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Chapter 1
Introduction to Biomedical Applications
in Nanotechnology

S. Archana, Devi Radhika, K. Yogesh Kumar, S. B. Benaka Prasad,
and R. Deepak Kasai

1 Introduction

Nanomaterials have a unique advantage in medical applications because of their
smaller structures and increased surface area [1–3].Appropriate selection of substrate
is essential to achieving the desired multifunctional properties that many applica-
tions need [4, 5]. One of the most common elements in the Earth’s crust is carbon. In
different forms, carbon atoms bondwith each other to form various carbon allotropes,
to produce a set of carbon-based Nanocomposites. These include nanodiamonds [6,
7] carbon dots [8, 9], carbon nanotubes [10, 11] graphene and its derivatives [12–14].
Metal nanocomposites are the types of materials that comprise metal or alloy as the
substrate in which specific nanosized material is grafted. These composites include
metal-ceramic characteristics, for example, ZnO, TiO2, SiO2, and CeO2 [15, 16].
Polymer nanocomposites are generally used for their easymanufacturing, flexible and
wear resistance properties. In contrast to ceramic materials, they have certain restric-
tions, such as limited strength and modulus [17, 18]. In a broad array of applications,
nanomaterials are considered to be the efficient ones. This is a product of its remark-
able electrical, optical, photocatalytic, and biochemical properties, large specific
surface area, effective bandgap, including more significant biochemical activity.
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Fig. 1 An illustrafftion of
some biomedical
applications involving
nanoparticles

Toxicology Emulsions

2 Nanotechnology in Biomedical Applications

It is noted that many changes are needed for the transformation of a discipline from
life science to technology and its applications. This development must involve Inno-
vative design and simulation implementation, the potential to assess and evaluate,
and extensive initiative in the advancement of technology. In life science, the func-
tions and actions of a body, including cells, RNA, and DNA or Proteins, are on the
nanoscale level. Thus the use of nanotechnology is the gateway to biotechnolog-
ical progress [19]. Ultimately, nanotechnology can make it possible to transport and
manipulate biomaterials and integrate them [20]. In biotechnology, nanotechnology
has special applications, particularly in diagnosis and therapeutics [21]. It is possible
to combine various biological compounds with nanomaterials using physicochem-
ical processes and through particular biochemical reactions, such as Protein-protein
interactions, antibody-antigen interactions [22]. The focus on using nanomaterials
in biomedical applications, such as drug delivery, hypoxia, therapy, biosensors, and
bioimaging, is increasingly gaining popularity [23] (Fig. 1).

3 Properties Involved in Biomedical Applications

3.1 Magnetic Property

The most frequently studied and widely applied material for biomedical applications
aremagnetic nanomaterials. Its effectiveness is attributed to specific structural, chem-
ical, andmagnetic properties like stability, non-poisonous, bioactivity, highmagnetic



1 Introduction to Biomedical Applications in Nanotechnology 3

flux [24]. These Magnetic nanoparticles are mostly comprised of Fe3O4, Fe2O4, Co-
doped Fe2O4, andMn-doped Fe2O4. These nanomaterials aremost studied since they
all have unique characteristics which are crucial for use in various medical applica-
tions, like selective delivery of drugs, bioimaging, magnetic hyperthermia, therapy,
biosensors, and photoablation [25].

3.2 Optical Property

The optical properties ofmetal oxide nanoparticles aremainly focused on biomedical
applications. Doped materials are excellent frequency converters covering the spec-
trum from ultraviolet (UV) through visible to near-infrared because of the distinctive
electronic structure of transition metals. The probability of biomedical application is
a further benefit of the optical approach, gaining the benefit of different absorption
spectra. Metal oxide-based NPs attract growing attention as optical sensor indicators
and therapeutic and diagnostic agents from the biotechnology, chemistry, optics, and
biomedical community due to their optical properties [26, 27].

3.3 Surface Morphology

The selective behavior is encouraged by this surface arrangement through increasing
the active spots, leading to biomolecules being spread across the surface. By reducing
steric interference and improving accessibility to the binding sites, biomedical appli-
cations are carried out on this sort of surface. It relies on the fact that the thermody-
namic and kinetic mechanisms of the surface active sites and analytes have the same
order, allowing for more efficient biomedical behavior. Ultimately, when the surfaces
are structured geometrically, this reflects unique optical and electric properties which
are used in improving various applications like high functional bio-implants, effi-
cient biosensors, biochips in neuronal computing,Medical diagnosticswith accuracy,
molecular separations, and biosynthesis [28].

4 Nanoparticles in Biomedical Application

4.1 Drug Delivery Systems

Lately, major developments have occurred in this area of drug carriers systems to
deliver drugs to their specified location for treating the different health conditions. A
number of new drug delivery technologies have been widely implemented. However,
there are some issues to be resolved. Therefore the nano-based drug carriers which
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Fig. 2 Schematic representation of targeted drug delivery

will facilitate the highly developed drug delivery system are studied effectively [29].
This is due to its positive effects, like the capacity to change characteristics like
solubility, patterns of drug release, diffusability, bioavailability, Suitable paths of
administration, reduced toxic effects, lesser side effects, enhanced cellular uptake,
and prolonged life cycle of medications and tolerability [30] (Fig. 2).

4.1.1 Polymeric Nanoparticles

Polymeric nanomaterials have more excellent biocompatibility with effective func-
tional groups [31]. It’s used in the binding or coating of nanomaterials of different
sorts. Therefore, multiple nanoparticles of various functions are formed for effective
use in the identification and treating the multiple forms of diseases. Xiaoping et al.
[32] showed that a sequence of nanosized amphipathic cetirizine-chitosan polymer
was efficiently used as a mucosal drug delivery system. In the presence of lysozyme,
Cetirizine dihydrochloride (CedH): chitosan NPs demonstrated burst and persistent
levels of drug release, with no major negative impacts on the body fluids [32]. Talitha
et al. developed a chitosan film carrying PLGA nanoparticles packed with enhanced
flavonoid fraction ofCecropia glaziovii. The result showed that the efficient chitosan
nanocomposites were synthesized with an efficient capacity to overcome the less
availability issue of EFF-Cg and proved as the potent delivery system in treating
herpes infection [33]. Zhao et al. [34] discussed that the Glucose-sensitive polymer
nanoparticles coupled with glucose oxidase, concanavalin A, and phenylboronic acid
for self-controlled delivery of drugs which can give better control of blood level, and
also delivers a precise dose of the medicine (e.g., insulin), Copying the pancreas’
physiological control. GOD, Con A, or PBA [35]. Similarly, there are numerous
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polymeric nano drug carriers whose efficiency and the target application are listed
in Table 1.

Table 1 Polymeric nano drug carriers with the target applications

Sl. No. Polymer nanocomposite Drug carried Outcome References

1 Tetraphenylethylene
immobilized
zirconium-based
nanoscale coordination
polymers

Curcumin Promising medium for
efficient delivery of drugs
and continuous image
analysis of fluorescence

[33]

2 Poly(lactic-co-glycolic
acid)

Dox-HCl
Dox-base

Enhanced hydrophilic drug
miscibility in a
hydrophobic PLA polymer
will decrease the rate of
discharge

[35]

3 NCPs, which consist of
manganese ions (Mn2+), as
the metal
connecting points, and
dithiodiglycolic acid, as
the organic
bridging ligands

Doxorubicin Enhanced in vivo
inhibitory effects of tumor
growth compared to free
DOX

[34]

4 SiO2-PMAA-b-PNIPAM Doxorubicin DOX-loaded
SiO2-PMAA-b-PNIPAM
nanoparticles are
Extremely effective
towards Hela cells

[36]

5 Cellulose
nanocrystals-HPG-HEBA

Epirubicin Successfully accepted by
cells, EPI nevertheless
retains its biological
activity for Attack of
cancer cells

[37]

6 Oligo(ethylene glycol)
methacrylate

Doxorubicin Promoted drug release at
pH 5.0, greater cellular
uptake and cytotoxicity of
Dox-loaded
pH-sensitive micelles of
PCL21-b-P(a-OEGMA)11
relative to
the pH-insensitive analogs
of PCL21-b-P(OEGMA)18

[38]

7 Polymer
coated silica nanoparticles
modified with guanidine
containing
co-polymers—γ-Fe2O3

Molsidomine High capacity for drug
loading because of the
efficient electrostatic
interactions of guanidine
and molsidomine Which
consists co-polymers

[39]
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4.1.2 Metallic Nanoparticles

Metal-organic composites are flexible classes of hybrid materials made by metal
comprising structures bound by organic linkers in three dimensions. A good number
of different metallic nanoparticles with organic framework provides a wide range
of properties that allow them to be useful in numerous applications including drug
delivery. Due to several properties, like high pore size distribution and volume, they
are becoming ideal for delivery of drugs. The capacity to modify organic linkers for
stealth-tracking or biocompatibility, besides the higher carrying ability, indicates that
changes can be made to metallic nanoparticles which are well developed to deliver
drugs [40, 41].

Siamak et al. [42] synthesized carboxymethylcellulose/Zinc-based metal-organic
framework/graphene oxide bio-nanocomposite to carry doxorubicin. The DOX
release rate was considerably greater in the tumor cell pH 5 than in physiolog-
ical conditions at pH 7.4. Also, the analysis suggests that DOX@CMC/MOF-5/GO
exhibited substantial K562 cell cytotoxicity [42]. Wang et al. [43] showed that the
mesoporous FeSe2 hedgehogs can be tailored and used for tumor therapy using
doxorubicin. Because of FeSe2 hedgehogs’ powerful NIR-II photothermal activity,
1120 nm light irradiation into tumor cells leads to gelatin melting, regains the
spiky structure, and thus promotes internalization of cells, this results in a partic-
ular aggregation in the tumor cells [43]. Zied et al. [44] Synthesized magnetic
nanoparticles composedof ironoxide, 2-(2-methoxy)ethylmethacrylate (MEO2MA)
and oligo(ethyleneglycol)methacrylate (OEGMA) for enhanced delivery of 100%
doxorubicin after 52 h at 42 °C [44].Milad et al. [45] stated that the prepared gold-iron
oxide nanocomposites can be it will be used as a viable transport for Lipoic acid-
curcumin (LA-CUR) a novel anticancer drug. Being a negatively charged carrier,
studies showed a substantially increased cytotoxicity toward cancerous U87MGG
in contrast to curcumin [45]. Carbon/calcium phosphate/Fe3O4 composite nanopar-
ticles synthesized by Mingyu et al. can be rendered as a transverse relaxation (T2)
contrast agent for MRI and when the cells are treated with carbon/CaP/Fe3O4, cell
viability is as great as 95.6% demonstrating the composite NPs showed superior
cytocompatibility [46]. There are diverse metallic nano drug carriers whose efficacy
and target output are described in Table 2.

4.2 Biosensors

Nanobiotechnology implies methodologies that integrate nanomaterials or nanopar-
ticles to build tools for biological processes as given in Fig. 3. As the active elements
laid the groundwork for amajor advance in the area, resulting in stable sensor devices,
nanomaterials are integrated into the sensor applications. With their flexible surface
chemistry, optoelectronicmerits, themanufacturing processes, coupledwithmorpho-
logical characteristics, nanomaterials are by far the most frequently used in biomed-
ical research [53, 54]. Usually, an electroanalytical biosensor comprises two main
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Table 2 Metallic drug carriers with the target applications

Sl. No. Metallic
nanocomposite

Drug carried Outcome References

1 Gadolinium
oxide-gold
nanoclusters hybrid

Indocyanine green
(ICG)

High loading capacity
for the drug of 1.74 g/g

[47]

2 MIL-88A NPs
composed of iron(III)
and fumaric acid

Suberoyl
bishydroxamic acid

strong therapeutic
capacity without any
early leakage when
coated using exosome

[48]

3 UiO-66, a
zirconium-based
Metal–organic frame
work

model cargo, RhB, and
a corticosteroid, dex

UiO-66 NPs are a
modern aerosol
platform for a vast
array of lung diseases,
which include COPD,
lung cancers and
COVID-19, with
possible targeted
delivery

[49]

4 Multifunctional
magnetite mesoporous
silica nanoparticles

Tamoxifen Research indicates that
the highest
biocompatibility of
nanogels after 72 h is
well above 80% viable
cells

[50]

5 Zinc(II) metal–organic
frameworks
(Zn-MOFs)

5-FU and DOX 22.5% and 26.72% of
DOX were released
from the NPs after 12
and 24 h at pH 7.4,
while 47.92% and
55.1% of the drug were
released in the same
time at pH 5.5,
respectively

[51]

6 ZnO quantum dots Doxorubicin Could be fully
biodegraded in the
acidic environment,
with almost 72% of
DOX discharged after
80 h

[52]

sections. The analyte-recognizing biological factor in the sample. The segment of
the detector that transforms the signal produced into a signal from biological activity,
that can be calculated more effectively [55].

Qingzhou et al. synthesized In2O3 nanoribbon modified with the enzyme glucose
oxidase, chitosan, and carbon nanotubes (SWCNTs) for glucose detection in various
body fluids, such as sweat and saliva. This showed a mobility of ∼22 cm2 V −
1 s − 1 in 0.1 × saline buffered using phosphate. It’s been affixed on different
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surfaces, including watches and synthetic arms [56]. Hamed et al. [57] prepared
a hydrogel by copolymerizing PEG linker and polyethylene glycol and to activate
covalent cross-linking and gel formation, Eosin Y is taken as the photoinitiator.
In order to efficiently facilitate the enzymatic reaction causing penicillin tracking
down to 0.2mM, the hydrogel-mediated activation of penicillinase was explained. To
accomplish extremely accurate sensing,multiplexed surfacemodificationwas shown
with penicillinase and acetylcholinesterase [57]. Montmorillonite clay was binded
using PAMAM G2 dendrimers by Betul et al. and electrospinned using poly(vinyl)
alcohol and pyranose oxidases. The identification limit was 0.7 μM glucose [58].

Samira et al. showed that iron (III) in the presence of 1, 10-phenanthroline detects
hydroquinone and Catechol in the limits of 0.05 and 0.07mgL-1. The linear dynamic
range was 0.5–3.0 mg L−1 for both analytes [59].

4.3 Antibacterial Agents

Nanoparticles are usually able to interact with microbes as an effective antifungal
and antibacterial agent. In recent years, the progress of nanotechnology has facil-
itated the discovery of new antibacterial drugs. In relation to traditional materials,
as the size of materials reduces from micrometer to the nanometer scale, nanomate-
rials exhibit higher efficiency, like improved diffusivity, excessive material strength
and chemical reactivity, and improved biological activities. Usually, through various
forms of gram-negative and positive strains of bacteria, the antibacterial efficiency of
nanoparticles is achieved [60]. This may be due to the occurrence of Reactive oxygen
species generated, protein damage, DNA damage, Mutagenesis, Enzyme disruption,
membrane damage, or destruction of electron transport [20] .

In order to battle pathogens, metals have been around since earlier times. Because
of its wide inhibitory range towards microbes and pathogens, metal nanoparticles
have gained increased curiosity as antimicrobial agents [61]. Qing et al. [62] proved
that the synthesized copper nanoparticles damage Escherichia coli as high as 86.3 ±
0.2%within 12h at the dosageof 100μg/mL.Themain explanation for the behavior is
the production of oxygen radicals that destroys the constituents of the cell membrane
and cytoplasm and inactivates lipid peroxidation and DNA damage [62]. By using
a green synthesis technique, Tu Uyen et al. synthesized ZnO NPs using orange-peel
extract as the reducing agent. The antimicrobial rate in the direction of E. coli was
over 99.9%,while the bactericidal rate against Staphylococcus aureus in the relatively
large range of 89–98% [63]. Dongdong et al. [64] synthesized remarkably effective
antibacterial towards drug-resistant Escherichia coli (E. coli) and Staphylococcus
aureus (S. aureus) are displayed by silver-decorated quercetin. Disruption of Nucleic
acid assay presumed that the expression levels of DNA from both species steadily
reduces with the concentrations of QA NP. Gene expression screening like RNA
Seq is used to assess the sensing of toxicity pathways [64]. Shamkumar et al. [65]
synthesized Ag NPs−PANI/MWCNT resulted in bacterial inactivation because of
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Fig. 3 Schematic diagram showing the mode of antibacterial activity

higher surface area of Ag NPs, and 1D MWCNT and acidic functional group of
PANI [65].

Sl. No. Nanomaterials Bacterial strains Report References

1 Povidone-iodine
nanoparticles

E. coli
S. aureus
P. aeruginosa

Iodine was mounted on
P(NVP-MMA) NPs, with a
contact period of 30 min
displaying 100%
elimination of E coli and S
aureus

[66]

2 ZnO and CuO capped with
polyvinyl alcohol,
polyethylene glycol,
and polyethylenimine

E. coli
S. aureus

After 120 min of exposure,
99.9% bacterial destruction
was exhibited by
CuO-PEG and ZnO-PVA

[67]

3 Chitosan/Pd
nanocomposites

S. aureus
B. anthracis
B. subtilis
B. cereus
P. aeruginosa
K. pneumoniae
E. coli
Proteus sp.

Mic was recorded for
CS/Pd-15%, i.e., 0.78,
1.56, 6.25, 0.78, 25, 50, 25,
0.78 μg/ml respectively

[68]

4 Ru(II) polypyridine
complexes

E. coli
S. aureus
Enterococcus

16, 8, 16 μg/ml Mic were
recorded respectively

[69]

(continued)
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(continued)

Sl. No. Nanomaterials Bacterial strains Report References

5 Silver nanoparticles on
mesoporous graphene

E. coli When exposed for 2 h and
showed an inhibition zone
of 0.42 cm achieving 100%
removal

[70]

6 Au–Ag NPs E. coli
S. aureus

Larger inhibition zone for
E. coli and S. aureus
36.4 mm and 35.3 mm in
average diameters,
respectively

[71]

7 Tungsten oxide-graphene
oxide

E. coli
B. subtilis

Maximum inhibition at
2.5–5 mg/mL at irradiation
for 6 h

[29]

8 Titanium dioxide E. coli
S. aureus

The minimum inhibitory
concentration of
25 mg/mL−1 and
50 mg/mL−1 respectively

[72]

9 Au@Ag NPs E. coli
S. aureus

Minimum inhibitory
concentration
are 5 mg/mL−1 for E. coli
and 7.5 mg/mL−1 for S.
aureus

[73]
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Chapter 2
Lipid Nanocarriers: Applications
in Biomedical Research and in Drug
Delivery

Sujata Maurya, Manish Kumar Mishra, Brijesh Rathi, and Dhruv Kumar

1 Introduction

Lipid nanocarriers are the most advanced non-viral drug delivery systems. They
are called nanocarriers, because of their size which is about few nanometres only.
Nowadays, it is no doubt that nanoformulations are of extreme advantage in the
arena of pharmaceutics. Lipid nanocarriers havebecome indispensable for use as drug
delivery systems because of their complete biocompatibility and nontoxic nature [1].
There are numerous studies proving the safety and high efficacy of lipid nanoparti-
cles in the fields of pharmacology, diagnostics, nutraceuticals, etc. Such studies have
been the impetus in further research and development into this arena of nanoscience.
Solid lipid nanocarriers (SLN) were the first generation nanocarriers. There were
many advantages of SLN, but since the SLN is formed of a crystalline solid so it
has a capacity to form gel, low incorporation rate. SLNs could not deliver the drug
efficiently to the target site [2]. Due to the inefficacy of SLNs, NSL (nanostructured
lipid carriers) were formulated. To overcome the disadvantage of solid lipid nanopar-
ticles these lipid nanocarriers are formed of solid and liquid lipids. This possibility
of drug incorporation in the lipid nanocarriers is a new technique which is highly
advantageous and bio risk free. Oral administration of lipid nanocarrier based drugs
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is also possible, other traditional forms of sachets, tablets, etc. are also available. The
major application of the ultra-deformable nanovesicles is their ability to transfer the
drugs across the natural mammalian skin barrier. Various unstable proteins, peptides,
drugs, and vaccines are transferred efficiently [3] (Figs. 1 and 2).

The major challenge faced by these lipid nanocarriers is that they cannot be
administered by the parenteral route of drug administration because these are then
recognized as foreign by the cells of reticuloendothelial system. This challenge can
be overcome only if the size of nanoparticle is even smaller than 200-micron meters
because these size nanocarriers are not treated as non self by the cells of RES.

Solid lipid nanocarriers (SLN) and Nanostructured lipid carriers (NSL)

Solid Lipid
Nanoparticles 
(SLN)

• SLN is a perfect crystal lattice 
structure.

• There is less space for accommodation 
of drug inside the lipid core, resulting in 
the less drug loading and expulsion of 
drug out of the system. 

Nanostructured Lipid Carriers (NSL)

NLC Type I • It is an imperfect crystal core.
• More space is available for drug 

accommodation inside the lipid core.
• Hence, higher drug loading is possible 

and reduced/no possibility of drug 
expulsion from core. 

NLC Type II • This type is also known as structure less 
type. 

• Instead of conversion into a crystalline 
structure, solid lipids incorporated into 
this get converted into an amorphous 
form.

NLC Type III • This is multiple model known as O/F/W 
model. 

• Drugs having higher solubility in liquid 
lipids/ oils than solid lipid can be 
formulated into this type. 

• It can be prepared by phase separation 
method. 

• Drug is present in the dissolved state 
inside tiny oil droplets and uniformly 
distributed in the solid core.

Fig. 1 Shows the structures of SLNs and different types of NLCs [3]
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Fig. 2 Stability profile of SLNs and NLCs [5]

There remains a lot of research that must be carried out further in this field of
nanotherapeutics [4].

The main advantages of lipid nanocarriers over the conventional carriers are as
follows [6]:

1. Can store and extendedly release the target drug
2. Can store and release the target drug in an efficient and a stable manner
3. Both lipid soluble and water-soluble drug carriers
4. Most of the lipids used in formulation of lipid nanocarriers are biocompatible

and non-allergens
5. Their production can be easily upscaled and are very easy to sterilize also.

Various lipid molecules interact with each other leading to formation of lipid-
based nanostructures,which have no nonspecific interactionwith other biomolecules,
which in turn makes them a promising model for use in human body systems [7].
Lipid nanocarriers are one of the devices which have resulted out due to another
revolution in the field of nanotechnology (Table 1).

Table 1 Differentiating parameters of SLNs and NLCs (Salvi and Pawar, 2019)

S. No. Parameters Solid lipid nanoparticles Nanostructured lipid

1 Nature of lipids Solid Blend of solid and liquid
lipids

2 Possible drug accommodation Low High

3 Degree of crystallinity Higher (ordered matrix) Lower
(Amorphous/imperfect
crystalline matrix)

4 Drug escape from matrix in
dispersion media

Comparatively higher Lower

5 Stability Lower Comparatively Higher
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1.1 Classification

Different types of lipid nanocarriers are classified as follows:

1. Liposome
2. Transferosomes
3. Ethosomes

2 Liposome

2.1 Introduction

The first demonstration of liposome preparation was given by Prof. Alec Bangham
[8], in Babrahm Institute, Cambridge, England in 1965. Since their discovery, the
liposomes have been used as drug and pharmaceutical carriers (Fig 1). The liposomes
consist of a central aqueous space (03–10 micrometer in diameter) surrounded by
lipid bilayer comprising amphipathic lipids or phospholipids. So, basically, lipo-
somes are nano sized lipid moieties of spherical shape [9]. There has been a lot of
progress in the research on liposomes from conventional spherical liposomal bodies
to second generation liposomes [10].

Second generation liposomes are those in which the size, charge, and composition
of a lipid molecule are altered to some extent so as to make it a better delivery agent.
Liposomes are nowadays widely used as drug delivery systems (for, e.g.,- doxoru-
bicin, daunorubicin, cytarabine, etc.) for treatment of various infectious diseases
and cancers also (Fig. 3). There are many advantages and disadvantages of using
liposomes which are summarized in Table 2.

Fig. 3 Basic structure of a liposome drug delivery system
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Table 2 Advantages and disadvantages of liposomes [11]

S. No. Advantages of liposomes Disadvantages of liposomes

1 Liposomes increased efficacy and
therapeutic index of drug
(actinomycin-D)

Low solubility

2 Liposome increased stability via
encapsulation

Short half-life

3 Site avoidance effect Fewer stables

4 Liposomes help reduce the exposure of
sensitive tissues to toxic drugs

Production cost is high

5 Liposomes reduce the toxicity of the
encapsulated agent (amphotericin B,
Taxol)

Leakage and fusion of encapsulated
drug/molecules

2.2 Composition

Liposomes formulationmajorly consists of two types of phospholipids- glycerophos-
pholipids and sphingomyelins. Glycerophospholipids (glycerol as backbone) and
sphingomyelins are mainly the constituents of eukaryotic cells. The structure of a
liposomal entity can be varied by altering the head groups of the glycerophospho-
lipids. The different head groups can be phosphatidylcholine, phosphatidyl serine,
phosphatidylethanolamine (Table 3), sphingomyelins have the property of efficient
molecule entrapment, high stability in serum, also are readily released after delivery
of the molecule to target organ [12].

2.3 Methods for Preparation of Liposomes

Three to four basic steps for liposome formation are as follows:

Step 1:- Lipid drying through organic solvent evaporation.
Step 2:- Dispersing the dried lipid in aqueous medium.
Step 3:- Involves the purification process of the obtained liposome
Step 4:- To structurally analyze and characterize the formed liposome.
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