

Table of Contents
Cover
Title Page
Introduction

What You Will Learn
Who Is This Book For?
Self-Taught Success Stories
Getting Started
Sticking with It

I: Introduction to Algorithms
1 What Is an Algorithm?

Analyzing Algorithms
Constant Time
Logarithmic Time
Linear Time
Log-Linear Time
Quadratic Time
Cubic Time
Exponential Time
Best-Case vs. Worst-Case Complexity
Space Complexity
Why Is This Important?
Vocabulary
Challenge

2 Recursion
When to Use Recursion

file:///tmp/calibre_5.42.0_tmp_6ttnkq4j/mred38ex_pdf_out/OPS/cover.xhtml

Vocabulary
Challenge

3 Search Algorithms
Linear Search
When to Use a Linear Search
Binary Search
When to Use a Binary Search
Searching for Characters
Vocabulary
Challenge

4 Sorting Algorithms
Bubble Sort
When to Use Bubble Sort
Insertion Sort
When to Use Insertion Sort
Merge Sort
When to Use Merge Sort
Sorting Algorithms in Python
Vocabulary
Challenge

5 String Algorithms
Anagram Detection
Palindrome Detection
Last Digit
Caesar Cipher
Vocabulary
Challenge

6 Math

Binary
Bitwise Operators
FizzBuzz
Greatest Common Factor
Euclid's Algorithm
Primes
Vocabulary
Challenge

7 Self-Taught Inspiration: Margaret Hamilton
II: Data Structures

8 What Is a Data Structure?
Vocabulary
Challenge

9 Arrays
Array Performance
Creating an Array
Moving Zeros
Combining Two Lists
Finding the Duplicates in a List
Finding the Intersection of Two Lists
Vocabulary
Challenge

10 Linked Lists
Linked List Performance
Create a Linked List
Search a Linked List
Removing a Node from a Linked List
Finding a Linked List Cycle

Vocabulary
Challenges

11 Stacks
When to Use Stacks
Creating a Stack
Using Stacks to Reverse Strings
Min Stack
Stacked Parentheses
Vocabulary
Challenges

12 Queues
When to Use Queues
Creating a Queue
Python's Built-In Queue Class
Create a Queue Using Two Stacks
Vocabulary
Challenge

13 Hash Tables
When to Use Hash Tables
Characters in a String
Two Sum
Vocabulary
Challenge

14 Binary Trees
When to Use Trees
Creating a Binary Tree
Breadth-First Tree Traversal
More Tree Traversals

Invert a Binary Tree
Vocabulary
Challenges

15 Binary Heaps
When to Use Heaps
Creating a Heap
Connecting Ropes with Minimal Cost
Vocabulary
Challenge

16 Graphs
When to Use Graphs
Creating a Graph
Dijkstra's Algorithm
Vocabulary
Challenge

17 Self-Taught Inspiration: Elon Musk
18 Next Steps

What’s Next?
Climbing the Freelance Ladder
How to Get an Interview
How to Prepare for a Technical Interview
Additional Resources
Final Thoughts

Index
Copyright
Dedication
About the Author
About the Technical Editor

Acknowledgments
End User License Agreement

List of Illustrations
Chapter 1

Figure 1.1 Constant complexity
Figure 1.2 Logarithmic complexity
Figure 1.3 Linear complexity
Figure 1.4 Log-linear complexity
Figure 1.5 Quadratic complexity
Figure 1.6 Big O complexity chart

Chapter 3
Figure 3.1 Sorted data set for a binary search
Figure 3.2 A binary search first locates the middle
number.
Figure 3.3 The next step in a binary search
eliminates the half of the data ...
Figure 3.4 A binary search then finds the middle
number again.
Figure 3.5 Our binary search found our number.
Figure 3.6 Exponential notation versus logarithmic
notation
Figure 3.7 ASCII chart

Chapter 4
Figure 4.1 The first part of a merge sort

Chapter 5

Figure 5.1 You use modulo arithmetic when you tell
time.
Figure 5.2 Eight hours after 9 is 5.

Chapter 6
Figure 6.1 The place values for the number 1,452 in
base 10
Figure 6.2 The powers of 10 used in the place
values in base 10
Figure 6.3 The powers of 2 used in the place values
in base 2

Chapter 9
Figure 9.1 An example of data in an array
Figure 9.2 Array operation run times
Figure 9.3 An array stored in a computer's memory
Figure 9.4 Adding data to an array often means
changing many memory location...

Chapter 10
Figure 10.1 A linked list is a chain of nodes.
Figure 10.2 A linked list does not need to store
nodes in consecutive memory...
Figure 10.3 Pointers map the nodes of a linked list.
Figure 10.4 Inserting an element into a linked list
requires adjusting two p...
Figure 10.5 A doubly linked list has pointers that go
in two directions.
Figure 10.6 A circular linked list points from the
end back to the head.
Figure 10.7 Linked list operation run times

Figure 10.8 To remove a node, change the previous
node's pointer.
Figure 10.9 Reversing a linked list

Chapter 11
Figure 11.1 Data can be pushed on a stack or
popped from it.
Figure 11.2 Stack operation run times
Figure 11.3 If you pop off the characters of super,
you get repus.

Chapter 12
Figure 12.1 In a queue, you add items to the rear
and remove them from the f...
Figure 12.2 The primary operations of queues are
enqueueing and dequeueing....
Figure 12.3 Queue operation run times
Figure 12.4 When there is one item in your queue,
it is both the front and t...
Figure 12.5 Now the node with 1 in it is the front,
and the node with 2 in i...
Figure 12.6 The node with 1 in it is the front, and
the node with 3 in it is...
Figure 12.7 When you dequeue the 1, the front
changes to the node with 2 in ...
Figure 12.8 When you dequeue again, there is only
one item left, so it is bo...
Figure 12.9 Now your queue is empty.

Chapter 13

Figure 13.1 A hash table stores key-value pairs in
an array.
Figure 13.2 To store 86 in the hash table, you
perform modulo by the number ...
Figure 13.3 To store 90 in the hash table, you
perform modulo by the number ...
Figure 13.4 Your hash table after adding all the
numbers
Figure 13.5 Hash table operation run times

Chapter 14
Figure 14.1 An example of a tree data structure
Figure 14.2 A tree with a root node, parent nodes,
child nodes, and edges
Figure 14.3 A path through a tree
Figure 14.4 In a binary tree, a parent node can
have only two child nodes.
Figure 14.5 An example of a binary search tree
Figure 14.6 A simple tree showing the root node, A,
and its descendants
Figure 14.7 Binary search trees operation run times
Figure 14.8 An example of folders in a tree
Figure 14.9 The document object model
Figure 14.10 A tree for evaluating a mathematical
expression
Figure 14.11 A binary tree with five nodes
Figure 14.12 Levels in a binary tree
Figure 14.13 A book represented as a tree
Figure 14.14 A postorder tree traversal

Figure 14.15 An in-order tree traversal
Chapter 15

Figure 15.1 You create a binary heap using a binary
tree.
Figure 15.2 A max heap has the highest priority
node as the root.
Figure 15.3 A min heap has the lowest priority node
as the root.
Figure 15.4 The result of heapifying an array
Figure 15.5 Swapping values to balance a heap
Figure 15.6 Swapping D and T is the first step to
balance this he...
Figure 15.7 The left side of the heap was already
balanced.
Figure 15.8 Balancing the tree at the next level
Figure 15.9 C is now the root node in your binary
heap.
Figure 15.10 The R node trickles down the tree as
long as it has a larger va...
Figure 15.11 A balanced heap
Figure 15.12 An array with keys at indexes based
on their position in the tr...
Figure 15.13 The right child of the root is at index
2.

Chapter 16
Figure 16.1 A graph contains vertices, edges,
payloads, and weight.

Figure 16.2 A directed graph moves in a specific
direction.
Figure 16.3 An undirected graph can move in either
direction.
Figure 16.4 A complete graph has connections
among all vertices.
Figure 16.5 An incomplete graph has some
connected vertices.
Figure 16.6 A graph path follows a specific
sequence.
Figure 16.7 An example of a graph that contains a
cycle
Figure 16.8 A graph with four vertices
Figure 16.9 An adjacency matrix of the graph in
Figure 16.8
Figure 16.10 Graphs can represent 3D shapes.
Figure 16.11 A graph with four vertices
Figure 16.12 Set the path to the starting vertex to
zero and the other paths...
Figure 16.13 What the data structures in your
algorithm look like when it fi...
Figure 16.14 The data structures after visiting
vertex A
Figure 16.15 The data structures after visiting
vertex B
Figure 16.16 The data structures after visiting
vertex C
Figure 16.17 The data structures after visiting
vertex D

The Self-Taught Computer
Scientist
The beginner’s guide to data
structures & algorithms

Cory Althoff

Introduction
My journey learning to code started when I graduated from
college with a political science degree. After I left school, I
struggled to get a job. I didn't have the skills employers
were looking for, and I watched as my friends who studied
more practical subjects went on to get high-paying jobs.
Meanwhile, I was stuck applying for jobs and not getting
them, making no money, and feeling like a failure. So, living
in Silicon Valley and being surrounded by coders, I decided
to try to learn to program. Little did I know that I was
about to start the craziest and most fulfilling journey of my
life.
This attempt wasn't my first shot at learning to code: I had
tried to learn to program in the past without success.
During my freshman year of college, I took a programming
class, found it impossible to understand, and quickly
dropped it. Unfortunately, most schools teach Java as a first
programming language, which is challenging for beginners
to understand. Instead of Java, I decided to teach myself
Python, one of the easiest languages for beginners to learn.
Despite learning an easy-to-understand language, I still
almost gave up. I had to piece together information from
many different sources, which was frustrating. It also didn't
help that I felt like I was on my journey alone. I didn't have
a class full of students I could study with and lean on for
support.
I was close to giving up when I started spending more time
in online programming communities like Stack Overflow.
Joining a community kept me motivated, and I began to
gain momentum again. There were many ups and downs,
and at times I felt like quitting, but less than a year after I
made my fateful decision to learn to program, I was

working as a software engineer at eBay. A year earlier, I
would have been lucky to get a customer support job. Now,
I was getting paid $50 an hour to program for a well-known
tech company. I couldn't believe it! The best part wasn't the
money, though. Once I became a software engineer, my
confidence increased tenfold. After learning to code, I felt
like I could accomplish anything.
After eBay, I started working at a startup in Palo Alto.
Eventually, I decided to take some time off work and go on
a backpacking trip to Southeast Asia. I was in the backseat
of a taxi driving through the narrow streets of Seminyak,
Bali, in the rain when I had an idea. Back home, people
were always asking me about my experience as a software
engineer. Working as a software engineer in Silicon Valley
is not unusual, but I was different from many of my peers
because I do not have a computer science degree.
My idea was to write a book called The Self-Taught
Programmer: not only about programming but about
everything I learned to get hired as a software engineer. In
other words, I wanted to help people take the same journey
I did. So I set out to create a roadmap for aspiring self-
taught programmers. I spent a year writing The Self-Taught
Programmer and self-published it. I wasn't sure if anyone
would read it, and I thought most likely no one would, but I
wanted to share my experience anyway. To my surprise, it
sold thousands of copies in the first few months. With those
sales came messages from people from around the world
who were either self-taught programmers or wanted to
become one.
These messages inspired me, so I decided to help solve
another problem I faced learning to program: feeling alone
on the journey. My solution was to create a Facebook group
called Self-Taught Programmers, a place for programmers
to support one another. It now has more than 60,000

members and has evolved into a supportive community
filled with self-taught programmers helping each other by
answering questions, trading knowledge, and sharing
success stories. If you want to become part of our
community, you can join at
https://facebook.com/groups/selftaughtprogrammers. You can also
subscribe to my newsletter at theselftaughtprogrammer.io.
When I used to post things online about working as a
software engineer without a computer science degree, I
would always get at least a few negative comments that it
is impossible to work as a programmer without a degree.
Some people would cry, “What do you self-taught
programmers think you are doing? You need a degree! No
company is going to take you seriously!” These days, the
comments are few and far between. When they do come, I
point the commenter to the Self-Taught Programmers
group. We have self-taught programmers working at
companies worldwide in every position, from junior
software engineers to principal software engineers.
Meanwhile, my book continued to sell better than I ever
thought possible and is even a popular Udemy course as
well. Interacting with so many wonderful people learning to
program has been an amazing and humbling experience,
and I am excited to continue my journey with this book.
This book is my follow-up to my first book, The Self-Taught
Programmer, so if you haven't already read it, you should
go back and read that first, unless you already understand
programming basics. This book assumes you can program
in Python, so if you can't, you can either go back and read
my first book, take my Udemy course, or learn Python using
whatever resource works best for you.

What You Will Learn

https://facebook.com/groups/selftaughtprogrammers
http://theselftaughtprogrammer.io/

While my first book, The Self-Taught Programmer,
introduces programming and the skills you need to learn to
program professionally, this book is an introduction to
computer science. Specifically, it is an introduction to data
structures and algorithms. Computer science is the study of
computers and how they work. When you go to college to
become a software engineer, you don't major in
programming; you major in computer science. Computer
science students study math, computer architecture,
compilers, operating systems, data structures and
algorithms, network programming, and more.
Each of these topics is the subject of many very long books,
and covering them all is way beyond the scope of this book.
Computer science is a massive subject. You can study it
your entire life and still have more to learn. This book does
not aim to cover everything you would learn about if you
went to school to get a computer science degree. Instead,
my goal is to give you an introduction to some of the
essential concepts in computer science so that you will
excel in different situations as a self-taught programmer.
As a self-taught programmer, the two most important
subjects for you to understand are data structures and
algorithms, which is why I decided to focus this book on
them. I divided this book into two parts. Part I is an
introduction to algorithms. You will learn what an
algorithm is and what makes one better than another, and
you will learn different algorithms such as linear and binary
search. Part II is an introduction to data structures. You will
learn what a data structure is and study arrays, linked lists,
stacks, queues, hash tables, binary trees, binary heaps, and
graphs. Then, I wrap up by covering what to do once you've
finished this book, including the next steps you can take
and other resources to help you on your journey learning to
program.

In my previous book, I explained how it doesn't make sense
to study computer science before you learn to program.
That doesn't mean you can ignore it, though. You have to
study computer science if you want to become a successful
programmer. It is as simple as this: if you don't understand
computer science, you will not get hired. Almost every
company that employs programmers makes them pass a
technical interview as part of the application process, and
technical interviews all focus on the same subject:
computer science. Specifically, they focus on data
structures and algorithms. To get hired at Facebook,
Google, Airbnb, and all of today's hottest companies, big
and small alike, you have to pass a technical interview
focusing on data structures and algorithms. If you don't
have a depth of knowledge in these two subjects, you will
get crushed in your technical interviews. A technical
interview is not something you can wing. Your potential
employer will ask you detailed questions about data
structures, algorithms, and more, and you better know the
answers if you want to get hired.
On top of that, when you get hired for your first job, your
employer and co-workers will expect you to know computer
science basics. If they have to explain to you why an
O(n**3) algorithm is not a good solution, they won't be
happy with you. That is the situation I found myself in when
I got my first programming job at eBay. I was on a team
with incredibly talented programmers from Stanford,
Berkley, and Cal Tech. They all had a deep understanding of
computer science, and I felt insecure and out of place. As a
self-taught programmer, studying computer science will
help you avoid this fate.
Furthermore, studying data structures and algorithms will
make you a better programmer. Feedback loops are the key
to mastering a skill. A feedback loop is when you practice a
skill and get immediate feedback on whether you did a

good job. When you are practicing programming, there is
no feedback loop. For example, if you create a website, the
website may work, but your code could be horrible. There
is no feedback loop to tell you if your code is any good or
not. When you are studying algorithms, however, that is not
the case. There are many famous computer science
algorithms, which means you can write code to solve a
problem, compare your result to the existing algorithm, and
instantly know whether you wrote a decent solution.
Practicing with a positive feedback loop like this will
improve your coding skills.
The biggest mistake I made as a new self-taught
programmer attempting to break into the software industry
was not spending enough time studying data structures and
algorithms. If I had spent more time studying them, my
journey would have been much more manageable. You
don't have to make that mistake!
As I mentioned, computer science is a massive subject.
There is a reason why computer science students spend
four years studying it: there is a lot to learn. You may not
have four years to spend studying computer science.
Fortunately, you don't have to. This book covers many of
the most important things you need to know to have a
successful career as a software engineer. Reading this book
will not replace a four-year computer science degree.
However, if you read this book and practice the examples,
you will have a solid foundation for passing a technical
interview. You will start feeling comfortable on a team of
computer science majors, and you will also significantly
improve as a programmer.

Who Is This Book For?
So I've convinced you that self-taught programmers can
program professionally and that you need to study
computer science, especially data structures and
algorithms. But does that mean you can't read this book
unless you are learning to program outside of school? Of
course not! Everyone is welcome in the self-taught
community! My first book was surprisingly popular with
college students. A few college professors even contacted
me and told me they were teaching their programming
classes using my book.
College students studying computer science often ask me if
they should drop out. My goal is to inspire as many people
to learn to program as possible. That means letting people
know it is possible to program professionally without a
degree in computer science. If you are already in school
studying computer science, that works too, and no, you
should not drop out. Stay in school, kids! Even if you are in
school, you can still be part of the self-taught community by
applying our “always be learning” mindset to your
schoolwork and going above and beyond to learn even
more than your professors teach you.
So how do you know if you are ready to study computer
science? Easy. If you already know how to program, you are
ready! I wrote this book for anyone who wants to learn
more about computer science. Whether you are reading
this book to fill in the gaps in your knowledge, prepare for
a technical interview, feel knowledgeable at your job, or
become a better programmer, I wrote this book for you.

Self-Taught Success Stories
I got hired as a software engineer without a degree, and I
hear new success stories from self-taught programmers

every day. As a self-taught programmer, you absolutely can
have a successful career as a software engineer without a
degree. I know this can be a sticking point for some people,
so before we dive into computer science, I want to share a
few self-taught programmer success stories from my
Facebook group.

Matt Munson
First up is Matt Munson, a member of the Self-Taught
Programmers Facebook group. Here is his story in his own
words:

It all started when I lost my job at Fintech. To make ends
meet, I started working odd jobs: cutting lenses for
glasses, fixing and tuning cars, working as a carnie, and
doing small side programming projects. Despite my best
efforts, after a few months, I lost my apartment. This is
the story of how I escaped homelessness by becoming a
programmer.

When I lost my job, I was enrolled in school. After I lost
my house, I kept doing schoolwork out of my car and tent
for a couple of months. My family wasn't able to help me.
They didn't understand minimum wage jobs don't pay
anywhere near enough to feed one person and keep gas
in the tank while keeping a roof over your head.
Nonetheless, I was still unwilling to reach out to my
friends for help. In September, I sold my truck, cashed
what I had left in a 401(k), and drove the 1,800 or so
miles from my hometown in Helena, Montana, to take my
chances in Austin, Texas.

Within a week, I had two or three interviews, but no
companies wanted to take a chance on a homeless guy,
skilled or not. After a few months of this, I had friends
and strangers donating to my GoFundMe to try to help
me get back on my feet. At this point, I was eating about
once a day, seldom anything good, in any sense of the
word. My only shot at getting out of this situation was
becoming a programmer.

Finally, I decided to do one last push. I sent out my
résumé en masse to any job I remotely had a chance of
being qualified for. The next day, a small startup called
me for an interview. I did my best to look decent. I
shaved, put on clean clothes, tied my hair back,
showered (a hell of a task for the homeless), and showed
up. I came clean, explained my situation, explained why I

took my chances here in Austin, did my best during the
interview to show I may not be the best as I stood there
at that moment, but given an opportunity, I would work
my ass off to show that one day I could be the best.

I left feeling like I bombed the interview. I thought
maybe my honesty had sunk my chances, but a week and
a half later, after feeling like giving up entirely, the
startup called me back in for a second interview.

When I showed up, it was only the big dog. The boss said
he was impressed by my honesty, and he wanted to give
me a chance. He told me I had a decent foundation, and I
was like a box: a sturdy but relatively empty box. He
thought I was sturdy enough to handle anything they
threw at me, and I would learn on the job. Finally, he told
me I would start on December 6.

One year later, I live in a much nicer apartment than
before becoming a programmer. I am respected among
my co-workers, and they even ask my opinion on
significant company matters. You can do or be anything.
Never be afraid to try, even if it means taking a real
chance at everything falling apart.

Tianni Myers
Next up is Tianni Myers, who read The Self-Taught
Programmer and emailed me the following story about his
journey learning to code outside of school:

My self-taught journey started in a web design class I
took in college while working toward a bachelor's degree
in media communications. At the time, I was interested
in writing and had dreams of working in marketing. My
goals shifted after deciding to learn to program. I'm
writing to share my self-taught story about how I went
from retail cashier to a junior web developer in 12
months.

I started out learning the basics of HTML and CSS on
Code Academy. I wrote my first Python program, a
numbers game; the computer picked a random number,
and the user had three tries to guess the correct one.
That project and Python got me excited about computers.

My mornings started at 4 a.m., making a cup of coffee. I
spent 6 to 10 hours a day reading programming books
and writing code. At the time, I was 21, and I worked
part-time at Goodwill to make ends meet. I had never
been happier because I spent most of my day doing what
I loved, which was building and creating various
programming languages as my tools.

I was on Indeed one day casually applying for jobs. I
wasn't expecting to get a response, but I did a few days
later from a marketing agency. I did a SQL assessment
on Indeed followed by a phone interview, then a code
assessment, and soon after an in-person interview.
During my interview, the web development director and
two senior developers sat down and reviewed my
answers for the code assessment. I felt good because
they were blown away by some of my answers and
pleasantly surprised when I told them I was self-taught.
They told me some of my answers were better than ones
given by senior developers that they had previously

given the same code assessment. Two weeks later, they
hired me.

If you can put in the work and get through the pain, then
you can make your dreams come true as I did.

Getting Started
The code examples in this book are in Python. I chose
Python because it is one of the easiest programming
languages to read. Throughout the book, I formatted the
code examples like this:

for i in range(100):
 print("Hello, World!")

>> Hello, World!
>> Hello, World!
>> Hello, World!

The text # http://tinyurl.com/h4qntgk contains a URL that
takes you to a web page that contains the code from it, so
you can easily copy and paste it into Python's IDLE text
editor if you are having problems getting the code to run.
The text that comes after >> is the output of Python's
interactive shell. Ellipses after an output (…) mean “and so
on.” If there is no >> after an example, it means either the
program doesn't produce any output or I am explaining a
concept, and the output is not important. Anything in a
paragraph in monospaced font is some form of code or code
output or programming jargon.

Installing Python
To follow the examples in this book, you need to have
Python version 3 installed. You can download Python for
Windows and Unix at http://python.org/downloads. If you are
on Ubuntu, Python 3 comes installed by default. Make sure

http://tinyurl.com/h4qntgk
http://python.org/downloads

you download Python 3, not Python 2. Some of the
examples in this book will not work if you are using Python
2.
Python is available for 32-bit and 64-bit computers. If you
purchased your computer after 2007, it is most likely a 64-
bit computer. If you aren't sure, an Internet search should
help you figure it out.
If you are on Windows or a Mac, download the 32- or 64-bit
version of Python, open the file, and follow the instructions.
You can also visit
http://theselftaughtprogrammer.io/installpython for videos
explaining how to install Python on each operating system.

Troubleshooting
If you are having difficulties installing Python, please post a
message in the Self-Taught Programmers Facebook group.
You can find it at
https://facebook.com/groups/selftaughtprogrammers. When you
post code in the Self-Taught Programmer Facebook group
(or anywhere else online asking for help), make sure to put
your code in a GitHub Gist. Never send a screenshot of
your code. When people help you, they often need to run
your program themselves. When you send a screenshot,
they have to type all of your code by hand, whereas if you
send your code in a GitHub Gist, they can quickly copy and
paste it into their IDE.

Challenges
Many of the chapters in this book end with a coding
challenge for you to solve. These challenges are meant to
test your understanding of the material, make you a better
programmer, and help prepare you for a technical
interview. You can find the solutions to all of the challenges

http://theselftaughtprogrammer.io/installpython
https://facebook.com/groups/selftaughtprogrammers

in this book on GitHub at
https://github.com/calthoff/tstcs_challenge_solutions.
As you are reading this book and solving the challenges, I
encourage you to share your wins with the self-taught
community by using #selftaughtcoder on Twitter. Whenever
you feel like you are making exciting progress on your
journey learning to code, send a motivational tweet using
#selftaughtcoder so other people in the community can get
motivated by your progress. Feel free to also tag me:
@coryalthoff.

Sticking with It
There is one last thing I want to cover before you dive into
learning computer science. If you are reading this book,
you've already taught yourself to program. As you know,
the most challenging part about picking up a new skill like
programming isn't the difficulty of the material: it is
sticking with it. Sticking with learning new things is
something I struggled with for years until I finally learned a
trick that I would like to share with you, called Don't Break
the Chain.
Jerry Seinfeld invented Don't Break the Chain. He came up
with it when he was crafting his first stand-up comedy
routine. First, he hung a calendar up in his room. Then, if
he wrote a joke at the end of each day, he gave himself a
red X (I like the idea of green check marks better) on the
calendar for that day. That's it. That is the entire trick, and
it is incredibly powerful.
Once you start a chain (two or more green check marks in
a row), you will not want to break it. Two green check
marks in a row become five green check marks in a row.
Then 10. Then 20. The longer your streak gets, the harder
it will be for you to break it. Imagine it is the end of the

https://github.com/calthoff/tstcs_challenge_solutions

month, and you are looking at your calendar. You have 29
green check marks. You need only one more for a perfect
month. There is no way you won't accomplish your task
that day. Or as Jerry Seinfeld describes it:

After a few days, you'll have a chain. Just keep at it, and
the chain will grow longer every day. You'll like seeing
that chain, especially when you get a few weeks under
your belt. Your only job next is to not break the chain.

My dedication to preserving one of my chains has led me to
do crazy things, like going to the gym in the middle of the
night, to keep it intact. There is no better feeling than
looking back at the calendar page containing your first
perfect month and seeing it filled with green check marks.
If you are ever in a rut, you can always look back at that
page and think about the month where you did everything
right.
Technical books are hard to get through. I've lost count of
how many I've abandoned partway through. I tried to make
this book as fun and easy to read as possible, but to give
yourself extra insurance, try using Don't Break the Chain to
ensure you finish this book. I also partnered with monday.com
to create a free Self-Taught Programmer template and app
that keeps track of your coding streaks for you. You can try
it at https://hey.monday.com/CoryAlthoff.
With that said, are you ready to study computer science?
Let's get started!

http://monday.com/
https://hey.monday.com/CoryAlthoff

I
Introduction to Algorithms

Chapter 1: What Is an Algorithm?
Chapter 2: Recursion
Chapter 3: Search Algorithms
Chapter 4: Sorting Algorithms
Chapter 5: String Algorithms
Chapter 6: Math
Chapter 7: Self-Taught Inspiration: Margaret Hamilton

1
What Is an Algorithm?

Whether you want to uncover the secrets of the universe
or you just want to pursue a career in the 21st century,
basic computer programming is an essential skill to
learn.

Stephen Hawking

An algorithm is a sequence of steps that solves a problem.
For example, one algorithm for making scrambled eggs is
to crack three eggs over a bowl, whisk them, pour them
into a pan, heat the pan on a stove, stir them, and remove
them from the pan once they are no longer runny. This
section of the book is all about algorithms. You will learn
algorithms you can use to solve problems such as finding
prime numbers. You will also learn how to write a new,
elegant type of algorithm and how to search and sort data.
In this chapter, you will learn how to compare two
algorithms to help you analyze them. It is important for a
programmer to understand why one algorithm may be
better than another because programmers spend most of
their time writing algorithms and deciding what data
structures to use with them. If you have no idea why you
should choose one algorithm over another, you will not be a
very effective programmer, so this chapter is critical.
While algorithms are a fundamental concept in computer
science, computer scientists have not agreed on a formal
definition. There are many competing definitions, but
Donald Knuth's is among the best known. He describes an
algorithm as a definite, effective, and finite process that
receives input and produces output based on this input.

