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Abstract. With the rise of deep learning, cancer-specific survival prediction is
a research topic of high interest. There are many benefits to both patients and
caregivers if a patient’s survival period and key factors to their survival can be
acquired early in their cancer journey. In this study, we develop survival period
prediction models and conduct factor analysis on data from breast cancer patients
(Surveillance, Epidemiology, and End Results (SEER)). Three deep learning archi-
tectures - Artificial Neural Networks (ANN), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) are selected for modeling and
their performances are compared. Across both the classification and regression
approaches, deep learning models significantly outperformed traditional machine
learning models. For the classification approach, we obtained an 87.5% accuracy
and for the regression approach, Root Mean Squared Error of 13.62% and R? value
of 0.76. Furthermore, we provide an interpretation of our deep learning models by
investigating feature importance and identifying features with high importance.
This approach is promising and can be used to build a baseline model utilizing early
diagnosis information. Over time, the predictions can be continuously enhanced
through inclusion of temporal data throughout the patient’s treatment and care.

Keywords: Deep learning - Breast cancer - Survival period prediction - SEER
cancer registry - Factor analysis - Feature importance

1 Introduction

Cancer is the second leading cause of death in the United States. According to the latest
statistics from the U.S. National Cancer Institute, about 1.8 million new cancer cases
are expected in 2020, with about 600,000 expected new deaths [1]. Breast Cancer is
the most common cancer in the United States, with 276,480 estimated new cases and
40,170 estimated deaths in 2020 [2]. Though cancer is prevalent throughout the United
States, the relative five-year survival rate for breast cancer patients varies by breast
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cancer stage. Note that the average risk of a woman in the United States developing
breast cancer sometime in her life is about 13% [3].

Estimated national expenditures for cancer care in the United States in 2017 were
$147.3 billion [4]. The costs are expected to increase in the coming years with an aging
population and newer, more advanced treatment options. An increase in the number of
patients requiring care also drives up health care costs for treating the disease. Research
on disease prognosis from early information and clinical data is still needed to better man-
age resources and time, for both the patient and the healthcare professionals. For patients,
better prognosis early can help plan time spent in care and costs, while for healthcare
professionals it can help plan medical resources, treatment and care strategy for each
patient. These reasons make cancer survivability a topic of great importance to both
researchers from the medical domain, computer intelligence, and medical professionals.

This study is aimed at predicting the survival period of a breast cancer patient, using
the data obtained from Survey Epidemiology, and End Results (SEER) cancer registry
[20]. The research problem is formulated through both classification and regression
techniques. We investigate three different deep learning models and their performance
at providing high dimensionality and highly non-linear decision boundaries and iden-
tifying features that drive survival prediction. This study contributes to identifying an
appropriate approach to estimating and understanding survivability that could be widely
and practically appropriate for medical use.

2 Related Works

Chronic diseases that may threaten the lives of patients and require continuous care
and surveillance are the focus of a majority of previous research. These studies aim at
projecting a timeline of survival to help both patients and healthcare professionals plan
care, time, and resources.

Some researchers have focused on using the results from various laboratory tests
and medical images such as Computerized Tomography (CT) or Magnetic Resonance
Imaging (MRI) scans to predict disease survival for patients. Macyszyn et al. [S] have
used a combination of Linear SVM for predictions and Kaplan-Meyer survival curves
to plot the survival period and map the prognosis from the MRI images of patients with
glioblastoma. Qian et al. [6] proposed Temporal Reflected Logistic Regression (TRLR),
a model to predict survival probabilistic score on a set of patients diagnosed with heart
failure at Mayo Clinic, Rochester. They showed that the new model outperformed the
existing Seattle Heart Failure Model (SFHM). Marshall et al. [7] proposed a custom
Bayesian model, Continuous Dynamic Bayesian Model, that differs in data availabil-
ity at different points during the treatment of the patient, making effective use of the
temporal data sequence. Zhang et al. [8] used LASSO as the regularization and fea-
ture selection method in a multilayer perceptron model to predict the 5-year survival of
patients suffering from chronic kidney disease. Bellot et al. [9] developed Hierarchical
Bayesian models for cardiovascular disease, which utilized a mixture of localized and
individual patient data to build average survival paths for patients and specific survival
paths for individual patients. They developed a personalized interpreter for the model to
highlight the factors affecting the survival prediction for each patient.



Deep Learning and Prediction of Survival Period 3

Cancer has been the focus of a large body of research targeting multiple aspects:
diagnosis, prognosis, best treatment estimation and survival period estimation. Gray
et al. [10] tested the performance of the Predict algorithm (version 2), built for 5-year
and 10-year prognostic indicators for breast cancer, using the Scottish Cancer Registry
(SCR). They found that the algorithm overestimates some 5-year prognostic cases while
the overestimation is lower for 10-year prognosis. Song et al. [11] built nomographs to
predict overall and cancer-specific survival of patients with chondrosarcoma and iden-
tified the prognostic factors for 3-year and 5-year survival. Lynch et al. [12] compared
multiple supervised machine learning methods to predict survival time of lung cancer
patients. Tested algorithms include Linear Regression, Gradient Boosting Machine, Ran-
dom Forest, Support Vector Machine and a custom stacking ensemble combining all the
other machine learning algorithm models. The custom ensemble performed the best with
an RMSE (Root Mean Squared Error) value of 15.30%. Sadi et al. [13] proposed the
use of clustering cancer registry data before feature selection for classification model on
survival period prediction. They used the Egyptian National Cancer Institute (NCI) can-
cer registry data to perform clustering and then build classification models inside each
cluster to get a better sense of hyperparameter tuning and achieve better performance.

The SEER dataset provides comprehensive information on the early diagnosis of
patients for multiple types of cancer along with the survival time for patients. It has
been a part of a multitude of research around prediction of survival period. Bartholomai
and Frieboes [14] compared multiple traditional machine learning models in an attempt
to predict the exact survival period for a lung cancer patient by modeling the problem
using both classification and regression techniques. They used Principal Component
Analysis (PCA) to identify the features that have the biggest impact on the survival of
lung cancer patients. Hegselmann et al. [15] developed models with a focus on producing
reproducible models for further research use, to predict 1-year and 5-year survival for
patients with lung cancer using logistic regression and multilayer perceptron models.
Naghizadeh and Habibi [16] compared various ensemble machine learning models to
predict survival in cancer comorbidity cases for various cancers. Dai et al. [17] built 1-
year and 3-year nomographs to predict survival for triple negative breast cancer patients
with a histology of infiltrating duct carcinoma. Imani et al. [18] used random forests as
a modeling approach to predict survival in patients with breast cancer recurrences and
identified the important variables in defining survivability for those patients. Kleinlein
and Riano [19] built joint and stage-specific machine learning models to predict 5-year
survival for breast cancer patients. They also tested the performance of these models over
time from training to demonstrate the feature importance in selection for models. Shukla
et al. [20] performed clustering using Self-Organizing Maps (SOM) and DBSCAN to
cluster the patients into related cohorts and build multilayer perceptron to predict 3-year,
5-year and 7-year survival of breast cancer patients.

Most of previous research into survival prediction in breast cancer has focused on
the binary classification model of whether a patient survives a preset period of time or
not. To the best of our knowledge, little research has focused on the predicting the exact
survial periods for breast cancer patients. This study aims to bridge this gap by utilizing
deep learning models to predict survival periods in breast cancer cases, and further
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provide interpretability to these models through feature importance analysis, revealing
the features with the largest impact on the survival predictions.

3 Dataset

In this research study, the data was collected from Surveillance, Epidemiology, and
End Results (SEER) program cancer registry. The SEER program is supported by the
Surveillance Research Program (SRP) in NCTI’s Division of Cancer Control and Popula-
tion Sciences (DCCPS) and was established to provide consistent statistics around cancer
incidence in the United States. SEER collects its information from several population-
based registries spread geographically across the United States and estimated to cover
about 34.6% of the United States population. The SEER dataset is one of the biggest and
most comprehensive databases on the early diagnosis information for cancer patients in
the United States [21]. The SEER cancer registry includes information on primary tumor,
tumor histology, morphology, the first course of treatment and follow-up with patients
to record the vital status. All the records are de-identified, with very little demographic
information and all the entries are encrypted to provide another layer of security for the
patients’ identity. It includes statistics on incidence of multiple types of cancer such as
breast cancer, lung cancer, intestinal cancer, leukemia, lymphoma, prostate cancer and
others.

3.1 Data Collection and Cleaning

The incidence files in the SEER cancer dataset are available as a set of ASCII text files
with each row in a text representing a record in the registry and the information encrypted
in codes. The whole database was segmented by sets of registries and the cancer type. We
selected the November 2018 submission (which was made publicly available in April
2019) for our research.

This submission contained information for the diagnosis years of 1975-2016. For
this research, we only selected the files for breast cancer and built Python codes to
read ASCII text files and return comma separated values (.csv) files, which would be
easier to ingest for data engineering purposes. The Python codes ignored all records with
diagnosis year before 2004 to minimize the impact of now-defunct data fields on our
modeling process. (The registry went through a major data overhaul in 2004 and new
fields were added to replace the older fields.)

Further, the codes representing missing values in the registry were replaced by null
values to standardize the data loss at both individual registry level and the national
registry level. Also, the records of patients with cancer comorbidities were eliminated.
Only patients with breast cancer and no comorbidities were considered to reduce the
effect of other cancers on the survival analysis. Records with missing diagnosis year and
survival time information were eliminated as these values could not be imputed, because
any imputation for these fields affects the survival analysis directly. This cleaning resulted
in a dataset with 197,038 records for analysis and modeling.
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3.2 Data Preprocessing

The features were divided into categorical and quantitative variables. Also, features that
are built on the target variable, such as variables defining cause of death classifications,
were identified through domain knowledge gained by a better understanding of the
dataset. These variables were not included in the modeling analysis to avoid model bias.

Different pre-processing techniques were used for categorical and quantitative vari-
ables. Variables with more than 20% missing values were eliminated from modelling,
because they were either data collected during different time periods (before 2004 diag-
nosis year) or were not relevant measurements for breast cancer. For the remaining
variables, the median and mode were used to impute missing values for quantitative
and categorical variables, respectively. After the imputation, categorical variables were
binarized using one-hot encoding.

Figure 1 shows the distribution of patients across different survival periods. For the
classification approach of predicting survival period, the survival time in months was
segmented into three bins ‘< =5 years’, ‘5-10 years’, and ‘>10 years’ used as the
target class for multiclass classification modeling. These classes were decided through
knowledge gained from previous research approaches to this problem, where 5-year
and 10-year survival models are the most common. Yet, imbalance exists in the data
coming from ‘>10 years’ class as shown in Fig. 2. To adjust for this imbalance, we up-
sampled other classes to create a balanced dataset for model tuning and evaluation. For
the regression approach, we selected the survival time in months as the target variable.

Histogram of Survival Period
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No. of Patients
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10000
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0 20 40 60 80 100 120 140 160
Survial Period in Months

Fig. 1. A histogram to understand the distribution of breast cancer patients across various survival
period.

The features have different scales, which could lead to a longer time for the model
to converge and reach the global minima while also increasing the probability for the
model to get stuck in local minima. Hence, the predictors were all normalized for the
classification approach, while for the regression approach, the target variable was also
scaled for easier comparison between errors across model iterations and between differ-
ent models. The entire dataset was partitioned in the ratio of 80:20 into training and test
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Distribution of Data across Target Classes
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Fig. 2. Distribution of Records across the selected three target classes.

sets. The models were trained on the training set and the performance was observed on
the test set.

4 Research Methodology

The data preprocessing methods remain similar for the two different approaches to the
problem (i.e., classification and regression), except for the target variable in the dataset
preparation. However, the model building methodologies differ for both approaches with
the different tuning approaches and evaluation metrics for both approaches. Artificial
Neural Networks (ANN), Recurrent Neural Networks (RNN), and Convolutional Neural
Networks (CNN) are the three selected deep learning architectures to model the problem.

4.1 Deep Learning Architectures

This research study focuses on the performance of deep learning models in the space of
cancer survival period prediction. For this purpose, we have selected three of the most
popular deep learning architectures in practice today- ANN, RNN and CNN.

Neural networks are sub-field of the rapidly growing deep learning space, which is
in itself a sub-field of machine learning. The rapidly growing popularity of deep learning
can be attributed to its performance to model unstructured data such as text and images
and to infer meaning at par with or better than human accuracy.

A basic building block of a neural network is a perceptron. A perceptron provides
each input with a weight and creates a function to represent the input space. This rep-
resentation is then passed through an activation function to produce a probability of the
input sequence representing the output or not. The simplest perceptron model can mimic
a logistic regression model through the use of just one perceptron. A neural network is
formed by arranging groups of perceptrons in multiple layers to represent the output with
activation functions defined for each layer. A perceptron is known as a neuron inside a
neural network, with the name representing the tendency of neural network to mimic
the performance of neurons inside the human brain. Neural networks have three major
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units - input layer, hidden layers and an output layer. The size of the input and output
layers are always defined by the problem, and the architecture of the hidden layers is
always defined by a machine learning practitioner which helps to model the problem
more efficiently. As the number of hidden layers increases, the defined representation
becomes more complex and highly non-linear.

The earliest defined neural network is ANN [22], which consists of neurons arranged
in multiple layers, with each neuron in one layer fully connected to each neuron in the
next layer. The simplest ANN architecture consists of an input layer, a hidden layer, and
an output layer. As the number of hidden layers increase, the number of parameters to
train in the network increases and the representation becomes more complex.

A neural network where the output of a neuron is fed back as input after certain
time units is known as RNN [23]. This ability makes it easy for them to model temporal
sequences of data such as text and time-series data. But, with the output of neurons being
fed back to the input neuron creates a gradient vanishing problem when the network is
very large and the input sequence is too long. To overcome this problem, Long Short
Term Memory Networks (LSTM) [24] were proposed as a variant of the simple RNN
architecture. LSTM introduced the concept of a forget gate that limits the sequence size
that is under consideration at any particular time, thereby overcoming the vanishing
gradient problem. We use LSTM networks for our research and hereby in this paper,
RNN refers to LSTM architecture.

A neural network model where the weights are shared across a few neurons in a layer
is known as CNN [25]. The shared weights concept makes CNN both space and shape
invariant and makes them the ideal network to model data from images and videos. This
helps in bringing down the number of training parameters that would be required if the
fully connected layers were used to model images. In this study, we are working with
1-dimensional data and hence, use the 1-D convnet architecture. In this paper, CNN
refers to the 1-D convnet architecture.

4.2 Model Architecture and Parameters

4.2.1 Classification Model

The architecture and parameters of the classification model under study are given in
Table 1. With ‘< =5 years’, ‘5 — 10 years’, and ‘>10 years’ as the target classes, this
model attempts to address a multiclass classification problem. Each model has a unique
model architecture with a varying distribution of neurons in each layer, number of layers,
and number of iterations (epochs) over which the model is trained. In addition, to prevent
overfitting of the data, regularization was performed through the addition of Dropout
layers between the hidden layers. A few hyper-parameters remain similar across all
models, such as ReLU (Rectified Linear Unit) as the activation function in the hidden
layers, Softmax as the activation function in the output layer, Adam (Adaptive Moments
Estimation) as the optimizer with a 0.001 learning rate and Categorical Cross Entropy
as the loss function.

ANN Model: The ANN model has 5 hidden layers with 600, 300, 100, 50 and 20
neurons in each layer, respectively. The model was run over 100 epochs with 10%
Dropout layer after the first two hidden layers.
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Table 1. Parameters for classification models

Parameters ANN RNN CNN

Target classes [<=5 Years, 5 — 10 Years, >10 Years]

No. of hidden layers 5 4 5

No. of neuron in each | [600, 300, 100, 50, 20] | [256, 128, 64, 32] [512,256, 128, 64,
hidden layer 32]

Activation functions in | ReLU in hidden layers and Softmax on output layer
each layer

Loss function Categorical cross entropy

Optimizer Adam (Adaptive Moments Estimation) with 0.001 learning rate

No. of epochs 150 100 100

Dropout layers for 10% dropout layer 10% dropout layer 10% dropout layer

regularization after first two hidden | after first two hidden | after first and third
layers layers hidden layers

RNN Model: The RNN model has 4 hidden layers with 256, 128, 64 and 32 neurons
in each layer, respectively. The model was run over 100 epochs with 10% Dropout layer
after the first two hidden layers.

CNN Model: The CNN model has 5 hidden layers with 512, 256, 128, 64 and 32
neurons in each layer, respectively. The model was run over 100 epochs with 10%
Dropout layer after the first and third hidden layers.

4.2.2 Regression Model

The architecture and the parameters of the regression model under study are given in
Table 2. With the normalized survival period as the target, this model attempts to address
a regression problem. Mean squared error was selected as the loss function since it is
a regression problem with each model having a varying distribution of neurons in each
layer, number of layers, and number of iterations (epochs) over which the model is
trained. Again, to prevent overfitting, Dropout layers were added to the models between
the hidden layers to perform regularization of the network. A few hyper-parameters still
remain similar across models such as ReLU (Rectified Linear Unit) as the activation
function in the hidden layers, no activation function in the output layer, and Adam
(Adaptive Moments Estimation) as the optimizer with a 0.001 learning rate.
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ANN Model: The ANN model has 3 hidden layers with 100, 60, 20 neurons in each
layer, respectively. The model was run over 20 epochs with no Dropout layer.

RNN Model: The RNN model has 2 hidden layers with 50, 20 neurons in each layer,
respectively. The model was run over 25 epochs with 20% Dropout layer after the first
and last hidden layers.

CNN Model: The CNN model has 2 hidden layers with 40, 20 neurons in each layer,
respectively. The model was run over 50 epochs with no Dropout layer.

Table 2. Parameters for Regression models

Parameters ANN RNN CNN

No. of hidden layers 3 2 2

No. of neuron in each hidden layer | [100, 60, 20] | [50, 20] [20, 40]

Activation functions in each layer | ReLU in hidden layers

Loss function Mean squared error

Optimizer Adam (Adaptive Moments Estimation) with 0.001
learning rate

No. of epochs 20 25 50

Dropout layers for regularization | None 20% dropout layer after every | None

hidden layer

4.3 Model Tuning

The models were initially tuned over a large number of epochs to observe the performance
of the models on both the training and test sets.

4.3.1 Classification Model

The plots of the training and test loss and accuracy vs. the number of epochs are shown
in Fig. 3. The optimal numbers of epochs for the ANN, RNN, and CNN models are
determined to be approximately 150, 100, and 100, respectively. The training loss and
test loss can be seen to diverge with the test loss stabilizing due to regularization and
the training loss decreasing at a rapid pace for all the models near the optimal number
of epochs.
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Fig. 3. Epoch Plots for Classification models. Epoch plots are required to find the optimal number
of Epochs to train the models by observing training loss and test loss and finding the point where
over-fitting starts.
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over-fitting starts.
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4.3.2 Regression Model

The plots of the training and test loss and accuracy vs. the number of epochs are shown
in Fig. 4. The optimal numbers of epochs for the ANN, RNN, and CNN models are
determined to be approximately 20, 25, and 50, respectively. The training loss and test
loss can be seen to diverge near the optimal number of epochs with the test loss increasing
and the training loss decreasing at a rapid pace for ANN model, while test loss stabilized
and training loss decreased at a rapid pace for both the RNN and CNN model.

4.4 Models for Comparison with Previous Research

To put our results in perspective, we compared our results with the results from tradi-
tional machine learning models approaches. Feature selection for classification models
was done using one-way ANOVA tests for continuous variables and x? test for cate-
gorical variables. Similarly, for regression models, one-way ANOVA tests were used
for categorical variables and univariate linear regression for continuous variables. These
tests give variables that are most relevant to the breast cancer classification and regression
models.

4.4.1 Classification Model

For the classification model, we have implemented the following models:

e Random Forest Classifier with 500 tree count, depth of 3 variables and minimum node
size of 50.

e Support Vector Machines with a linear kernel, primal optimization and a regularization
parameter of 1.7e07.

e Naive Bayes Classifier with a Complement Multinomial distribution assumed for the
features and Laplace smoothing parameter of 2.37.

The hyper-parameters for these models were selected through a random search for
the optimal hyper-parameters.

4.4.2 Regression Model

For the regression model, three models were implemented:

e Random Forest Regressor with 500 tree count, depth of 3 variables and minimum
node size of 50.

e Gradient Boosting Machine with 1000 tree count, interaction depth of 1, 0.21 learning
rate and minimum node size of 100.

e Line Regression Model with default parameters.

The hyper-parameters for these models were selected through a random search for
the optimal hyper-parameters.
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4.5 Feature Importance

There has been a growing demand to increase the interpretability of machine learning
models. This is especially true for the models that operate in heavily regulated industries
such as healthcare, mortgages, government and military. Understanding feature impor-
tance in models is a step towards being able to interpret the learning patterns that the
machine learning model interpreted from the data and would help in making the models
more interpretable, bias-free and easier to audit. These reasons contribute to understand-
ing feature importance being an important step in building machine learning models in
the healthcare sector.

To understand important features towards predicting survival period, we employed
two different types of model-agnostic machine learning model interpretation techniques
- one to explain the predictions locally at each prediction level and another to explain
predictions on a global level. At a local level, we aim to understand for each prediction
which feature plays an important role in outputting that particular prediction. At a global
level, we try to understand the impact each feature has on the final prediction. In other
words, we look at the final output as a function of each predictor individually.

For local level interpretability, we used Shapley Addictive exPlanations (SHAP)
[26] values to understand the features driving a set of sample predictions. SHAP is a
framework for machine learning interpretation that combines many algorithms such as
LIME [27], DeepLIFT [28], Shapley Sampling Values [29], Shapley Regression Values
[30], Quantitative Input Influence [31] and layer-wise relevance propagation [32]. SHAP
works as amodel agnostic interpretation and has no performance issues even on blackbox
models such as deep neural networks, random forests or gradient boosting machines.
SHAP provides a feature ranking for each prediction based on the amount of influence
each predictor had on the final prediction. SHAP value for a particular predictor is
provided as a percentage importance considering the most important predictor to have
a base value of 100%.

For global level interpretability, we have built Partial Dependence Plots (PDP) [33]
to understand the effect that each feature in the dataset has on the final prediction across
the complete training set. A partial dependence plot helps to visualize how the value of
final prediction changes with the changes in the feature value. Also, the distribution of
each feature was plotted to understand if the effect of each prediction is significant or
not. Partial dependence plots work on the assumption of binary classification. Hence, to
adapt it to the multiclass classification problem, we have employed One-vs-All approach
to describe the feature importance for each class.

For this study we investigated the interpretability of the results from our deep learning
models with the feature importance, which helps identify the most important features at
the local level and global level of interpretability.

4.6 Experimental Setting

The processes of data extraction, cleaning, visualization, transformation and model
building were done in Python. For those purposes, various open-source technologi-
cal stacks such as Numpy [34], pandas [35], Scikit-learn [36], TensorFlow [37], Keras
[38] and Matplotlib [39] were used. For providing the model interpretability and feature
importance using SHAP and Partial Dependence Plots, InterpretML [40] was used.
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5 Results and Discussion

We have used different evaluation metrics to evaluate the performance of the models
for the classification and regression approaches due to the inherent differences in these
approaches.

5.1 Evaluation Metrics

Precision, Recall, F-1 Score, Accuracy, and Cohen’s k were selected as the evaluation
metrics for the classification models built in this study. These evaluation metrics are
defined by the following equations [1-5]:

TP + TN
Accuracy = (D)
TP + FP + TN + FN
.. TP
Precision = ——— )
TP + FP
TP
Recall = —— 3)
TP + FN
Precision * Recall
F1Score = 2 * — 4
Precision + Recall
Pop —P,
= —— 5
K 1P, )

where TP is True Positives, FP is False Positives, TN is True Negatives, FN is False
Negatives, Po is the probability of observed agreement, and P, is the probability of
random agreement between raters.

For the regression modeling, Root Mean Squared Error (RMSE), Mean Squared
Error (MSE), and Coefficient of Determination (R2) value were used as the evaluation
metrics for the regression model. These evaluation metrics are defined by the following
equations [6-8]:

MSE = —Zl 1 -5,) (6)

RMSE = \/ le -5,) (7)

n 52
R2=1_2:i:1(y—’}i’)2 (8)
Zi:l(yi —)’)

where, y; is the i observed value, ¥; is the i predicted value, ¥ is the mean of observed
values, and n is the total number of values in the dataset.
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5.2 Classification Model Results

Deep learning models significantly outperform other baseline models of Random Forest
Classifier, SVM classifier and the Naive Bayes Classifier (Table 3). ANN turns out to be
the best performing model with achieving 87.50% accuracy, slightly higher than RNN
and CNN.

As shown in Table 3, the performance of deep learning models decreases as the
survival period of the class increases. ANN, RNN and CNN models have much lower
performance on the ‘> 10 years’ class. In contrast, the traditional machine learning mod-
els have a much lower performance on the bounded class ‘5-10 years’ in comparison
with the unbounded ‘<=5 years’ and ‘>10 years’. Note the exceptionally low perfor-
mance of the random forest classifier on the middle class. Among the traditional machine
learning models, the ensemble classifier Random Forest Classifier performs much better
that SVM and Naive Bayes Classifier. Naive Bayes Classifier has the worst performance
among all the classifiers at 48.82% accuracy.

The low recall for the ‘>10 years’ and the low precision for the ‘5-10 years’ for the
deep learning models suggest that the models find it difficult to differentiate between
medium length survival period prediction and long survival period prediction. This brings
down the overall performance of the models over ‘5-10 years’ and ‘> 10 years’ classes
in comparison with the ‘<=5 years’ class.

Table 3. Performance comparison of classification models

Model Target class Precision Recall F-1 score

ANN model <=5 years 90.94% 94.29% 92.59%
5-10 years 84.06% 91.67% 87.70%
>10 years 87.73% 76.54% 81.75%
Accuracy 87.50%
Cohen’s k 81.24%

RNN model <=5 years 89.05% 95.11% 91.98%
5-10 years 85.48% 91.31% 88.30%
>10 years 87.95% 75.97% 81.52%
Accuracy 87.46%
Cohen’s k 81.18%

CNN model <=5 years 90.17% 93.85% 91.97%
5-10 years 83.85% 89.60% 86.63%
> 10 years 85.70% 76.32% 80.74%
Accuracy 86.58%
Cohen’s k 79.87%

Random forest classifier <=5 years 63.84% 65.62% 64.72%

(continued)
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Table 3. (continued)

Model Target class Precision Recall F-1 score
5-10 years 52.16% 39.07% 44.68%
>10 years 56.82% 69.56% 62.55%
Accuracy 58.04%
Cohen’s k 37.07%

SVM classifier <=5 years 58.32% 62.98% 60.56%
5-10 years 47.09% 29.89% 36.57%
>10 years 53.65% 69.07% 60.39%
Accuracy 53.93%
Cohen’s k 30.91%

Naive Bayes classifier <=5 years 54.08% 56.69% 55.35%
5-10 years 41.59% 30.35% 35.09%
>10 years 48.67% 59.55% 53.56%
Accuracy 48.82%
Cohen’s k 23.24%

5.3 Regression Model Results

As shown in Table 4, deep learning models significantly outperform other baseline
methods with a lower RMSE and higher R? value. CNN turns out to be the best per-
forming model achieving 13.62% RMSE and 76.37% R? value. CNN’s performance is
just marginally better than that of ANN and RNN models.

We have plotted the RMSE vs. Survival Period in months along with support count in
Fig. 5 for all the models to better understand the error progression over survival period.
Figure 5 shows that the error in prediction for survival period is high for both breast
cancer patients with long survival periods and for those with very short survival period.
The error is lowest for the mid-level survival patients. This indicates that the models

Table 4. Performance comparison of regression models

Model MSE RMSE R? value
ANN 0.020 13.98% 75.09%
RNN 0.020 13.99% 75.04%
CNN 0.019 13.62% 76.37%
Linear regression 0.022 15.01% 71.27%
Gradient boosting Machine 0.021 14.58% 72.68%
Random forest regression 0.021 14.16% 74.01%
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Fig. 5. RMSE vs. No. of Survival Months plot for the deep learning models. The error in prediction
is the lowest for mid-level survival period patients.
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find it difficult to accurately estimate the survival period for low survival period patients
since breast cancer patients have a high mean survival period. The confidence in the
prediction is the highest for mid-level survival and again decreases for long survival
period patients as the number of cases decreases for high number of survival months.
This indicates that the regression approach cannot be useful in an unbounded approach
to modeling the patient survival period. The regression approach works best when the
survival period is bounded on the lower and higher side, away from which the error
increases to an unacceptable level while the support for the survival period goes below
an acceptable threshold value. For example, in the case of breast cancer, the survival
period could be bounded between 60 and 120 months (5 and 10 years, respectively),
as the RMSE is above 12% (which is assumed to be an acceptable threshold of error)
for survival period less than 60 months or greater than 120 months. The other survival
period needs more accurate substitution to help in predicting the exact survival period.

Also, notice the almost identical error progression occurs for all the deep learning
models in the figure. This leads us to believe that various deep learning models can model
a similar non-linear function from the predictors provided with the data to represent the
survival period.

5.4 Discussion

As shown above, deep learning methods significantly outperform the baseline models
which include traditional machine learning methods such as linear regression, random
forests, gradient boosting machine, support vector machine and naive Bayes across
both classification and regression approaches. This again represents the ability to learn
highly non-linear decision boundaries from high dimensional data, an aspect where
neural networks tend to do better than other traditional machine learning approaches.

The performance of both RNN and CNN is not better than the performance of
ANN across both classification and regression approaches. The absence of temporal or
sequential data in the dataset could be responsible for this differential. RNN and CNN
can shine with multi-dimensional data such as text or images where they optimize much
faster. Their performance is comparable to ANN without temporal data and represent
a loss of time in the project due to the longer training time that they take on a similar
network size as an ANN. This reinforces that selection of model architecture depends
more closely on the data than any other external factors.

This also opens another avenue to improve the performance of survival models
- through the use of temporal data. The built models will be enhanced through the
availability of temporal data, which can help in providing more accurate predictions.
The build models can be further enhanced through the patient treatment period, resulting
in the increase of prediction accuracy for cases with long survival period.

Prediction of survival period should still be bounded within an acceptable threshold
for the regression approach as many other factors currently not represented in the data
could drive the survival period for longer survival cases. The acceptable bounds for
prediction should be defined based on a specific cancer type as the behavior and survival
period distribution differs for each type of cancer. As a result, cancer-specific survival
models help model the intricacies of each cancer with respect to the survival period.
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Also, specifically for breast cancer, the error in regression for low survival period
is high, which could be augmented by combining with a classification approach. The
classification approach provided high performance on the low survival period class while
the regression approach lagged in performance on low survival periods. A combination of
both approaches could help provide a sufficient threshold for regression prediction which
performs best for mid-range survival period. This hybrid approach helps in defining a
tier-structure for predictions that can prove to be a more refined approach for healthcare
professionals and patients to better plan medical resources, treatment and care strategy
at an individual level. Also, the combined approach helps to define a threshold for high
survival periods, where the performance of both models is lower. This threshold should
define the maximum period for which the predictions can be made accurately either
through a classification or regression approach.

5.5 Feature Importance

Feature importance was estimated at both the local and global prediction levels. The fea-
ture importance varied across multiple classes. Age at the time of diagnosis (AGE_DX)
was an important driving factor in prediction, with higher value resulting in a low sur-
vival period prediction and lower age driving higher survival period. Also, the number of
malignant comorbidity tumors (MALIGCOUNT) was another driving factor, especially
for low survival period predictions with higher count leading to more confidence in the
prediction of low survival period. Similarly, the number of benign tumors (BENBORD-
COUNT) drives low survival period prediction, with a lower number of benign tumors
leading to low survival period prediction. The tumor size (CSTUMSIZ) and extension
(CSEXTEN), were important features for prediction of higher survival period, with lower
tumor and lesser extension leading to higher survival period prediction. The number of
radiation rounds (RADIATNR) represented another feature contributing highly to high
survival period prediction, with an increasing number of rounds of radiations showing
higher prediction contribution to higher survival period prediction.

Another important factor contributing to low survival period prediction is the grade
of the cancer (GRADE), with a higher grade driving lower survival period prediction.
Laterality of tumor (LATERAL) is an important factor for high survival period prediction,
with higher laterality pushing for a higher survival period prediction. Derived AJCC T
value (DAJCCT) and N value (DJACCN) provide another facet of higher survival period
prediction with higher T & N values contributing to higher survival period prediction. A
lower number of lymph nodes involved ((CSLYMPHN)) leads to higher survival period
prediction.

Also, some features such as progesterone status (PRSTATUS), primary site for
surgery (SURGSITF), first primary cancer (FIRSTPRIM), marital status (MAR_STAT)
and race (RACEIV) are driving predictions at the local level, but the dependence is not
seen at the global level. This indicates that these features are important to the model,
but they drive the prediction through interaction with other variables, which cannot be
observed through Partial Dependence Plots. Hence, these features need more scrutiny
to understand their interactions with other variables and the effect of these interactions
on the final prediction.
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Finally, there are a few variables that are considered important by the models, but they
represent information that is already convened through other variables. Hence, even if
they are considered important to the predictions, they still represent information already
conveyed through other variables. These variables include year of birth (YR_BRTH), age
recode (Age_I_REC), adjusted AJCC stage variable (ADJAJCCSTG), administration of
chemotherapy (CHEMO_RX_REC) and primary site (PRIMSITE).

6 Conclusions

This paper aims at providing new ways to predict breast cancer survival period by apply-
ing deep learning methods. We were able to model the survival period for breast cancer
patients using ANN, RNN, and CNN and compare those models with baseline models
consisting of linear regression, random forests, gradient boosting machine, support vec-
tor machine, and naive Bayes model. We achieved 87.50% accuracy for the classification
approach with the best-performing ANN model and 13.62% Root Mean Squared Error
(RMSE) and 76.37% R? value for the regression approach with the best-performing CNN
model. The deep learning models significantly outperformed the traditional machine
learning baseline models for both the classification and regression approaches.

The performance of classification model was shown to be decreasing as the survival
period in the class increases. This leads to the best performance on ‘<=5 years’ class and
lowest performance on ‘>10 years’ class. In the regression approach, it was shown that
the prediction error was the lowest for mid-range survival period and high for both low
survival period and high survival period cases. Hence, a threshold of acceptable error
specific to a cancer needs to be defined to estimate the maximum threshold of prediction
to receive acceptable values and combine predictions with the classification models to
improve the usability of prediction on low survival period cases.

Note that the performance of deep learning models does not differ much between
models, reinforcing the selection of model architecture based on intrinsic characteristics
of data. Adoption of hybrid architecture with different architectures in different layers
could improve the models’ performance, leading to an increased ability to model more
complex decision boundaries, but with decreasing interpretability.

Finally, we analyzed feature importance at both the individual prediction level and
the model as a whole. Important features were identified that drive both the low sur-
vival period prediction and high survival period prediction, along with the features that
represent information through interactions with other features.

This study constitutes a proof-of-concept that our methodology can serve as a basis
for developing models that will support healthcare professionals and patients plan med-
ical resources, treatment and care strategy with just information collected early in the
patient’s cancer journey.
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