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Preface

Survival and event history analysis have developed into one of the major areas of
biostatistics, with important applications in other fields as well, including reliability
theory, actuarial science, demography, epidemiology, sociology, and econometrics.
This has resulted in a number of substantial textbooks in the field. However, rapidly
developing theoretical models, combined with an ever-increasing amount of high-
quality data with complex structures, have left a gap in the literature. It has been our
wish to provide a book that exposes the rich interplay between theory and applica-
tions. Without being unnecessarily technical, we have wanted to show how theoreti-
cal aspects of statistical models have direct, intuitive implications for applied work.
And conversely, how apparently disparate and complex features of data can be set
in a theoretical framework that enables comprehensive modeling.

Most textbooks in survival analysis focus on the occurrence of single events. In
actual fact, much event history data consist of occurrences that are repeated over
time or related among individuals. The reason for this is, in part, the development
toward increased registration and monitoring of individual life histories in clinical
medicine, epidemiology, and other fields. The material for research and analysis is
therefore more extensive and complex than it used to be, and standard approaches
in survival analysis are insufficient to handle this.

It is natural to view such life histories as stochastic processes, and this is the ba-
sic idea behind our book. We start with the now classical counting process theory
and give a detailed introduction to the topic. Leaving out much mathematical detail,
we focus on understanding the important ideas. Next, we introduce standard sur-
vival analysis methods, including Kaplan-Meier and Nelson-Aalen plots and Cox
regression. We also give a careful discussion of the additive hazards model. Then
we extend the use of the counting process framework by counting several events for
each individual. This yields very fruitful models, especially when combined with the
additive hazards model. We further include time-dependent covariates, or marker
processes, to define what we term dynamic path analysis, an extension of classi-
cal path analysis to include time. This allows us to explicitly analyze how various
processes influence one another. Most of this is new, or very recently developed,
material.
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Another new aspect of the book is the explicit connection drawn between event
history analysis and statistical causality. The focus is on causal formulations where
time is explicitly present, including ideas like Granger causality, local independence,
and dynamic path analysis.

Unique to this book is the emphasis on models that give insight into the rather
elusive concept of hazard rate, and the various shapes the hazard rate can have. The
effect of unobserved heterogeneity, or frailty, is broadly discussed with focus on
a number of artifacts implied by the frailty structure as well as on applying these
models to multivariate survival data. A new class of process-based frailty models
is introduced, derived from processes with independent increments. We also study
models of underlying processes that, when hitting a barrier, lead to the event in ques-
tion. It is emphasized that frailty is an essential concept in event history analysis,
and wrong conclusions may be drawn if frailty is ignored.

The applied aspect of the book is supported by a range of real-life data sets. Most
of the data are well known to us through active collaboration with research groups in
other fields. By necessity, some of the examples based on them have been simplified
to achieve a more pedagogical exposition. However, we have made a strong effort
to keep close to the relevant research questions; in particular, our three case studies
are intended as more or less full-blown analyses of data of current interest.

Hence, the book contains a lot of new material for both the practicing statistician
and those who are more interested in the theory of the subject. The book is in-
tended primarily for researchers working in biostatistics, but it should also be found
interesting by statisticians in other fields where event history analysis is of impor-
tance. The reader should have some theoretical background in statistics, although
the mathematics is kept at a “user” level, not going into the finer theoretical details.

The book should be well suited as a textbook for graduate courses in survival
and event history analysis, in particular for courses on the analysis of multivariate or
complex event history data. Some exercises are provided at the end of each chapter,
and supplementary exercises, as well as some of the datasets used as examples, may
be found on the book’s Web page at www.springer.com/978-0-387-20287-7.

A number of friends and colleagues have read and commented on parts of this
book, have participated in discussion on themes from the book, or have provided
us with data used as examples, and we want to thank them all: Per Kragh Andersen,
Vanessa Didelez, Ludwig Fahrmeir, Johan Fosen, Axel Gandy, Jon Michael Gran,
Nina Gunnes, Robin Henderson, Nils Lid Hjort, Niels Keiding, Bryan Langholz,
Stein Atle Lie, Bo Lindqvist, Torben Martinussen, Sven Ove Samuelsen, Thomas
Scheike, Finn Skårderud, Anders Skrondal, Halvor Sommerfelt, Hans Steinsland,
Hans van Houwelingen, and Stein Emil Vollset.

Hege Marie Bøvelstad and Marion Haugen did an invaluable job making graphs
for a number of the examples. They also fearlessly took on the daunting task of
preparing all our references, saving us long hours of tedious work.

Preliminary versions of the book have been used as the text for a graduate
course in survival and event history analysis at the University of Oslo and for a
Nordic course organized as part of a Nordplus program for master-level courses in
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biostatistics. We thank the students at these courses, who gave valuable feedback
and pointed out a number of typos.

Most of the work on the book has been done as part of our regular appointments
at the University of Oslo (Odd O. Aalen and Ørnulf Borgan) and the Norwegian
Institute of Public Health (Håkon K. Gjessing), and we thank our employers for giv-
ing us time to work on the book as part of our regular duties. In addition, important
parts of the work were done while the authors were participating in an international
research group at the Centre for Advanced Study at the Norwegian Academy of
Science and Letters in Oslo during the academic year 2005–2006. We express our
gratitude to the staff of the center for providing such good working facilities and a
pleasant social environment.

Oslo Odd O. Aalen
January 2008 Ørnulf Borgan

Håkon K. Gjessing
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Chapter 1
An introduction to survival and event history
analysis

This book is about survival and event history analysis. This is a statistical method-
ology used in many different settings where one is interested in the occurrence of
events. By events we mean occurrences in the lives of individuals that are of inter-
est in scientific studies in medicine, demography, biology, sociology, econometrics,
etc. Examples of such events are: death, myocardial infarction, falling in love, wed-
ding, divorce, birth of a child, getting the first tooth, graduation from school, cancer
diagnosis, falling asleep, and waking up. All of these may be subject to scientific in-
terest where one tries to understand their cause or establish risk factors. In classical
survival analysis one focuses on a single event for each individual, describing the
occurrence of the event by means of survival curves and hazard rates and analyzing
the dependence on covariates by means of regression models.

The connecting together of several events for an individual as they occur over
time yields event histories. One might, for instance, be interested in studying how
people pass through diseases. Clearly, the disease might have a number of stages.
In parallel with the development, there will typically be a number of blood tests
and other diagnostics, different treatment options may be attempted, and so on. The
statistical analysis of such data, trying to understand how factors influence each
other, is a great challenge.

Event histories are not restricted to humans. A sequence of events could also
happen to animals, plants, cells, amalgam fillings, hip prostheses, light bulbs, cars –
anything that changes, develops, or decays. Although a piece of technical equipment
is very different from a human being, that does not prevent statistical methods for
analyzing event history data to be useful, for example, in demography and medicine
as well as in technical reliability. Motivated by our own research interests, the focus
of this book is on applications of event history methodology to medicine and de-
mography. But the methodology we present also should be of interest to researchers
in biology, technical reliability, econometrics, sociology, etc., who want to apply
survival and event history methods in their own fields.

Survival and event history analysis is used as a tool in many different settings,
some of which are:

• Proving or disproving the value of medical treatments for diseases.

O.O. Aalen et al., Survival and Event History Analysis: A Process Point of View, Statistics for
Biology and Health, DOI 10.1007/978-0-387-68560-1 1, 1
c© Springer Science+Business Media, LLC 2008
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• Understanding risk factors, and thereby preventing diseases.
• Evaluating reliability of technical equipment.
• Understanding the mechanisms of biological phenomena.
• Monitoring social phenomena like divorce and unemployment.

Even though the purpose of a statistical analysis may vary from one situation to an-
other, the ambitious aim of most statistical analyses is to help understand causality.

The purpose of this introductory chapter is twofold. Our main purpose is to in-
troduce the reader to some basic concepts and ideas in survival and event history
analysis. But we will also take the opportunity to indicate what lies ahead in the
remaining chapters of the book. In Section 1.1 we first consider some aspects of
classical survival analysis where the focus is on the time to a single event. Some-
times the event in question may occur more than once for an individual, or more than
one type of event is of interest. In Section 1.2 such event history data are considered,
and we discuss some methodological issues they give rise to, while we in Section 1.3
briefly discuss why survival analysis methods may be useful also for data that do not
involve time. When events occur, a natural approach for a statistician would be to
count them. In fact, counting processes, a special kind of stochastic process, play a
major role in this book, and in Section 1.4 we provide a brief introduction to count-
ing processes and their associated intensity processes and martingales. Finally, in
Section 1.5, we give an overview of some modeling issues for event history data.

The counting process point of view adopted in this book is the most natural way
to look at many issues in survival and event history analysis. Therefore the mathe-
matical tools of counting processes and martingales should not be considered pure
technicalities, but the reader should make an effort to understand the concepts and
ideas they express. Pure technicalities, like regularity assumptions, will not be em-
phasized much in this book; our aim is to explain the concepts involved.

1.1 Survival analysis: basic concepts and examples

We shall start by considering classical survival analysis which focuses on the time
to a single event for each individual, or more precisely the time elapsed from an
initiating event to an event, or endpoint, of interest. Some examples:

• Time from birth to death.
• Time from birth to cancer diagnosis.
• Time from disease onset to death.
• Time from entry to a study to relapse.
• Time from marriage to divorce.

As a generic term, the time from the initiating event to the event of interest will be
denoted a survival time, even when the endpoint is something different from death.
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1.1.1 What makes survival special: censoring and truncation

Superficially, one might think that a survival time is just a measurement on a scale,
and that an analysis of the survival times for a sample of individuals could be han-
dled by the well-developed statistical methods for analyzing continuous, or possibly
discrete, data. So, why not use ordinary linear regression and other standard statis-
tical methods? The reason this will not usually work is a fundamental problem that
one almost always meets when studying survival times. The point is that one actu-
ally has to wait for the event to happen, and when the study ends and the analysis
begins, one will typically find that the event in question has occurred for some in-
dividuals but not for others. Some men had a testicular cancer during the period
of observation, but most, luckily, had no such cancer. Those people might develop
it later, but that is something we will not have knowledge about. Or, in a study
of divorce, some couples were divorced during the time of the study, while others
were not. Again, they may divorce later, but that is unknown to us when we want
to analyze the data. Hence, the data come as a mixture of complete and incomplete
observations. This constitutes a big difference compared to most other statistical
data. If a doctor measures your blood pressure, it is done in one sitting in a couple
of minutes. Most measurements are like that: they are made on a single occasion.
But measuring survival times is altogether a different story, and this is what requires
a different statistical theory.

The incomplete observations are termed censored survival times. An illustration
of how censored survival times may arise is given in Figure 1.1. The figure illustrates
a hypothetical clinical study where 10 patients are observed over a time period to
see whether some specific event occurs. This event, or endpoint, could be death,
remission of disease, relapse of disease, etc. The left panel shows the observations
as they occur in calendar time. The patients enter the study at different times and
are then followed until the event occurs or until the closure of the study after 10
years. For statistical analysis one often focuses on the time from entry to the event
of interest. Each individual will then have his or her own starting point, with time
zero being the time of entrance into the study. The right panel of Figure 1.1 shows
the observations in this study time scale. For patients number 1, 2, 4, 5, 6, and
9 the event was observed within the period of the study, and we have complete
observation of their survival times. Patients 3, 7, 8, and 10 had not yet experienced
the event when the study closed, so their survival times are censored. Notice that
the censoring present in these data cut off intervals on the right-hand side, and so
one talks about right-censoring. In the simple example of Figure 1.1, closure of the
study was the only reason for censoring. However, in real-life clinical studies, right-
censored observations will also occur when an individual withdraws from the study
or is lost to follow-up.

As indicated in Figure 1.1, the study time scale used in a statistical analysis will
usually not be calendar time. There are commonly many possible different time
scales that may be used. In a clinical study the initiating event, which corresponds
to time zero in the study time scale, could be time of diagnosis, time of entry into
the study, time of admission to hospital, time of remission, etc. The choice of time
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Fig. 1.1 Patient follow up in a hypothetical clinical study with 10 patients. Left panel shows the
actual calendar time. Right panel shows the same observations in the study time scale, where
time 0 for each individual is his or her entry into the study. A filled circle indicates occurrence
of the event, while an open circle indicates censoring. In the left panel the dotted vertical line
indicates the closing date of the study.

scale to use in a statistical analysis is usually a pragmatic one: what will make the
analysis most relevant and clear with respect to the issues we study.

The set of individuals for which the event of interest has not happened before
a given time t (in the chosen study time scale), and who have not been censored
before time t, is termed the risk set at time t. In the right-hand panel of Figure 1.1
the risk set starts with 10 individuals, and then gradually declines to one and finally
zero individuals.

A concept related to right-censoring is that of left-truncation. In a clinical study
it may be that the patients come under observation some time after the initiating
event. For instance, in a study of myocardial infarction only those who survive the
initial phase and reach the hospital will be included in the study. Time zero for an in-
dividual patient may be the time of infarction, and if the patient reaches the hospital
and is included in the study it may happen at different times for different patients. If
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the patient dies prior to reaching the hospital, he or she will never be entered in the
study. The data arising here are left-truncated, and one may also use the term delayed
entry about such data. This implies that the risk set will not only decline over time,
but will also increase when new individuals enter the study. Originally, many meth-
ods of survival analysis were developed only for right-censored survival data. But
the counting process approach, which we shall focus on in this book, clearly shows
that most methods are equally valid for data with a combination of left-truncation
and right-censoring.

As a simple example of survival data with right-censoring, we may consider
the data on the 10 patients from the hypothetical clinical study of Figure 1.1. The
data from the right-hand panel of the figure are, with an asterisk indicating a right-
censored survival time,

7.32, 4.19, 8.11∗, 2.70, 4.42, 5.43, 6.46∗, 6.32∗, 3.80, 3.50∗.

This example illustrates well that right-censored survival times cannot be handled
by ordinary statistical methods. In fact, even a simple mean cannot be calculated due
to the censoring. If we cannot calculate the mean, then we cannot find a standard
deviation or perform a t-test, a regression analysis, or almost anything else.

1.1.2 Survival function and hazard rate

Even though ordinary statistical methods cannot handle right-censored (and left-
truncated) survival data, it is in fact quite simple to analyze such data. What one
needs is the right concepts; and there are two basic ones that pervade the whole
theory of survival analysis, namely the survival function and the hazard rate. One
starts with a set of individuals at time zero and waits for an event that might hap-
pen. The survival function, S(t), which one would usually like to plot as a survival
curve, gives the expected proportion of individuals for which the event has not yet
happened by time t. If the random variable T denotes the survival time, one may
write more formally:

S(t) = P(T > t). (1.1)

Remember that we use the term survival time in a quite general sense, and the same
applies to the term survival function. Thus the survival function gives the probability
that the event of interest has not happened by time t (in the study time scale), and it
does not have to relate to the study of death. Often the survival function will tend to
zero as t increases because over time more and more individuals will experience the
event of interest. However, since we use the terms survival time and survival func-
tion also for events that do not necessarily happen to all individuals, like divorce or
getting testicular cancer, the random variable T may be infinite. For such situations,
the survival function S(t) will decrease toward a positive value as t goes to infinity.

The survival function (1.1) specifies the unconditional probability that the event
of interest has not happened by time t. The hazard rate α(t), on the other hand, is
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defined by means of a conditional probability. Assuming that T is absolutely con-
tinuous, that is, that it has a probability density, one looks at those individuals who
have not yet experienced the event of interest by time t and considers the probability
of experiencing the event in the small time interval [t, t + dt). Then this probabil-
ity equals α(t)dt. To be more precise, the hazard rate is defined as a limit in the
following way:

α(t) = lim
Δ t→0

1
Δ t

P(t � T < t +Δ t | T ≥ t). (1.2)

Notice that while the survival curve is a function that starts at 1 and declines over
time, the hazard rate can be essentially any nonnegative function. Note also that
the hazard rate is the model counterpart of the incidence rate that is commonly
computed in epidemiological studies.

The concepts are illustrated in Figure 1.2. The left-hand panels show two typical
hazard rates, one that reaches a maximum and then declines and one that increases
all the time. The right-hand panels show the corresponding survival curves. Notice
that it is not so easy to see from the survival curves that the hazard rates are actually
very different. In fact, the shape of the hazard rate is an issue we will return to
several times in the book. The hazard rate may seem like a simple concept, but in
fact it is quite elusive and, as we will see in Chapters 6, 10, and 11, it hides a lot of
complexities.

From censored survival data, we can, as described in Section 3.2, easily estimate
a survival curve by the Kaplan-Meier estimator. The estimation of a hazard rate is
more tricky. But, as explained in Section 3.1, what can easily be done is to estimate
the cumulative hazard rate

A(t) =
∫ t

0
α(s)ds (1.3)

by the Nelson-Aalen estimator. The increments of a Nelson-Aalen estimate may
then be smoothed to provide an estimate of the hazard rate itself.

There are two fundamental mathematical connections between the survival func-
tion and the (cumulative) hazard rate that should be mentioned here. First note that
by (1.2) and (1.3), we have

A′(t) = α(t) = lim
Δ t→0

1
Δ t

S(t)−S(t +Δ t)
S(t)

= −S′(t)
S(t)

. (1.4)

Then by integration, using that S(0) = 1, one gets

− log{S(t)}=
∫ t

0
α(s)ds,

and it follows that

S(t) = exp

{

−
∫ t

0
α(s)ds

}

. (1.5)

In Appendix A.1 we describe how we may define the cumulative hazard rate for
arbitrary survival times, which need be neither absolutely continuous nor discrete,
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Fig. 1.2 Illustrating hazard rates and survival curves. The hazard rates on the left correspond to
the survival curves on the right.

and we show how formula (1.5) is generalized to this situation. These results turn
out to be useful when we study the properties of the Kaplan-Meier estimator and its
relation to the Nelson-Aalen estimator; cf. Section 3.2.

1.1.3 Regression and frailty models

A main purpose of many studies is to assess the effect of one or more covariates,
or explanatory variables, on survival. If there is only one categorical covariate, like
gender or the stage of a cancer patient, the effect of the covariate may be assessed by
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estimating a survival curve for each level of the covariate and testing whether any
observed differences are significant using the tests of Section 3.3. However, in most
studies there will be a number of covariates, and some of them will be numeric.
Then, as in other parts of statistics, regression modeling is called for. A number
of regression models have been suggested for censored survival data, and we will
consider some of them in Chapters 4 and 5.

The most used regression model for censored survival data is Cox’s regression
model. For this model it is assumed that the hazard rate of an individual with co-
variates x1, . . . ,xp takes the form

α(t|x1, . . . ,xp) = α0(t)exp{β1x1 + · · ·+βpxp} . (1.6)

Here α0(t) is a baseline hazard that describes the shape of the hazard rate as a
function of time, while exp{β1x1 + · · ·+βpxp} is a hazard ratio (sometimes denoted
a relative risk) that describes how the size of the hazard rate depends on covariates.
Note that (1.6) implies that the hazard rates of two individuals are proportional
(Exercise 1.5).

An alternative to Cox’s model is the additive regression model due to Aalen,
which assumes that the hazard rate of an individual with covariates x1, . . . ,xp takes
the form

α(t|x1, . . . ,xp) = β0(t)+β1(t)x1 + · · ·+βp(t)xp . (1.7)

For this model β0(t) is the baseline hazard, while the regression functions β j(t)
describe how the covariates affect the hazard rate at time t.

In (1.6) and (1.7) the covariates are assumed to be fixed over time. More gen-
erally, one may consider covariates that vary over time. In Sections 4.1 and 4.2 we
will discuss more closely Cox’s regression model and the additive regression model,
including their extensions to time-varying covariates.

The regression models (1.6) and (1.7) may be used to model differences among
individuals that may be ascribed to observable covariates. Sometimes one may want
to model unobservable heterogeneity between individuals that may be due, for ex-
ample, to unobserved genetic or environmental factors. One way of doing this is to
assume that each individual has a frailty Z. Some individuals will have a high value
of Z, meaning a high frailty, while others will have a low frailty. Then, conditional
on the frailty, the hazard rate of an individual is assumed to take the form

α(t|Z) = Z ·α(t). (1.8)

In Chapter 6 we will take a closer look at such proportional frailty models where
each individual has its own unobserved frailty. Frailty models may also be used to
model the dependence of survival times for individuals within a family (or some
other cluster). Then, as discussed in Chapter 7, two or more individuals will share
the same frailty or their frailties will be correlated.
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1.1.4 The past

Another concept we shall introduce is that of a past. The definition of the hazard
rate in (1.2) conditions with respect to the event of interest not having occurred
before time t. It therefore makes an assumption about how information on the past
influences the present and the future. This is a main reason why the hazard rate is a
natural concept for analyzing events occurring in time. So even if we did not have
the complication of censoring, the hazard rate would be a concept of interest. The
idea of defining a past, and hence also a present and a future, is a fundamental aspect
of the methods that shall be discussed in this book.

In (1.2) the only information we use on the past is that the event has not occurred
before time t. When working with left-truncated and right-censored survival data,
the information we use on the past will be more involved and will include informa-
tion on all events, delayed entries, and censorings that occur before time t (in the
study time scale), as well as information on the time-fixed covariates. (The handling
of time-varying covariates requires some care; cf. the introduction to Chapter 4.)
When working with event history data, where more than one event may occur for an
individual, the information on the past becomes even more involved.

It turns out that it is extremely fruitful to introduce some ideas from the theory of
stochastic processes, since parts of this theory are designed to precisely understand
how the past influences the future development of a process. In particular counting
processes and martingales turn out to be useful. We will give a brief introduction to
these types of stochastic processes in Section 1.4, while a more thorough (although
still fairly informal) treatment is given in Chapter 2.

As introduced in Section 1.1.1, right-censoring is a rather vague notion of life-
times being incompletely observed. It is necessary to be more precise about the
censoring idea to get mathematically valid results, and we will see in Sections 1.4
and 2.2.8 that the concept of a past and the use of counting processes help to provide
a precise treatment of the censoring concept.

1.1.5 Some illustrative examples

The concepts and methods mentioned earlier play an increasingly important role in a
number of applications, as the following examples indicate. Most of these examples,
with associated data sets, will be used for illustrative purposes throughout the book.
In connection with the examples, we will take the opportunity to discuss general
problems and concepts that are the topics of later chapters in the book. We start
with examples that are simple, seen from a methodological and conceptual point
of view, and then move on to examples that require more complex concepts and
methods.

Example 1.1. Time between births. The Medical Birth Registry of Norway was es-
tablished in 1967; it contains information on all births in Norway since that time.
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Fig. 1.3 Empirical survival curves of the time between first and second birth. Upper curve: First
child survived one year. Lower curve: First child died within one year. (Based on data from the
Medical Birth Registry of Norway.)

The registry is an invaluable source for epidemiological research of perinatal health
problems as well as on demographic research related to fertility. Focusing on the lat-
ter, we will use information from the Birth Registry on the time between births for a
woman. In particular, we will study the time between the first and second births of a
woman (by the same father), and how this is affected if the first child dies within one
year of its birth. Figure 1.3 shows Kaplan-Meier survival curves (cf. Section 3.2.1)
for the time to the second birth for the 53 296 women for whom the first child sur-
vived one year and for the 262 women who lost their first child within one year of its
birth. From the survival curves we see, for example, that it takes less than two years
before 50% of the women who lost their first child will have another one, while it
takes about four years before this is the case for the women who do not experience
this traumatic event. We note that the survival curves give a very clear picture of the
differences between the two group of women.

A more detailed description of the data on time between first and second births is
given in Example 3.1. In addition to this example, the data will be used for illustra-
tion in Examples 3.8, 3.10, and 10.2. We will use data from the Birth Registry also
to study the time between the second and third births of a woman and how this is
affected by the genders of the two older children; cf. Examples 3.2, 3.9, and 3.14. �



1.1 Survival analysis: basic concepts and examples 11

5 10 15 20 25 30

0
5

10
15

20
25

Duration of marriage

D
iv

o
rc

e 
ra

te

5 10 15 20 25 30

0
5

10
15

20
25

1980

1970

1960

5 10 15 20 25
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Duration of marriage

S
u

rv
iv

al
 o

f 
m

ar
ri

ag
e

5 10 15 20 25
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Fig. 1.4 Rates of divorce per 1000 marriages per year (left panel) and empirical survival curves
(right panel) for marriages contracted in 1960, 1970, and 1980. (Based on data from Statistics
Norway.)

Example 1.2. Divorce in Norway. The increase in divorce rates is a general fea-
ture of Western societies. The phenomenon is illustrated well by using the concepts
of hazard rates and survival curves. In Figure 1.4 we show empirical hazard rates
(rates of divorce) and empirical survival curves for marriages contracted in Norway
in 1960, 1970, and 1980. The increase in divorce risk with marriage cohort is clearly
seen. Furthermore, the hazard rates show an expected increase with duration of mar-
riage until about five years where a slight decline and then leveling out occurs. The
survival curves show how the proportions still married are decreasing to various de-
grees in the different cohorts. The concepts of survival curve and hazard rate are
very suitable for describing the phenomenon, as opposed to the rather uninforma-
tive descriptions common in the popular press, comparing, for instance, divorces in
a given year with the number of marriages contracted in the same year.

The rates of divorce and survival curves of Figure 1.4 are computed from data
from Statistics Norway. The data are given in Example 5.4, where we also explain
how the divorce rates and survival curves are computed. The divorce data are also
used for illustrative purposes in Examples 11.1 and 11.2. �

Example 1.3. Myocardial infarction. Clinical medicine is probably the largest sin-
gle area of application of the traditional methods of survival analysis. Duration is an
important clinical parameter: to the severely ill patient it is of overriding importance
how long he may expect to live or to stay in a relatively good state. An example
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Fig. 1.5 Survival curves for two treatments of myocardial infarction. Figure reproduced with per-
mission from Zijlstra et al. (1999). Copyright The New England Journal of Medicine.

is shown in Figure 1.5 comparing reinfarction-free survival of patients with my-
ocardial infarction when randomized to treatment with angioplasty or streptokinase
(Zijlstra et al., 1999). The latter treatment is a medication, while angioplasty con-
sists of inflating a tiny balloon in the blood vessel to restore the passage of blood.
The plots in the figure certainly give a clear conclusion: many lives would be spared
if all patients were given angioplasty.

A closer look tells us that the main difference between the groups comes very
early, in the first few weeks. A contentious issue in survival analysis is how to de-
scribe in the most fruitful way how survival depends on treatment and other covari-
ates. Most commonly Cox’s regression model (1.6) is used. This was done in the
paper by Zijlstra et al. (1999); adjusting for a number of factors the hazard ratio of
dying in the streptokinase group versus the angioplasty group was estimated to 2.31.
Cox’s regression model assumes proportionality of hazards over time, and when this
assumption fails, the estimated hazard ratio will be an average measure that does not
consider the change in effect over time. If one considered a shorter time interval the
hazard ratio might be much larger. One focus in the current book is how to analyze
changes in effects over time, and it will be shown that ideas from frailty theory (cf.
Chapter 6) are essential to understand changes in hazard rates and hazard ratios. �

Example 1.4. Carcinoma of the oropharynx. Another example from clinical medi-
cine is given by Kalbfleisch and Prentice (2002, section 1.1.2 and appendix A).
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They present the results of a clinical trial on 195 patients with carcinoma of the
oropharynx carried out by the Radiation Therapy Oncology Group in the United
States. The patients were randomized into two treatment groups (“standard” and
“test” treatment), and survival times were measured in days from diagnosis. A num-
ber of covariates were recorded for each patient at the entry to the study:

• x1 = sex (1 = male, 2 = female),
• x2 = treatment group (1 = standard, 2 = test),
• x3 = grade (1 = well differentiated, 2 = moderately differentiated, 3 = poorly

differentiated),
• x4 = age in years at diagnosis,
• x5 = condition (1 = no disability, 2 = restricted work, 3 = requires assistance with

self-care, 4 = confined to bed),
• x6 = T-stage (an index of size and infiltration of tumor ranging from 1 to 4, with 1

indicating a small tumor and 4 a massive invasive tumor),
• x7 = N-stage (an index of lymph node metastasis ranging from 0 to 3, with 0

indicating no evidence of metastases and 3 indicating multiple positive nodes or
fixed positive nodes).

The main purpose of such a clinical trial is to assess the effect of treatment. In
addition, one would like to study the effects of the other covariates on survival. As
these covariates are measured at entry and do not change over time, they are fixed
covariates.

We will use the oropharynx data for illustration in Examples 4.6, 4.7, 4.8, 4.10,
4.13, and 10.1. In all these examples, we will exclude the two patients (numbers 136
and 159) who are missing information on some of the covariates. �

Example 1.5. Hip replacements. The Norwegian Arthroplasty Registry was started
in 1987. At first only total hip replacements were registered, but from 1994 it in-
cludes replacements of other joints. By the end of 2005 the registry included infor-
mation on more than 100 000 total hip replacements and about 30 000 replacements
of other joints. The Arthroplasty Registry has provided valuable information on the
epidemiology of joint replacements, in particular total hip replacements.

From September 1987 to February 1998 almost 40 000 patients had their first
total hip replacement operation at a Norwegian hospital (Lie et al., 2000). In this
book we will use a random sample of 5000 of these patients – 3503 females and
1497 males – to study the survival of patients who have had a total hip replace-
ment operation. In particular we will compare the mortality among these patients
to the mortality of the general Norwegian population. Figure 1.6 shows the Kaplan-
Meier survival curve for the hip replacement patients (as a function of time since
operation) together with the survival curve one would expect to get for a group of
individuals from the general population with the same age and sex distribution as
the hip replacement patients (see Section 3.2.5 for details). It is seen that the hip
replacement patients have a slightly better survival than a comparable group from
the general population. The main reason for this is that a patient needs to be in a
fairly good health condition to be eligible for a hip replacement operation.


