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This edited book entitled Physiology of Salt Stress in Plants: Perception, Signalling, Omics 
and Tolerance Mechanism is an important contribution to Plant Science containing infor-
mation related to salt stress and its mitigation strategy by experimental techniques based on 
theoretical concepts. The salt‐stress‐related problems are rising in the soil and water due to 
natural and anthropogenic activities. Anthropogenic activities include repeated irrigation 
through canal system and heavy crop production practices which has led to enhanced salt 
level in crop/agricultural field, hence substantially declining the crop productivity. Therefore, 
study on salt toxicity is continued as an area of scientific interest in direction to understand 
their whole mechanism of its toxicity and their entry into crop plants.

In this book, the authors explain a number of approaches to ease the negative impact of 
salt stress in crop plants. These approaches include nutrients, antioxidants, osmolytes, phy-
tohormones and extra cellular compounds, etc. They are endo as well as exogenous in 
nature. In this book, the adverse impact of salt ion toxicity on plants and implication of 
advance approaches in alleviating salt toxicity have briefly been reviewed. This work ena-
bles the scientific world to design strategies for reducing NaCl‐mediated loss to crop by the 
application of different endo and exogenous substances in the farm soils. The governments 
and other organizations may design a holistic approach to reduce NaCl and other salt toxic-
ity by different types of practices. Agriculturalists may be enlightened with several aware-
ness programmers by the government and non‐government actions wherein the content of 
this book may be used. It is widely useful for all post‐graduate courses in the biological 
sciences. The idea of this work has a wide‐ranging scientific and socio‐economic utility.

All the editors thankfully acknowledge the contributions from all the scholars working 
across the Indian subcontinent and across the world. An authoritative book written by an 
individual that remains relevant over the coming years is rather cumbersome and instead 
requires the concerted effort of a team of expert scientists. All editors also gratefully 
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1.1  Soil Salinity: An Introduction

The threat of global warming is not limited only to the earthen atmosphere but slowly pro-
gressing toward the lithosphere. Attenuation of vegetative health due to the assimilation of 
brine substances is referred to as saline toxicity. The destruction caused solely due to the 
elevated level of sodium chloride (NaCl) is characterized as sodicity and is rather attainable 
to reclaim. Contrarily, the assorted salt stress enforces salinity, which makes land barren(Gul 
et al. 2015). Since the Green Revolution, the salinity footprint is engulfing the terrestrial 
territory quite rampantly. Presently, around one-tenth of the earth’s crust accounting 
nearly 46 M ha has turned non-fertile (Hossain 2019). Excessive groundwater abstraction 
in the high zones may lead to premature desertification. The Indian Council of Agricultural 
Research (ICAR) predicted in a geospatial study that the coastal districts will be left with 
no aquifer water by 2050  without any technical interference (ICAR  2015). This further 
booms the inland intrusion of saline water. Figures are even more agitating, precisely in 
coastal regions. The rising sea levels often cause waterlogging in different parts of the 
world, precisely places located at lower elevations (EL-Raey et al. 1995). India, with a coast-
line length of approximately 7516 km, is presently under immense risk of temporary sub-
mergence. Saline water logging abnormally elevates the sodicity and thereby turns the 
lands nonproductive or unfertile.

The other reason that may trigger the soil sodicity is extreme groundwater abstraction. 
The negative aquifer pressure in the coastal regions causes brackish water intrusion and 
vertical rise by capillary action (Dillon et al. 2009). Whereas, the increase in soil salinity is 
a complex phenomenon. Studies showcased the discharge of industrial effluents into the 
water bodies successively raising the dissolved salt content resulting in increased salinity 
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while utilized in irrigation. The other foremost reason for soil salinity involves drying out. 
Overutilization has already caused drying of a significant chunk of sweet water resources. 
In the absence of the desired water quality, farmers are moving toward alternate sources 
with high saline concentration, leading to the salinity of agricultural lands (Staniforth and 
Davies 2018).

The impact of salt stress is found to be most severe on agricultural crops. The primary 
issues involve the non-germination of seeds, reduced leaf surface area, retarded plant 
growth, strength, hampered yield, etc. Elevated soil salinity hampers the plants in various 
ways such as osmotic stress (OS), ionic toxicity, retarded cell division, reduced 
photosynthesis, to name a few. The inclusive impact of all the above factors boosts the 
mortality rate (Lauchli and Grattan 1970).

Immediate exposure to higher saline medium primarily increases the OS, causing 
reduced leaf surface area (i.e. due to repressed cell division and growth). Whereas, 
prolonged exposure imparts ionic stress leading to stomatal closure, immature senescence 
of mature leaves, chlorosis, necrosis, etc. The reduced biomass negatively affects 
photosynthesis and plant growth (Darko et  al.  2019). In contrast, exposure to elevated 
sodicity, especially NaCl,affects the enzymatic system and augments cell swelling. The 
mutual impact leads to suppressed energy synthesis. Furthermore, excess exposure hinders 
all the growth-oriented processes like metabolism and protein synthesis (Acosta-Motos 
et al. 2017).

Therefore, prolonged exposure provoked the development of a defense mechanism in 
some species against salt stress and toxicity either by excluding through cells or by 
enhancing the salt tolerance. Additionally, synthetic species with transgenic properties are 
also synthesized by genetic engineering by altering the levels of gene expression (Carillo 
et al. 2011).

1.2  Salt Stress Perception and Current Scenario

Accumulation of excessive salt content in the soil causing direct and indirect adverse 
effects on flora and fauna is termed as salt stress (Shrivastava and Kumar 2015). The above 
situation can inhibit plant growth, and prolonged exposure may lead to a decrease. Higher 
saline level impacts the plants in various ways such as genotoxicity, alteration of metabolic 
processes, oxidative stress, water stress, ion toxicity, nutritional disorders, reduction of cell 
division and expansion, and membrane disorganization (Hasegawa et al. 2000; Munns 2002). 
The preliminary exposure to salt stress causes leaf surface area reduction. The immediate 
impacts include suppressed cell expansion and cell division and closure of stomata due to 
osmotic influence (Munns 2002; Flowers 2004). Furthermore, prolonged exposure imparts 
ionic stress leading to early senescence of mature leaves and thereby reducing the leaf 
surface area responsible for photosynthesis and plant growth.

The severity of salt stress is most predominant in the case of agricultural crops from a 
food security perspective; impacts include retarded seed germination, reduced biomass, 
and small yield. Higher abscisic acid (ABA) concentration results in the formation of 
specific genes through the plant defense mechanism which leads to counteracting its 
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generation cause (Godoy et al. 1990; Lodeyro and Carrillo 2015). Generally, the acute level 
of salt toxicity causes instantaneous death in various species, whereas, in selected species, 
limited stress influences defense mechanisms mimicking halophytes. For instance, 
conversion of C3 to CAM, amendment in epidermal bladder cell to withhold excessive 
NaCl enabling better survivability over the saline condition. Significant parts of the coastal 
irrigated areas face salination issues majorly due to the seawater intrusion. More than 45 M 
ha of cultivable land distributed among hundreds of countries covering more than 10% of 
the global land surface area have already been sacrificed due to saline irrigation. 
Additionally, approximately 1.5 M ha of fertile land becomes nonproductive every annum 
due to soil salinity (Munns and Tester 2008). Presently, about 1150 M ha of productive land 
are under induced stress, while80 M ha are only affected due to the anthropogenic activities 
(Rasool et al. 2013; Hossain 2019).

1.3  Types of Salt Stress

Based on the origin and root cause, there are two different categories of salinity, namely, 
primary and secondary. Primary salinity is a natural phenomenon and mostly occurs due 
to the former presence of salt lakes, slat clads, tidal swamp, etc., at a particular location. It 
is majorly a kind of sodicity. At the same time, secondary salinity is imposed due to man-
made activities such as urbanization, saline irrigation, etc. (Shahid and Rahman  2011). 
Detailed reasons are delineated below.

Primary salinity:
i)  Spreading from the saline artesian well.

ii)  Capillary rise from saline groundwater.
iii)  Seawater intrusion.
iv)  Canopy formation due to the movement of fine sea sand by the sea breeze.
v)  Waterlogging.

Secondary salinity:
i)  Irrigation with impeded drainage

ii)  Effluent discharge
iii)  Excess fertilizer dosing
iv)  Deforestation
v)  Saline irrigation

Furthermore, based on the predominance of the type of anions present and the pH value, 
salt-affected soils are categorized as saline soil and sodic soil. Sodic soil typically comprises 
sodium carbonate and or bicarbonate ions with a pH value beyond 8.5, but contrarily, 
saline soil majorly incorporates chloride and sulphate ions with pH value below 8.5. Certain 
plant species manage to compensate the imparted stress through its metabolism and 
survive in the severe salt conditions known as halophytes. Remaining plant species are 
termed as glycophytes with a higher mortality rate overexposure to 10% or more 
concentration of saline water (Gorham 1995; Parida and Das 2005; Mane et al. 2011; Gupta 
and Huang 2014).
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1.4  Origin of Problems

Primarily, hydro-geological activities contribute in escalating soil salinity and sodicity. 
Moreover, the soil is generated because of the weathering actions on intermediate and 
basic igneous rocks; sandstones already carry salt as a primary constituent. In the regions 
with moderate to low rainfall, a greater rate of evapotranspiration induces higher salinity 
and sodicity. Furthermore, coastal regions with tidal exposure may also develop salinity 
problems. A study conducted by Sultana et al. (2001) depicted that rice yield in coastal Asia 
gets often impaired due to the intrusion of saline Indian Ocean water. Inland precipitation 
also surprisingly elevates the soil sodicity. It is evidenced that rainwater can constitute up 
to a few milligrams of salt against each kilogram of a downpour with an electrical conduct-
ance (EC) value of 0.01 dS/m (Cucci et al. 2016; Corwin and Yemoto 2017; Hossain, 2019).

However, the deteriorating impacts of artificially induced salinity are more predomi-
nant. Over-irrigation or saline water irrigation is cited as one of the prima facie reason for 
human-induced salinity. Roughly, it is estimated that globally half of the irrigated lands 
are anyhow saltaffected. Other than irrigation, probable sources of inland salinity are the 
following:

i)  Salt accumulation: Effluent and waste discharged into the surface water bodies from 
the industries and effluent treatment plants (ETPs) beyond absolute concentrations 
can accumulate and form salt films downstream to cause acute saline toxicity (Naidoo 
and Olaniran 2013).

ii)  Reduction of greenbelt: Deforestation accelerates the salinization process by facilitating 
salt movement both through upper and lower soil layers. It further results in depleted 
annual precipitation and elevated soil temperature. Subsequent heating and cooling 
promote wear and tear, higher runoff, and substantial sedimentation to cause flooding 
and salt assimilation.

iii)  Overdosing fertilizers: Post-Green Revolution, the usage of chemical fertilizers, herbi-
cides, and pesticides has abruptly increased. Overdosing often results in underutiliza-
tion and accumulation.

iv)  Excessive grazing: Areas with scarce soil cover often suffer the root zone saline toxicity 
due to overgrazing. Surface waterlogging (i.e. either due to over-irrigation or riverbed 
sedimentation) in such areas can cause elevation of the water table and thereby facili-
tating salt migration from the deep aquifers.

1.5  Salt Toxicity Level: A Worldwide Report

Soil salinity and sodicity is a global issue faced by more than 115 nations with annual yield 
depletion of 7% or more (Yadav 2010). A total of 955 M ha of world surface area is either 
primarily or secondarily affected by salt pollution. Sodicity is predominant with impact 
over more than half of the land surface, e.g. Australia. Salinity issue dominates about 21% 
of comprehensive land footprint, especially arid regions of Asia and Pacific and areas with 
impeded drainage. Coming to India, the ambiguity of figures (salt-affected land) is quite a 
concern in the absence of liable evidence. The reported niche is found to be varying from 
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7 to 25 M ha (Rasool et al. 2013; Shahid et al. 2018; Isayenkov and Maathuis 2019). A loca-
tion receiving low to moderate precipitation poses a tremendous threat to native agriculture.

The scenario is quite predominant in the southern region of India. These semiarid zones 
experience more than 300 sunny days per annum with high solar radiation, causing 
elevated evaporation rate and thereby moisture loss. The soil resource maps published by 
the National Bureau of Soil Survey and Land Use Planning, Nagpur (NBBS and LUP) were 
considered as the baseline data for the present study. The salinity of the soil was 
subcategorized into six basic classes depending on the EC of the saturated extract. The 
categories (based on severity) are as follows: very severe, severe, strong, moderately strong, 
moderate, and slight. The soil extracts portraying EC values between 200 and 400 mS/m 
were neglected for the above study. Furthermore, the sodicity of the soil was categorized 
into three major classes, namely, strong, moderate, and high. The above classification was 
done based on the presence of exchangeable sodium percentage (ESP), and the scale ranges 
from <5 to >15. The soil samples with sodicity <5 were considered as nonsodic, whereas 
the black soil samples with sodicity more than five were considered as alkali or sodic 
(Rasool et al. 2013; Shrivastava and Kumar 2015). The Rann of Kutch, Gujarat, an area with 
a footprint of 7500 sq. km mostly comprising salt marshes was marked as a separate entity 
by NBBS and LUP (Table 1.1).

As per the statistics published by the Food and Agriculture Organization (FAO) in 2007, 
about 770 000 sq. km of the global land surface area is already salt affected, and approximately 
430 000 sq. km is under secondary salinity threat. The study further estimated that around 
one-third of the world’s irrigated lands are either already affected by higher salinity or will 
be affected in the recent future.The global share distribution (in percentage) of saline soil 
across the countries is portrayed in Figure 1.1.

Multiple studies highlighted that abnormal abstraction of groundwater and waterlogging 
due to excessive irrigation often lead to desertification of fertile land. Therefore, urban local 
bodies (ULBs) and concerned government authorities should spread awareness among the 
farmers against salinization and over usage of water. Also, imposing water cess for misuse/
overuse can be a productive measure to combat the typical tendency instantly, especially in 
the water-scarce areas.

The overall salinity profile of India was first estimated in 1966 under the accountability 
of the Ministry of Agriculture. The raising concern developed due to uncontrolled usage of 

Table 1.1  Soil salinity/sodicity scenario in worst-affected partsof India.

State Sodic soil (M ha) Saline soil (M ha) Totala (M ha)

Gujarat 0.54 1.7 2.24

Uttar Pradesh 1.35 0.02 1.37

Maharashtra 0.42 0.18 0.6

Rajasthan 0.18 0.195 0.375

Tamil Nadu 0.35 0.013 0.363

a 0.35 M ha: Threshold limit.
Source: Data from Mandal et al. (2018).
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the chemical fertilizer provoked the study. Furthermore, in the period of 1980–2015, a total 
saline footprint of approximately 2 Mha has been reclaimed under the effort of the 
ICAR. The retracted area presently yields around 16 MT of fodder grains per annum. The 
trajectory of the salinity footprint of the nation and foreseen values are portrayed in 
Figure 1.2.

The figure portrays the sudden escalation in salinity footprint (i.e. up to 16.2 Mha) 
between 2020 and 2050 as per the prediction made by the ICAR (ICAR 2015). The predic-
tion is highly likely with no scientific intervention. Moreover, the usage of inferior irrigation 
water and overconsumption, leading to negative pressure, may further accelerate the 
salinization process.
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1.6  Effect of Salt Stress on Flora and Fauna 
of the Ecosystem

Salt stress induces a diverse range of metabolic and growth-oriented detrimental changes 
in plants. Furthermore, protracted exposure can also inhibit crop yield. Primarily, saline 
exposure incurs OS, and it ultimately leads to ionic toxicities (Bano and Fatima  2009). 
Induced OS negatively impacts the root absorption capacity and accelerates the stomatal 
evaporation loss. Saline exposure elicits hyperosmotic pressure, which causes an adverse 
situation like the above. Initially, OS provokes several physicochemical amendments, 
which include membrane disruption and disfunctionality, disproportionate nutritive levels, 
retarded detoxification mechanism, and impaired photosynthesis rate (Munns and 
James 2003). Particularly, sodicity incites ionic stress by assimilating excess sodium and 
chloride ions into the plant tissue. Surplus accumulation of the above ions triggers ionic 
inequity leading to several growths related to detrimental changes. Elevated cell sodium 
ion concentration limits the required level of other essential plant nutrients such as 
potassium, thereby causing reduced yield and, ultimately, senescence (Ashraf  2004; 
Zhu 2007).

The inherent countermeasures also destructively impact plant biology. The generation of 
reactive oxygen species (ROS) can cause potential oxidation injury to the interstitial 
components like DNA structure, cell protein, and cell walls. The other sets of nondestruc-
tive defense mechanisms include elevation of photosynthetic rate, re-exercising ion and 
water relation in the vesicular system, etc.

The saline balance of the terrestrial water sources is globally affected due to continual 
anthropogenic activities, for example, new England Marshes (Williams 2002). Perennial 
inland sweet water sources are worst affected due to the waste charging throughout the 
trajectory. Whereas, the salinity of global waters is also sacrificed due to the melting of 
glaciers. Territorial brackish streams such as arid estuaries and salt-marshes are as well 
reasonably affected by the artificial agricultural discharge. But, this sudden change caters 
to a tremendous threat to the aquatic ecosystem. It incorporates abridged survivability, 
inhibited fertility, metabolic disorder, and retarded physiology (Velasco et al. 2019). Any 
varied salinity can mainly disrupt the osmotic balance between the surrounding 
hydrosphere and organismic, cellular fluid. The severity of impact varies between a minor 
metabolic malfunction and decease. To counteract the above, marine organisms develop an 
osmoregulation defense mechanism and eliminate hypo and hyperstress conditions. But, 
severe salinity or attenuation majorly conquers over the internal defense. Moreover, the 
consequences of successful defense are also majorly anonymous.

Additionally, investigations were also pursued to recognize the impact of ancillary factors 
such as temperature, but it seemed to be relatively insignificant. For instance, a study 
performed on zooplanktons reported metabolic issues upon exposure to altered salinity, 
but no apparent influence of temperature (Garreta-Lara et al. 2018). Basic metabolic dis-
functionalities elicited due to OS are addressed by spontaneous excretion. But, stress ascer-
tained due to bioaccumulation of metals is far more complex, so the defense is required. 
Moreover, each metal is highly specific in terms of threat enforced.

An advantageous fact is that the combined stress imposed by the salinity and metal toxic-
ity gets tackled by a common mechanism in case of catadromous and anadromous fishes 
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during the migration, in and out from the oceanic environment. For instance, a study 
reported the secretion of carbonic anhydrase in sheepshead minnow, an estuarine variety 
while exposed to the combined stress evolved due to amended salinity and copper toxicity 
(Velasco et  al.  2019). Furthermore, OS plays a protagonist role against metal stress for 
invertebrates residing in saline waters by incurring the ion transport system. Lack of free 
radicals and ions in the freshwaters facilitate metal uptake in the inhabitants. Therefore, 
the vulnerability of the sweet water species against the metal toxication is indeed more 
severe (Halse et al. 1998; Velasco et al. 2019).

Dry farming also raises intricate contact interaction amid washed off pesticides and 
water salinity. These halogenated chemicals probably act as a neurotoxin and inhibit the 
counteract mechanisms of the nervous system. Remarkably, hypersalinity pivotally helps 
anadromous varieties such as Brown trout to subside the impacts of exposure efficaciously. 
The effective counter mechanism correlated with an interpretation of malfunctioning of 
the neural system upon instantaneous exposure to elevated salinity. Furthermore, collateral 
stress induced due to the combined effect of salinity and dehydration results in protraction 
of the osmoregulatory responses in some plants and marine bugs, thereby diminishing the 
moisture loss. It portrays the discordant individual stressors that abolish each other, while 
severe impacts were observed upon elementary exposure (Williams  1998; Kultz  2015; 
Cañedo-Argüelles et al. 2018).

1.7  Role in Sustainable Agriculture

The existence and survivability of the global population are mostly dependent on agricul-
ture. It is estimated that about 99% or more consumable fodder sources are scattered across 
the lithosphere, whereas a hydrosphere contributes a negligible fraction of 0.5% or less. 
Thus, it is evident that a healthy and sufficient existence of earth crust is mandatory for the 
sustainable coexistence of the human being. Furthermore, soil erosion drastically impacts 
the agricultural yield. It is estimated that annually approximately 75 million tonnes of soil 
loss occurs only from the cultivable topographic regions worldwide. Other prominent 
effects of salinization include the erosion of the hilly terrains, which is probably less 
investigated (Aslam et al. 2017).

Saline soil mostly produces superficial seals due to two causes: (i) sodium pressure frag-
mentizes the soil structure and eliminates clay particles, resulting in clogging of interstitial 
voids and (ii) lean vegetative cover exposes the saline soil to precipitation compaction 
(Agassi et al. 1994, Singer and Lindquist 1998). Both the processes mainly decrease percola-
tion and enhance surface runoff. Though the layer beneath gets safeguarded against vigor-
ous erosion, the top layer gets severely imposed due to the disintegration caused by 
salinization (Agassi et al. 1994). Therefore, it is evident that soil salinity also can indirectly 
influence soil erosion up to a greater extent.

In this ever-raising context of fodder demand and versatile challenges, ensuring a hassle-
free supply for the global population is a mammoth task. Amid eyeing for the alternate 
sources, existing challenges such as unavailability of the fertile land footprint, overcon-
sumed natural resources, water and energy scarcity, and climate variance cannot be over-
looked. Sustainability can only be achieved by compensating the need, not greed. Advanced 
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issues need modern solutions, and indeed few are emerging as follows: reparation of sodic-
ity with gypsum dosing, subsurface drainage of water-stagnant flood-planes, adaptation of 
agroforestry, and generating genetically engineered species and switching to them 
(ICAR 2015). The detailed pathway is delineated below:

i)  The satellite-based remote-sensing approach with geographic information system 
(GIS) mapping and real-time ground truthing can provide an array of escalating salin-
ity footprint (Singh et al. 2010).

ii)  Gypsum-dosed alkali reparation techniques for soils affected with sodium toxicity.
iii)  Reclamation of flooded wetlands through downward drainage– the method is quite 

useful in addressing multidimensional issues such as water stagnation and salinization.
iv)  Chemical regeneration of saline soil with ameliorants is also practiced in some parts 

of the globe. The method is expensive and hence challenging to impose for more giant 
footprints.

v)  Phytoremediation with salt-tolerant species is contrarily an inexpensive and eco-
friendly mechanism.

vi)  Multilayer agroforestry is a recent trend in the agricultural industry to mitigate rising 
demand. Anyhow, the method also assists in reclaiming saline soil by reducing the 
soil density and thereby causing an elevated percolation rate. Furthermore, the lit-
tered biomass improves soil fertility and yield (Kaur et al. 2000; Nosetto et al. 2007).

vii)  Nonconventional techniques such as inland fishery have also gained limited popularity, 
majorly in the southern peninsula of the country. Flood-planes and wetlands near to the 
coastal regions are effectively serving as the source of alternate revenue generation.

viii)  Microbialremediation: Desalination through microbial action is indeed rigorous. The 
inoculants are expensive and seek a suitable environment.

1.8  Unintended Effects of Salt-Containing Substance 
Application in Agricultural Land

Salinity intervenes with plant nutrition and growth by exerting osmotic and ionic stress. 
Higher salinity level in soil hinders water absorption ability, referred to as the osmotic effect. 
The utmost concern is when elevated concentration can deter biomass growth. OS in plants 
influences metabolic amendments similar to wilting and sometimes depicts genotype 
changes. Furthermore, factors such as ion toxicity and nutritional inequity ensure impeded 
plant growth. Thus, it is evident that the impact of salinity on vegetative growth is a time-
variant. Therefore, a bi-phase kinetic model proposed by Munns et al. (1995) is considered 
as a benchmark for the present work. The primary phase is exceptionally speedy. OS result-
ing from internal water scarcity leads to growth retardation. Whereas, the secondary phase 
is relatively much slower and happens because of acute assimilation of salts in the shoot. 
But, still differentiating amid both the phases is a difficult task due to smooth transition 
array. High salinity downgrades the photosynthetic rate by reducing the availability of CO2 
caused by limiting diffusion and decreased concentration of pigments. For instance, salt 
assimilation in spinach entirely impedes photosynthesis by reducing the conductivity of 
CO2 both in mesophyll and stomata. Also, by decreasing the chlorophyll concentration, salt 
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stress can inhibit light absorption, thereby reducing photosynthesis. Furthermore, salinity 
causing reduced leaf expansion had reported an 80% reduction in growth rate in radish, 
while reduced conductance only retards body growth by up to 20% (Savci 2012).

Root zone salt assimilation activates OS and interrupts cell ion homeostasis by replacing 
the uptake of essential salts such as calcium and potassium nitrate with NaCl. Stem and 
leaf zone assimilation causes reduced photosynthetic rates, damaged chloroplasts, degraded 
metabolism, enzymatic malfunction, and other organelles. The impacts are predominant 
in adult leaves due to the longer accumulation tenure. Furthermore, nutrient deficiency 
and inequality occur in plants due to ionic substitution. Cations such as K+, Ca2+ responsible 
for principal nutritive balance get replaced by Na+ while NO3− as a major anion gets 
substituted by Cl−, leading to significant imbalance. In the case of higher soil sodium–
calcium ratio, deficiency symptoms appear as a first sign. Though, plants such as tomato 
minimize the calcium absorbance to lower the rate of transpiration, and sodium competency 
plays a dormant factor there (Yadav et al. 2011; Zhang et al. 2018).

Primarily, a reduction in vegetative biomass, leaf surface area, and retarded plant growth 
is encountered chronologically in almost all the vegetative crops due to external salinity 
issues. The understanding of the interaction between plant root and salt-imposed stress is 
still clumsy. Conversely, root biomass found to be nearly unaffected when compared with 
upper ground organs, except cauliflower, broccoli, and tomato. Biomass reduction is 
prevalent in cauliflower and broccoli, whereas in tomato, root length and density reduction 
are observed. The signs of salinity exposure appear gradually in plants. The primary 
symptoms include the transformation of green leaves, wilting, and hindered growth. 
Furthermore, advanced symptoms such as chlorosis, leaf burning, scorching, necrosis, etc., 
start manifesting after two weeks and prolonged exposure. The visuals of the above issues 
negatively influence sellability and affect economics. Commercial varieties such as roots, 
fruits, and tubers are the worse affected. Also, rotting of blossom-end has been detected in 
tomato, eggplants, etc., due to saline irrigation (Maas 1993; Chandna et al. 2013).

Nonetheless, exposure to limited salinity also exerts some beneficial impacts, especially 
on vegetative crops. It improves the quality of the edible parts despite impinging certain 
visual defects. For instance, it reduces water content in fruits, enhances soluble solids and 
acid concentration in tomato, cucumber, and watermelon. Additionally, salinity can also 
improve the concentration of antioxidants and carotenoids in tomato and romaine lettuce. 
Studies also depicted that the beneficial nutritional properties (i.e. polyphenol 
concentration) of broccoli and spinach also flourish under a controlled saline environment 
with a dip in oxalic acid and nitrate ion content. All the prior mentioned effects are 
timedependent and only visible when subjected to the stress at the right moment (Thomas 
and Bohnert 1993; Chandna et al. 2013).

1.9  Role of Salt Toxicity in the Operation 
of Green Revolution

The third agricultural revolution colloquially termed as the Green Revolution was a path-
breaking exercise that occurred between the early 1950s and late 1960s in the twentieth 
century. Impacts were majorly widespread in developing nations. Beside positive, the 


