve unique
programming challenges. His educational background includes a BS

in electrical engineering technology from Northern Illinois University
along with an MS and PhD in computer science from DePaul University.
Daniel Kusswurm is also the author of Modern X86 Assembly Language
Programming (ISBN: 978-1484200650), Modern X86 Assembly Language
Programming, Second Edition (ISBN: 978-1484240625), and Modern Arm
Assembly Language Programming (ISBN: 978-1484262665), all published
by Apress.

xi

About the Technical Reviewer

Mike Kinsner is a principal engineer at Intel developing languages and parallel programming models for a
variety of computer architectures. He has recently been one of the architects of Data Parallel C++. He started
his career at Altera working on high-level synthesis for field-programmable gate arrays and still contributes
to spatial programming models and compilers. Mike is a representative within the Khronos Group standards
organization, where he works on the SYCL and OpenCL open industry standards for parallel programming.
Mike holds a PhD in computer engineering from McMaster University and recently coauthored the
industry’s first book on SYCL and Data Parallel C++.

xiii

Acknowledgments

The production of a motion picture and the publication of a book are somewhat analogous. Movie trailers
extol the performances of the lead actors. The front cover of a book trumpets the authors’ names. Actors and
authors ultimately receive public acclamation for their efforts. It is, however, impossible to produce a movie
or publish a book without the dedication, expertise, and creativity of a professional behind-the-scenes team.
This book is no exception.

I'would like to thank the talented editorial team at Apress including Steve Anglin, Mark Powers, and
Jim Markham for their efforts and contributions. I would also like to thank the entire production staff
at Apress. Michael Kinsner warrants applause and a thank you for his comprehensive technical review
and constructive comments. Ed Kusswurm merits kudos for reviewing each chapter and offering helpful
suggestions. I accept full responsibility for any remaining imperfections.

Thanks to my professional colleagues for their support and encouragement. Finally, I would like to
recognize parental nodes Armin (RIP) and Mary along with sibling nodes Mary, Tom, Ed, and John for their
inspiration during the writing of this book.

XV

Introduction

SIMD (single instruction multiple data) is a parallel computing technology that simultaneously executes the
same processor operation using multiple data items. For example, a SIMD-capable processor can carry out
an arithmetic operation using several elements of a floating-point array concurrently. Programs often use
SIMD operations to accelerate the performance of computationally intense algorithms in machine learning,
image processing, audio/video encoding and decoding, data mining, and computer graphics.

Since the late 1990s, both AMD and Intel have incorporated various SIMD instruction set extensions
into their respective x86 processors. The most recent x86 SIMD instruction set extensions are called AVX
(Advanced Vector Extensions), AVX2, and AVX-512. These SIMD resources facilitate arithmetic and other
data processing operations using multiple elements in a 128-, 256-, or 512-bit wide processor register (most
standard x86 arithmetic operations are carried out using scalar values in an 8-, 16-, 32-, or 64-bit wide
register).

Despite the incorporation of advanced SIMD capabilities in x86 modern processors, high-level
language compilers are sometimes unable to fully exploit these resources. To optimally utilize the SIMD
capabilities of a modern x86 processor, a software developer must occasionally write SIMD code that
explicitly employs the AVX, AVX2, or AVX-512 instruction sets. A software developer can use either C++
SIMD intrinsic functions or assembly language programming to accomplish this. A C++ SIMD intrinsic
function is code that looks like an ordinary C++ function but is handled differently by the compiler. More
specifically, the compiler directly translates a C++ SIMD intrinsic function into one or more assembly
language instructions without the overhead of a normal function (or subroutine) call.

Before continuing, a couple of caveats are warranted. First, the SIMD programming techniques
described in this book are not appropriate for every “slow” algorithm or function. Both C++ SIMD intrinsic
function use and assembly language code development should be regarded as specialized programming
tools that can significantly accelerate the performance of an algorithm or function when judiciously
employed. However, it is important to note that explicit SIMD coding usually requires extra effort during
initial development and possibly when performing future maintenance. Second, it should be noted that
SIMD parallelism is different than other types of parallel computing you may have encountered. For
example, the task-level parallelism of an application that exploits multiple processor cores or threads to
accelerate the performance of an algorithm is different than SIMD parallelism. Task-level parallelism and
SIMD parallelism are not mutually exclusive; they are frequently utilized together. The focus of this book is
x86 SIMD parallelism and software development, specifically the computational resources of AVX, AVX2,
and AVX-512.

Modern Parallel Programming with C++
and Assembly Language

Modern Parallel Programming with C++ and Assembly Language is an instructional text that explains
x86 SIMD programming using both C++ intrinsic functions and assembly language. The content and
organization of this book are designed to help you quickly understand and exploit the computational

XVvii

INTRODUCTION

resources of AVX, AVX2, and AVX-512. This book also contains an abundance of source code that is
structured to accelerate learning and comprehension of essential SIMD programming concepts and
algorithms. After reading this book, you will be able to code performance-enhanced AVX, AVX2, and
AVX-512 functions and algorithms using either C++ SIMD intrinsic functions or x86-64 assembly language.

Target Audience

The target audience for Modern Parallel Programming with C++ and Assembly Language is software
developers including

e Software developers who are creating new programs for x86 platforms and want
to learn how to code performance-enhancing SIMD algorithms using AVX, AVX2,
or AVX-512

e Software developers who need to learn how to write x86 SIMD functions to
accelerate the performance of existing code using C++ SIMD intrinsic functions or
x86-64 assembly language functions

e Software developers, computer science/engineering students, or hobbyists who want
to learn about or need to gain a better understanding of x86 SIMD architectures and
the AVX, AVX2, and AVX-512 instruction sets

Readers of this book should have some previous programming experience with modern C++ (i.e.,
ISO C++11 or later). Some familiarity with Microsoft’s Visual Studio and/or the GNU toolchain will also be
helpful.

Content Qverview

The primary objective of this book is to help you learn x86 SIMD programming using C++ SIMD intrinsic
functions and x86-64 assembly language. The book’s chapters and content are structured to achieve this
goal. Here is a brief overview of what you can expect to learn.

Chapter 1 discusses SIMD fundamentals including data types, basic arithmetic, and common data
manipulation operations. It also includes a brief historical overview of x86 SIMD technologies including
AVX, AVX2, and AVX-512.

Chapters 2 and 3 explain AVX arithmetic and other essential operations using C++ SIMD intrinsic
functions. These chapters cover both integer and floating-point operands. The source code examples
presented in these (and subsequent) chapters are packaged as working programs, which means that you can
run, modify, or otherwise experiment with the code to enhance your learning experience.

Chapters 4, 5, and 6 cover AVX2 using C++ SIMD intrinsic functions. In these chapters, you will learn
how to code practical SIMD algorithms including image processing functions, matrix operations, and signal
processing algorithms. You will also learn how to perform SIMD fused-multiply-add (FMA) arithmetic.

Chapters 7 and 8 describe AVX-512 integer and floating-point operations using C++ SIMD intrinsic
functions. These chapters also highlight how to take advantage of AVX-512’s wider operands to improve
algorithm performance.

Chapter 9 covers supplemental x86 SIMD programming techniques. This chapter explains how to
programmatically detect whether the target processor and its operating system support the AVX, AVX2, or
AVX-512 instruction sets. It also describes how to utilize SIMD versions of common C++ library functions.

Chapter 10 explains x86-64 processor architecture including data types, register sets, memory
addressing modes, and condition codes. The purpose of this chapter is to provide you with a solid
foundation for the subsequent chapters on x86-64 SIMD assembly language programming.

xviii

INTRODUCTION

Chapters 11 and 12 cover the basics of x86-64 assembly language programming. In these chapters,
you will learn how to perform scalar integer and floating-point arithmetic. You will also learn about
other essential assembly language programming topics including for-loops, compare operations, data
conversions, and function calling conventions.

Chapter 13 and 14 explain AVX arithmetic and other operations using x86-64 assembly language. These
chapters also illustrate how to code x86-64 assembly language functions that perform operations using
arrays and matrices.

Chapters 15 and 16 demonstrate AVX2 and x86-64 assembly language programming. In these chapters,
you will learn how to code x86-64 assembly language functions that perform image processing operations,
matrix calculations, and signal processing algorithms using the AVX2 instruction set.

Chapters 17 and 18 focus on developing x86-64 assembly language code using the AVX-512
instruction set.

Chapter 19 discusses some usage guidelines and optimization techniques for both C++ SIMD intrinsic
functions and assembly language code development.

Appendix A describes how to download and set up the source code. It also includes some basic
instructions for using Visual Studio and the GNU toolchain. Appendix B contains a list of references and
resources that you can consult for additional information about x86 SIMD programming and the AVX, AVX2,
and AVX-512 instruction sets.

Source Code

The source code published in this book is available on GitHub at https://github.com/Apress/modern-
parallel-programming-cpp-assembly.

Caution The sole purpose of the source code is to elucidate programming topics that are directly related
to the content of this book. Minimal attention is given to essential software engineering concerns such as
robust error handling, security risks, numerical stability, rounding errors, or ill-conditioned functions. You
are responsible for addressing these concerns should you decide to use any of the source code in your own
programs.

The C++ SIMD source code examples (Chapters 2-9) can be built using either Visual Studio
(version 2019 or later, any edition) on Windows or GNU C++ (version 8.3 or later) on Linux. The x86-64
assembly language source code examples (Chapters 11-18) require Visual Studio and Windows. If you are
contemplating the use of x86-64 assembly language with Linux, you can still benefit from this book since
most of the x86-AVX instruction explanations are OS independent (developing assembly language code that
runs on both Windows and Linux is challenging due to differences between the various development tools
and runtime calling conventions). To execute the source code, you must use a computer with a processor
that supports AVX, AVX2, or AVX-512. You must also use a recent 64-bit operating system that supports these
instruction sets. Compatible 64-bit operating systems include (but not limited to) Windows 10 (version
1903 or later), Windows 11, Debian (version 9 or later), and Ubuntu (version 18.04 LTS or later). Appendix A
contains additional information about the source code and software development tools.

Xix

https://github.com/Apress/modern-parallel-programming-cpp-assembly
https://github.com/Apress/modern-parallel-programming-cpp-assembly

INTRODUCTION

Additional Resources

An extensive set of x86-related SIMD programming documentation is available from both AMD and Intel.
Appendix B lists several important resources that both aspiring and experienced SIMD programmers will
find useful. Of all the resources listed in Appendix B, two stand out.

The Intel Intrinsics Guide website (https://software.intel.com/sites/landingpage/
IntrinsicsGuide) is an indispensable online reference for information regarding x86 C++ SIMD intrinsic
functions and data types. This site documents the C++ SIMD intrinsic functions that are supported by the
Intel C++ compiler. Most of these functions can also be used in programs that are developed using either
Visual C++ or GNU C++. Another valuable programming resource is Volume 2 of the reference manual
entitled Intel 64 and IA-32 Architectures Software Developer’s Manual, Combined Volumes: 1, 2A, 2B, 2C,
2D, 34, 3B, 3C, 3D, and 4 (waw.intel.com/content/www/us/en/developer/articles/technical/intel-
sdm.html). Volume 2 contains comprehensive information for every AVX, AVX2, and AVX-512 processor
instruction including detailed operational descriptions, lists of valid operands, affected status flags, and
potential exceptions. You are strongly encouraged to consult this reference manual when developing your
own x86 SIMD code to verify correct instruction usage.

XX

https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
http://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

CHAPTER 1

SIMD Fundamentals

Chapter 1 introduces x86 SIMD fundamentals and essential concepts. It begins with a section that defines
SIMD. This section also introduces SIMD arithmetic using a concise source code example. The next section
presents a brief historical overview of x86 SIMD instruction set extensions. The principal sections of Chapter 1
are next. These highlight x86 SIMD concepts and programming constructs including data types, arithmetic
calculations, and data manipulation operations. These sections also describe important particulars related
to AVX, AVX2, and AVX-512. It is important for you to understand the material presented in this chapter since
it provides the necessary foundation to successfully comprehend the topics and source code discussed in
subsequent chapters.

Before proceeding, a few words about terminology are warranted. In all ensuing discussions, I will use
the official acronyms AVX, AVX2, and AVX-512 when explaining specific features or instructions of these
x86 SIMD instruction set extensions. I will use the term x86-AVX as an umbrella expression for x86 SIMD
instructions or computational resources that pertain to more than one of the aforementioned x86 SIMD
extensions. The terms x86-32 and x86-64 are used to signify x86 32-bit and 64-bit processors and execution
environments. This book focuses exclusively on the latter, but the former is occasionally mentioned for
historical context or comparison purposes.

What Is SIMD?

SIMD (single instruction multiple data) is a parallel computing technique whereby a CPU (or processing
element incorporated within a CPU) performs a single operation using multiple data items concurrently.
For example, a SIMD-capable CPU can carry out a single arithmetic operation using several elements
of a floating-point array simultaneously. SIMD operations are frequently employed to accelerate the
performance of computationally intense algorithms and functions in machine learning, image processing,
audio/video encoding and decoding, data mining, and computer graphics.

The underlying concepts behind a SIMD arithmetic calculation are probably best illustrated by a
simple source code example. Listing 1-1 shows the source code for three different calculating functions that
perform the same arithmetic operation using single-precision floating-point arrays.

Listing 1-1. Example Ch01_01

#include <immintrin.h>
#include "Cho1 01.h"

© Daniel Kusswurm 2022
D. Kusswurm, Modern Parallel Programming with C++ and Assembly Language,
https://doi.org/10.1007/978-1-4842-7918-2_1

https://doi.org/10.1007/978-1-4842-7918-2_1

CHAPTER 1 © SIMD FUNDAMENTALS

void CalcZ Cpp(float* z, const float* x, const float* y, size t n)

{
for (size t i = 0; i < n; i++)
z[i] = x[i] + y[i];
}
void CalcZ Tavx(float* z, const float* x, const float* y, size t n)
{
size t i = 0;
const size t num_simd_elements = 8;
for (; n - i >= num_simd elements; i += num simd_elements)
{
// Calculate z[i:i+7] = x[1:i47] + y[i:1+7]
_ m256 x_vals = mm256_loadu ps(&x[i]);
_ m256 y vals = mm256_loadu ps(&y[i]);
_m256 z_vals = _mm256_add_ps(x_vals, y_vals);
_mm256_storeu ps(8z[i], z vals);
}
// Calculate z[i] = x[i] + y[i] for any remaining elements
for (; 1< n; i+4=1)
2[i] = x[i] + y[il;
}
; ___
H Cho1_o1 fasm.asm

NSE equ 8

.code
CalcZ_Aavx proc
XOT Tax,rax

Loop1l: mov r10,r9
sub r10,rax
cmp 110,NSE
jb Loop2

; Calculate z[i:i+7] = x[1:i+47] + y[i:1+7]
vmovups ymmo,ymmword ptr [rdx+rax*4]
vmovups ymml,ymmword ptr [r8+rax*4]
vaddps ymm2,ymmo, ymm1
vmovups ymmword ptr [rcx+rax*4],ymm2

snum_simd_elements

;1= 0;

;110 =
;110 =

)

n
n-i

;is n - 1 < NSE?
;jump if yes

symmo = x[1i:
symml = y[i:
;z[1:i+7] =

i+7]
i+7]
x[1:i+47] + y[i:1+7]

;save z[i:i+7]

CHAPTER 1 © SIMD FUNDAMENTALS

add rax,NSE ;1 += NSE

jmp Loop1 ;repeat Loopl until done
Loop2: cmp rax,r9 ;is 1 >=n?

jae Done ;jump if yes

; Calculate z[i] = x[i] + y[i] for remaining elements

vmovss xmmo0,reald ptr [rdx+rax*4] ;xmm0 = x[i]

vmovss xmml,reald ptr [r8+rax*4] sxmml = y[i]

vaddss xmm2,xmmo, xmm1 ;z[1] = x[1] + y[i]

vmovss reald ptr [rcx+rax*4],xmm2 ;save z[1i]

inc rax ;1 +=1

jmp Loop2 ;repeat Loop2 until done
Done: vzeroupper ;clear upper bits of ymm regs

ret ;return to caller
CalcZ_Aavx endp

end

The function CalcZ_Cpp(), shown at the beginning of Listing 1-1, is a straightforward non-SIMD C++
function that calculates z[i] = x[1] + y[i]. However, a modern C++ compiler may generate SIMD code
for this function as explained later in this section.

The next function in Listing 1-1, CalcZ_Iavx(), calculates the same result as CalcZ_Cpp() but employs
C++ SIMD intrinsic functions to accelerate the computations. In CalcZ_Tavx(), the first for-loop uses the
C++ SIMD intrinsic function _mm256_loadu_ps() to load eight consecutive elements from array x (i.e.,
elements x[1:1+7]) and temporarily saves these elements in an __m256 object named x_vals. An __m256
object is a generic container that holds eight values of type float. The ensuing _mm256 _load ps() call
performs the same operation using array y. This is followed by a call to_mm256_add_ps() that calculates
z[1:1+7] = x[1:i+7] + y[i:i+7]. What makes this code different from the code in the non-SIMD function
CalcZ Cpp()isthat_mm256_add_ps() performs all eight array element additions concurrently. The final
C++ intrinsic function in the first for-loop, mm256_storeu_ps(), saves the resulting array element sums to
z[1i:1+7].

It is important to note that since the first for-loop in CalcZ_Iavx() processes eight array elements per
iteration, it must terminate if there are fewer than eight elements remaining to process. The second for-loop
handles any remaining (or residual) elements and only executes if n is not an integral multiple of eight.

It is also important to mention that the C++ compiler treats C++ SIMD intrinsic function calls differently
than normal C++ function calls. In the current example, the C++ compiler directly translates each __mm256
function into its corresponding AVX assembly language instruction. The overhead associated with a normal
C++ function call is eliminated.

The final function in Listing 1-1 is named CalcZ_Aavx(). This is an x86-64 assembly language function
that performs the same array calculation as CalcZ Cpp() and CalcZ Iavx().What is noteworthy about
this function is that the AVX instructions vmovps and vaddps contained in the code block are the same
instructions that the C++ compiler emits for the C++ SIMD intrinsic functions_mm256_loadu_ps() and
_mm256_add_ps (), respectively. The remaining code in CalcZ_Aavx() implements the two for-loops that are
also implemented in function CalcZ_Cpp().

Do not worry if you are somewhat perplexed by the source code in Listing 1-1. The primary purpose of
this book is to teach you how to develop and code SIMD algorithms like this using either C++ SIMD intrinsic
functions or x86-64 assembly language. There are two takeaway points from this section. First, the CPU
executes most SIMD arithmetic operations on the specified data elements concurrently. Second, similar
design patterns are often employed when coding a SIMD algorithm regardless of whether C++ or assembly
language is used.

CHAPTER 1 © SIMD FUNDAMENTALS

One final note regarding the code in Listing 1-1. Recent versions of mainstream C++ compilers such
as Visual C++ and GNU C++ are sometimes capable of automatically generating efficient x86 SIMD code
for trivial arithmetic functions like CalcZ Cpp(). However, these compilers still have difficulty generating
efficient SIMD code for more complicated functions, especially ones that employ nested for-loops or
nontrivial decision logic. In these cases, functions written using C++ SIMD intrinsic functions or x86-64
assembly language code can often outperform the SIMD code generated by a modern C++ compiler.
However, employing C++ SIMD intrinsic functions does not improve performance in all cases. Many
programmers will often code computationally intensive algorithms using standard C++ first, benchmark the
code, and then recode bottleneck functions using C++ SIMD intrinsic functions or assembly language.

Historical Overview of x86 SIMD

For aspiring x86 SIMD programmers, having a basic understanding about the history of x86 SIMD and its
various extensions is extremely beneficial. This section presents a brief overview that focuses on noteworthy
x86 SIMD instruction set extensions. It does not discuss x86 SIMD extensions incorporated in special-use
processors (e.g., Intel Xeon Phi) or x86 SIMD extensions that were never widely used. If you are interested in
a more comprehensive chronicle of x86 SIMD architectures and instruction set extensions, you can consult
the references listed in Appendix B.

Intel introduced the first x86 SIMD instruction set extension, called MMX, in 1997. This extension
added instructions that facilitated simple SIMD operations using 64-bit wide packed integer operands. The
MMX extension did not add any new registers to the x86 platform; it simply repurposed the registers in the
x87 floating-point unit for SIMD integer arithmetic and other operations. In 1998, AMD launched an x86
SIMD extension called 3DNow, which facilitated vector operations using single-precision floating-point
values. It also added a few new integer SIMD instructions. Like MMX, 3DNow uses x87 FPU registers to hold
instruction operands. Both MMX and 3DNow have been superseded by newer x86 SIMD technologies and
should not be used to develop new code.

In 1999, Intel launched a new SIMD technology called Streaming SIMD extensions (SSE). SSE adds
128-bit wide registers to the x86 platform and instructions that perform packed single-precision (32-bit)
floating-point arithmetic. SSE also includes a few packed integer instructions. In 2000, SSE2 was launched
and extends the floating-point capabilities of SSE to cover packed double-precision (64 bit) values. SSE2 also
significantly expands the packed integer capabilities of SSE. Unlike x86-32 processors, all x86-64-compatible
processors from both AMD and Intel support the SSE2 instruction set extension. The SIMD extensions
that followed SSE2 include SSE3 (2004), SSSE3 (2006), SSE4.1 (2008), and SSE4.2 (2008). These extensions
incorporated additional SIMD instructions that perform operations using either packed integer or floating-
point operands, but no new registers or data types.

In 2011, Intel introduced processors that supported a new x86 SIMD technology called Advanced Vector
Extensions (AVX). AVX adds packed floating-point operations (both single precision and double precision)
using 256-bit wide registers. AVX also supports a new three-operand assembly language instruction syntax,
which helps reduce the number of register-to-register data transfers that a software function must perform.
In 2013, Intel unveiled AVX2, which extends AVX to support packed-integer operations using 256-bit wide
registers. AVX2 also adds enhanced data transfer capabilities with its broadcast, gather, and permute
instructions. Processors that support AVX or AVX2 may also support fused-multiply-add (FMA) operations.
FMA enables software algorithms to perform sum-of-product (e.g., dot product) calculations using a single
floating-point rounding operation, which can improve both performance and accuracy.

CHAPTER 1 © SIMD FUNDAMENTALS

Beginning in 2017, high-end desktop and server-oriented processors marketed by Intel included a new
SIMD extension called AVX-512. This architectural enhancement supports packed integer and floating-point
operations using 512-bit wide registers. AVX-512 also includes SIMD extensions that facilitate instruction-
level conditional data merging, floating-point rounding control, and embedded broadcast operations.

In addition to the abovementioned SIMD extensions, numerous non-SIMD instructions have been
added to the x86 platform during the past 25 years. This ongoing evolution of the x86 platform presents
some challenges to software developers who want to exploit the latest instruction sets and computational
resources. Fortunately, there are techniques that you can use to determine which x86 SIMD and non-SIMD
instruction set extensions are available during program execution. You will learn about these methods
in Chapter 9. To ensure software compatibility with future processors, a software developer should never
assume that a particular x86 SIMD or non-SIMD instruction set extension is available based on processor
manufacturer, brand name, model number, or underlying microarchitecture.

SIMD Data Types

An x86 SIMD data type is a contiguous collection of bytes that is used by the processor to perform an
arithmetic calculation or data manipulation operation using multiple values. An x86 SIMD data type can

be regarded as a generic container object that holds multiple instances of the same fundamental data type
(e.g., 8-, 16-, 32-, or 64-bit integers, single-precision or double-precision floating-point values, etc.). The

bits of an x86 SIMD data type are numbered from right to left with 0 and size - I denoting the least and most
significant bits, respectively. X86 SIMD data types are stored in memory using little-endian byte ordering.

In this ordering scheme, the least significant byte of an x86 SIMD data type is stored at the lowest memory
address as illustrated in Figure 1-1. In this figure, the terms xmmword, ymmword, and zmmword are x86 assembly
language expressions for 128-, 256-, and 512-bit wide SIMD data types and operands.

Bit position

— (o] o0 o

- n (o]

wn o~ —
xmmword
ymmword
zmmword

o) N o

(o] o i

+ + +1

= =z =4 =

Memory address

Figure 1-1. X86 SIMD data types

A program can use x86 SIMD (also called packed) data types to perform simultaneous calculations
using either integer or floating-point values. For example, a 256-bit wide packed operand can hold thirty-two
8-bit integers, sixteen 16-bit integers, eight 32-bit integers, or four 64-bit integers. It can also be used to hold
eight single-precision or four double-precision floating-point values. Table 1-1 contains a complete list of
x86 SIMD data types and the maximum number of elements for various integer and floating-point types.

CHAPTER 1 © SIMD FUNDAMENTALS

Table 1-1. SIMD Data Types and Maximum Number of Elements

Numerical Type xmmword ymmword zmmword
8-bit integer 16 32 64

16-bit integer 8 16 32

32-bit integer 4 8 16

64-bit integer 2 4 8
Single-precision floating point 4 8 16
Double-precision floating-point 2 4 8

The width of an x86 SIMD instruction operand varies depending on the x86 SIMD extension and
the underlying fundamental data type. AVX supports packed integer operations using 128-bit wide
operands. It also supports packed floating-point operations using either 128- or 256-bit wide operands.
AVX2 also supports these same operand sizes and adds support for 256-bit wide packed integer operands.
Figure 1-2 illustrates the AVX and AVX2 operand types in greater detail. In this figure, the terms byte, word,
doubleword, and quadword signify 8-, 16-, 32-, and 64-bit wide integers; SPFP and DPFP denote single-
precision and double-precision floating-point values, respectively.

Bit position
wn <t o (=} 00 O <! o o
wn o~ (<) 0 (] o, O, o
o~ o~ - i —
Packed
Bytes
Packed
Words
Packed
Doublewords
Packed
Quadwords
Packed
SPFP
Packed
DPFP
- ool < ol © ~ :
o N N i — it 0 <1
+ b + +1 + +1 + +1
=z =4 =4 = 2 =4 =4 2 4
Byte position
< mmword >
< ymmword >

Figure 1-2. AVX and AVX2 operands

AVX-512 extends maximum width of an x86 SIMD operand from 256 to 512 bits. Many AVX-512
instructions can also be used with 128- and 256-bit wide SIMD operands. However, it should be noted at this
point that unlike AVX and AVX2, AVX-512 is not a cohesive x86 SIMD instruction set extension. Rather, it is
a collection of interrelated but distinct instruction set extensions. An AVX-512-compliant processor must

CHAPTER 1 © SIMD FUNDAMENTALS

minimally support 512-bit wide operands of packed floating-point (single-precision or double-precision)
and packed integer (32- or 64-bit wide) elements. The AVX-512 instructions that exercise 128- and 256-bit
wide operands are a distinct x86 SIMD extension as are the instructions that support packed 8- and 16-bit
wide integers. You will learn more about this in the chapters that explain AVX-512 programming. AVX-512
also adds eight opmask registers that a function can use to perform masked moves or masked zeroing.

SIMD Arithmetic

Source code example Ch01_01 introduced simple SIMD addition using single-precision floating-point
elements. In this section, you will learn more about SIMD arithmetic operations that perform their
calculations using either integer or floating-point elements.

SIMD Integer Arithmetic

Figure 1-3 exemplifies integer addition using 128-bit wide SIMD operands. In this figure, integer addition
is illustrated using eight 16-bit integers, four 32-bit integers, or two 64-bit integers. Like the floating-point
example that you saw earlier, faster processing is possible when using SIMD arithmetic since the processor
can perform the required calculations in parallel. For example, when 16-bit integer elements are used in a
SIMD operand, the processor performs all eight 16-bit additions simultaneously.

Packed addition — 16-bit integers

90 80 70 60 50 40 30 20
23 37 -77 48 13 45 32 81
113 117 =7/ 108 63 85 62 101

Packed addition — 32-bit integers

40 30 20 -10
25 -45 60 100
65 -15 80 90

Packed addition — 64-bit integers

200 100
500 300
700 400

4 xmmword >

Figure 1-3. SIMD integer addition using various element sizes

CHAPTER 1

Besides packed integer addition, x86-AVX includes instructions that perform other common arithmetic

SIMD FUNDAMENTALS

calculations with packed integers including subtraction, multiplication, shifts, and bitwise logical
operations. Figure 1-4 illustrates various packed shift operations using 32-bit wide integer elements.

Initial values (32-bit integers)

0x000003E8 0x000007D0 OXFFFFF448 0x00000FAO
Shift left logical — 4 bits

0x00003E80 0x00007D00 OxFFFF4480 0x0000FAOO
Shift right logical — 8 bits

0x00000003 0x00000007 OXOOFFFFF4 0x0000000F
Shift right arithmetic — 8 bits

0x00000003 0x00000007 OXFFFFFFF4 0x0000000F
4 xmmword >

Figure 1-4. SIMD logical and arithmetic shift operations

Figure 1-5 demonstrates bitwise logical operations using packed 32-bit integers. Note that when
performing SIMD bitwise logical operations, distinct elements are irrelevant since the logical operation is

carried out using the corresponding bit positions of each SIMD operand.

Initial values (32-bit integers)

OXAAAAAAAA 0x89ABCDEF 0x12345678 0x55555555
OxFFOOOOFF 0x80808080 0x12345678 OxOFOFOFOF
Bitwise logical AND
OxAAO000AA 0x80808080 0x12345678 0x05050505
Bitwise logical OR
OxFFAAAAFF Ox89ABCDEF 0x12345678 Ox5F5F5F5F
Bitwise logical XOR
0x55AAAA55 0x092B4D6F 0x00000000 Ox5A5A5A5A
« xmmword >

Figure 1-5. SIMD bitwise logical operations

CHAPTER 1 © SIMD FUNDAMENTALS

Wraparound vs. Saturated Arithmetic

One notable feature of x86-AVX is its support for saturated integer arithmetic. When performing saturated
integer arithmetic, the processor automatically clips the elements of a SIMD operand to prevent an
arithmetic overflow or underflow condition from occurring. This is different from normal (or wraparound)
integer arithmetic where an overflow or underflow result is retained. Saturated arithmetic is extremely
useful when working with pixel values since it eliminates the need to explicitly check each pixel value for
an overflow or underflow. X86-AVX includes instructions that perform packed saturated addition and
subtraction using 8- or 16-bit wide integer elements, both signed and unsigned.

Figure 1-6 shows an example of packed 16-bit signed integer addition using both wraparound and
saturated arithmetic. An overflow condition occurs when the two 16-bit signed integers are summed using
wraparound arithmetic. With saturated arithmetic, however, the result is clipped to the largest possible
16-bit signed integer value. Figure 1-7 illustrates a similar example using 8-bit unsigned integers. Besides
addition, x86-AVX also supports saturated packed integer subtraction as shown in Figure 1-8. Table 1-2
summarizes the saturated addition and subtraction range limits for all supported integer sizes and

sign types.

16-bit Signed Integer Addition

Wraparound Saturated
20000 (0x4e20) 20000 (0x4e20)
+ 15000 (0x3a98) 15000 (0x3a98)
-30536 (0x88b8) 32767 (0x7fff)

Figure 1-6. 16-bit signed integer addition using wraparound and saturated arithmetic

8-bit Unsigned Integer Addition

Wraparound Saturated

150 (0x96) 150 (0x96)

135 (0x87) 135 (0x87)
+

29 (0x1d) 255 (0xff)

Figure 1-7. 8-bit unsigned integer addition using wraparound and saturated arithmetic

CHAPTER 1 © SIMD FUNDAMENTALS

16-bit Signed Integer Subtraction

Wraparound Saturated
-5000 (OxEC78) -5000 (OxEC78)
30000 (0x7530) 30000 (0x7530)
30536 (0x7748) -32768 (0x8000)

Figure 1-8. 16-bit signed integer subtraction using wraparound and saturated arithmetic

Table 1-2. Range Limits for Saturated Arithmetic

Integer Type Lower Limit Upper Limit
8-bit signed -128 127

8-bit unsigned 0 255

16-bit signed -32768 32767
16-bit unsigned 0 65535

SIMD Floating-Point Arithmetic

X86-AVX supports arithmetic operations using packed SIMD operands containing single-precision or
double-precision floating-point elements. This includes addition, subtraction, multiplication, division, and
square roots. Figures 1-9 and 1-10 illustrate a few common SIMD floating-point arithmetic operations.

Initial values (single-precision floating-point)

12.0 17.5 37.25 18.9 20.2 -23.75 0.125 47.5

88.0 17.5 28.0 100.5 5.625 33.0 -0.5 0.1

Packed floating-point addition

100.0 35.0 65.25 119.4 25.825 9.25 -0.375 47.6

Packed floating-point multiplication

1056.0 | 306.25 1043.0 | 1899.45 | 113.625 | -783.75 | -0.0625 4.75

4 ymmword >

Figure 1-9. SIMD single-precision floating-point addition and multiplication

10

SIMD FUNDAMENTALS

CHAPTER 1

Initial values (double-precision floating-point)

4.125 96.1 255.5 450.0

0.5 -8.0 0.625 -22.5

Packed floating-point subtraction

3.625 104.1 254.875 472.5
Packed floating-point division

8.25 -12.0125 408.8 -20.0

<

Figure 1-10. SIMD double-precision floating-point subtraction and division

ymmword

>

The SIMD arithmetic operations that you have seen thus far perform their calculations using
corresponding elements of the two source operands. These types of operations are usually called vertical
arithmetic. X86-AVX also includes arithmetic instructions that carry out operations using the adjacent
elements of a SIMD operand. Adjacent element calculations are termed horizonal arithmetic. Horizontal
arithmetic is frequently used to reduce the elements of a SIMD operand to a single scalar value. Figure 1-11
illustrates horizontal addition using packed single-precision floating-point elements and horizontal
subtraction using packed double-precision floating-point elements. X86-AVX also supports integer

horizontal addition and subtraction using packed 16- or 32-bit wide integers.

11

CHAPTER 1

Horizontal addition — single-precision floating-point

SIMD FUNDAMENTALS

10.0 12.0 300.0 5.0
32.0 500.0 -470.0 8.0
22.0 305.0 532.0 -462.0

Horizontal subtraction — double-precision floating-point

\ 4

\ 4

475.0 900.0

Subtrahend ’ () ‘ Minuend
500.0 350.0

Subtrahend ' () ‘ Minuend

425.0

-150.0

<

xmmword

Figure 1-11. Floating-point horizontal addition and subtraction

SIMD Data Manipulation Operations

Besides arithmetic calculations, many algorithms frequently employ SIMD data manipulation operations.
X86-AVX SIMD data manipulation operations include element compares, shuffles, permutations, blends,
conditional moves, broadcasts, size promotions/reductions, and type conversions. You will learn more
about these operations in the programming chapters of this book. A few common SIMD data manipulation
operations are, however, employed regularly to warrant a few preliminary comments in this chapter.

One indispensable SIMD data manipulation operation is a data compare. Like a SIMD arithmetic
calculation, the operations performed during a SIMD compare are carried out simultaneously using all
operand elements. However, the results generated by a SIMD compare are different than those produced by
an ordinary scalar compare. When performing a scalar compare such asa > b, the processor conveys the
result using status bits in a flags register (on x86-64 processors, this flags register is named RFLAGS). A SIMD
compare is different in that it needs to report the results of multiple compare operations, which means a

12

