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This book is dedicated to you, the reader. Writing good software is hard
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an even greater challenge. I hope this book serves you well in your
journey to developing great solutions for your users.
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Foreword

Software development is in the middle of a revolution. Moving away from monolithic
application development with a team working on a large project that ships on a slow
cadence to microservice based development where the application is broken into
smaller pieces, which version independently, are built by smaller teams and ship on a
fast cadence. .NET 6 is part of the revolution of .NET that makes it the perfect framework
for building these microservice based applications.

.NET was re-imagined starting in 2016 to be the highest performance full stack
development framework running across Linux, macOS and Windows on x86, x64,
Arm32, Arm64 and M1 architectures. It includes support for cross platform RPC with
gRPC, support for API's with Web API and Minimal API's and support for services with
Worker Template.

Sean, Rob, and Matt have been building microservices in .NET and speaking on this
form of development for many years. This book will help you learn how to build modern
applications with microservices using the latest version of .NET.

I'm excited to see what you will build!

Scott Hunter
VP Director, Azure Developer Experience
Microsoft
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Introduction

The microservice architecture breaks software into smaller pieces that can be
independently deployed, scaled, and replaced. There are many benefits to this modern
architecture, but there are more moving pieces.

In the olden days, we compiled the entire software product into one piece and
deployed it infrequently. Deployment was hard, so we opted not to do it very often. With
the advent of containers, deployment has become much easier. We can now break our
application into lots of little pieces - microservices. When one microservice needs more
horsepower, we can scale up only this portion of the web property. If a feature needs to
work differently, we can deploy only this microservice, avoiding the churn with the entire
system.

With this power come some additional layers of complexity. In the legacy monolithic
software applications, we merely made a function call if we wanted to call into another
part of the system. Our internal methods now have IP addresses, multiple instances,
maybe load balancers distributing the load, and many more moving pieces.

How do we discover the address of the microservice? How do we scale to just the
right level of availability without wasted cost? This is the magic of microservices, and
this is the purpose of this book. You'll learn how to design, architect, scale, monitor, and
containerize applications to build robust and scalable microservices.

Who Should Read This Book

In some respect, anyone involved with software projects related to distributed
architecture should read this book. Even if a software project is not a distributed
architecture but may become one, this book will shed some light on understanding
existing business processes that may need to be handled by microservices.
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INTRODUCTION

From development managers to product owners to developers will find this book
useful in understanding many complexities of a microservices architecture. Application
architects and developers will gain quick insight with the hands-on code samples. The
step-by-step coding approach covers examples with direct microservice calls as well as
by messaging communication.

Book Organization

The microservices architecture is multifaceted and complex. Chapter 1 covers many
of the subjects involved in this architecture style. Chapter 2 covers the advancements
of .NET 6. In Chapter 3, we use a fictional story to help convey the purpose of breaking
apart a monolithic application to a microservices architecture. We cover using Event
Storming and Domain-Driven Design tenants to help understand existing business
processes to determine where and why to create a microservice.

In Chapter 4, we cover direct communication with microservices. This chapter is also
where you begin creating microservices using Visual Studio 2022 with .NET 6. Chapter 5
covers the messaging communication style. Also, you will create more microservices that
communicate using MassTransit for messaging.

Chapter 6 covers breaking apart data from a centralized data store to distributed data
stores. We also cover Saga patterns for handling transactions across multiple systems.

In Chapter 7, we cover testing the microservices using direct communication. We
also cover testing the microservices that communicate using messaging. You will create
the test projects for both communication styles.

Chapter 8 covers hosting microservices in Docker containers as well as using
Kubernetes. By understanding containerization options, you understand how to handle
the scaling of microservices.

In Chapter 9, we cover health concerns for microservices. The microservices
developed in earlier chapters only have business logic. This chapter covers logging
concerns, gathering metrics, tracing, and points for debugging.
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CHAPTER 1

Introducing Microservices

Twitter, PayPal, and Netflix had serious problems. Problems like scaling, quality, and
downtime became common and increasing issues. Each had a large, single-code base
application known as a “monolith.” And each hit different frustration points where a
fundamental architecture change had to occur. Development and deployment cycles
were long and tedious, causing delays in feature delivery. Each deployment meant
downtime or expensive infrastructure to switch from one set of servers to another.

As the code base grew, so did the coupling between modules. With coupled modules,
code changes are more problematic, harder to test, and lower overall application quality.

For Twitter, scaling servers was a huge factor that caused downtime and upset users.
All too often, users would see an error page stating Twitter is overcapacity. Many users
would see the “Fail Whale” while the system administrators would reboot servers and
deal with the demand. As the number of users increased, so did the need for architecture
changes. From the data stores, code, and server topology, the monolithic architecture hit
its limit.

For PayPal, their user base increased the need for guaranteed transactions. They
scaled up servers and network infrastructure. But, with the growing number of services,
the performance hit a tipping point, and latency was the result. They continuously
increased the number of virtual machines to process the growing number of users and
transactions. This added tremendous pressure on the network, thereby causing latency
issues.

Netflix encountered problems with scaling, availability, and speed of development.
Their business required 24 x 7 access to their video streams. They were in a position
where they could not build data centers fast enough to accommodate the demand. Their
user base was increasing, and so were the networking speeds at homes and on devices.
The monolithic application was so complex and fragile that a single semicolon took
down the website for several hours.
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CHAPTER 1 INTRODUCING MICROSERVICES

In and of themselves, there is nothing wrong with a monolith. Monoliths serve
their purpose, and when they need more server resources, it is usually cheap enough to
add more servers. With good coding practices, a monolith can sustain itself very well.
However, as they grow and complexity increases, they can reach a point that feature
requests take longer and longer to implement. They turn into “monolith hell”” It takes
longer to get features to production, the number of bugs increases, and frustration
grows with the users. Monolith hell is a condition the monolith has when it suffers
from decreased stability, difficulty scaling, and nearly impossible to leverage new
technologies.

Applications can grow into a burden over time. With changes in developers, skillsets,
business priorities, etc., those applications can easily turn into a “spaghetti code” mess.
As the demands of those applications change, so do the expectations with speed of
development, testing, and deployment. By pulling functionality away from monolithic
applications, development teams can narrow their focus on functionality and respective
deployment schedule. This allows a faster pace of development and deployment of
business functionality.

In this chapter, you will learn about the benefits of using a microservices architecture
and the challenges of architecture changes. You will then learn about the differences
between a monolithic architecture and a microservices architecture. Next, we will
begin looking at microservices patterns, messaging, and testing. Finally, we will cover
deploying microservices and examine the architectured infrastructure with cross-cutting

concerns.

Benefits

For large applications suffering from “monolith hell,” there are several reasons they
may benefit by converting to a microservice architecture. Development teams can

be more focused on business processes, code quality, and deployment schedules.
Microservices scale separately, allowing efficient usage of resources on infrastructure.
As communication issues and other faults occur, isolation helps keep a system highly
available. Lastly, with architectural boundaries defined and maintained, the system
can adapt to changes with greater ease. The details of each benefit are defined in the
following.
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Team Autonomy

One of the biggest benefits of using a microservice architecture is team autonomy.
Companies constantly need to deliver more features in production in the fastest way
possible. By separating areas of concern in the architecture, development teams can
have autonomy from other teams. This autonomy allows teams to develop and deploy
at a pace different than others. Time to market is essential for most companies. The
sooner features are in production, the sooner they may have a competitive edge over
competitors.

It also allows for but does not require different teams to leverage different
programming languages. Monoliths typically require the whole code base to be in the
same language. Because microservices are distinctly different applications, they open
the door to using different languages, allowing flexibility in fitting the tool to the task at
hand.

With data analytics, for example, Python is the most common programming
language used and works well in microservice architectures. Mobile and front-end web
developers can leverage languages best suited for those requirements, while C# is used
with back-end business transaction logic.

With teams dedicated to one or more microservices, they only hold the responsibility
for their services. They only focus on their code without the need to know details of code
in other areas. Communication will need to be done regarding the API endpoints of the
microservices. Clients need to know how to call these services with details such as HTTP
verb and payload model, as well as the return data model. There is an API specification
available to help guide the structure of your API. Consider the OpenAPI Initiative
(https://www.openapis.org/) for more information.

Service Autonomy

As team autonomy focuses on the development teams and their responsibilities, service
autonomy is about separating concerns at the service layer. The “Single Responsibility
Principle” applies here as well. No microservice should have more than one reason to
change. For example, an Order Management microservice should not also consist of
business logic for Account Management. By having a microservice dedicated to specific
business processes, the services can evolve independently.
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Not all microservices exist alone with the processing of business logic. It is common
to have microservices call others based on the data to process. The coupling is still loose
and maintains the flexibility of code evolution.

With loose coupling between microservices, you receive the same benefits as when
applied at the code level. Upgrading microservices is easier and has less impact on other
services. This also allows for features and business processes to evolve at different paces.

The autonomy between microservices allows for individual resiliency and
availability needs. For example, the microservice handling credit card payment has a
higher availability requirement than handling account management. Clients can use
retry and error handling policies with different parameters based on the services they are
using.

Deployment of microservices is also a benefit of service autonomy. As the services
evolve, they release separately using “Continuous Integration/Continuous Deployment”
(CI/CD) tools like Azure DevOps, Jenkins, and CircleCI. Individual deployment allows
frequent releases with minimal, if any, impact on other services. It also allows separate
deployment frequency and complexity than with monolithic applications. This supports
the requirement of zero downtime. You can configure a deployment strategy to bring up
an updated version before taking down existing services.

Scalability

The benefit of scalability allows for the number of instances of services to differentiate
between other services and a monolithic application. Generally, monolithic applications
require larger servers than those needed for microservices. Having microservices lets
multiple instances reside on the same server or across multiple servers, which aids in
fault isolation. Figure 1-1 shows a relationship between the number of code instances
and the size of the code.

Monolith .
Loggin
G »ccon

Figure 1-1. Example of instance and size of code
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By utilizing a microservice architecture, the applications can leverage servers of
diverse sizes. One microservice may need more CPU than RAM, while others require
more in-memory processing capabilities. Other microservices may only need enough
CPU and RAM to handle heavy I/O needs.

Another benefit of having microservices on different servers than the monolith is
the diversity of programming languages. For example, assuming the monolith runs
.NET Framework, you can write microservices in other programming languages. If these
languages can run on Linux, then you have the potential of saving money due to the
operating system license cost.

Fault Isolation

Fault isolation is about handling failures without them taking down an entire system.
When a monolith instance goes down, all services in that instance also go down. There is
no isolation of services when failures occur. Several things can cause failure:

e Coding or data issues

e Extreme CPU and RAM utilization
e Network

e Server hardware

o Downstream systems

With a microservice architecture, services with any of the preceding conditions
will not take down other parts of the system. Think of this as a logical grouping. In one
group are services and dependent systems that pertain to a business function. The
functionality is separate from those in another group. If a failure occurs in one group,
the effects do not spread to another group. Figure 1-2 is an oversimplification of services
dependent on other services and a dependency on a data store.
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Figure 1-2. Depiction of fault isolation

As with any application that relies on remote processing, opportunities for failures
are always present. When microservices either restart or are upgraded, any existing
connections will be cut. Always consider microservices ephemeral. They will die and
need to be restarted at some point. This may be from prolonged CPU or RAM usage
exceeding a threshold. Orchestrators like Kubernetes will “evict” a pod that contains an
instance of the microservice in those conditions. This is a self-preservation mechanism,
so a runaway condition does not take down the server/node.

An unreasonable goal is to have a microservice with an uptime of 100% or 99.999%
of the time. If a monolithic application or another microservice is calling a microservice,
then retry policies must be in place to handle the absence or disappearance of the
microservice. This is no different than having a monolithic application connecting with
a SQL Server. It is the responsibility of the calling code to handle the various associated
exceptions and react accordingly.

Retry policies in a circuit breaker pattern help tremendously in handling issues
when calling microservices. Libraries such as Polly (http://www.thepollyproject.org)
provide the ability to use a circuit breaker, retry policy, and others. This allows calling
code to react to connection issues by retrying with progressive wait periods, then using
an alternative code path if calls to the microservice fail X number of times.
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Data Autonomy

So far, there have been many reasons presented for using a microservice architecture.
But they focus on the business processes. The data is just as important, if not more so.
Monolithic applications with the symptoms described earlier most certainly rely on a
data store. Data integrity is crucial to the business. Without data integrity, no company
will stay in business for long. Can you imagine a bank that “guesses” your account
balance?

Microservices incorporate loose coupling, so changes deploy independently. Most
often, these changes also contain schema changes to the data. New features may require
new columns or a change to an existing column, as well as for tables. The real issue
occurs when the schema change from one team impacts others. This, in turn, requires
the changes to be backward compatible. Additionally, the other team affected may not
be ready to deploy at the same time.

Having data isolated per microservice allows independent changes to occur with
minimal impact on others. This isolation is another factor that encourages quicker time
to production for the business. Starting a new feature with a new microservice with new
data is great. Of course, that is easy to implement.

With separate databases, you also get the benefit of using differing data store
technologies. Having separate databases provides an opportunity for some data to be
in a relational database like SQL Server, while others are in non-relational databases
like MongoDB, Azure Cosmos DB, and Azure Table Storage. Having a choice of different
databases is another example of using the right tool for the job.

Challenges to Consider

Migrating to a microservice architecture is not pain-free and is more complex than
monoliths. You will need to give yourself room to fail. Even with a small microservice,

it may take several iterations to get to exactly what you need. And you may need to
complete many rounds of refactoring on the monolith before you can support relocating
functionality to a microservice. Developing microservices requires a new way of thinking
about the existing architecture, such as the cost of development time and infrastructure
changes to networks and servers.
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If coming from a monolith, you will need to make code changes to communicate
with the new microservice instead of just a simple method call. Communicating with
microservices requires calls over a network and, most often, using a messaging broker.
You will learn more about messaging later in this chapter.

The size of the monolithic applications and team sizes are also factors. Small
applications, or large applications with small teams, may not see the benefits. The
benefits of a microservice architecture appear when the overwhelming problems of
“monolith hell” are conquered by separating areas.

Many companies are not ready to take on the challenges and simply host monolithic
applications on additional servers and govern what business logic they process. Servers
are relatively cheap, so spreading the processing load is usually the easiest “quick”
solution. That is until they end up with the same issues as PayPal, Twitter, and others.

Developers may push back on the idea of microservice development. There is a large
learning curve for the intricate details that need to be understood. And many developers
will remain responsible for various parts of the monolithic applications, so it may feel
like working on two projects simultaneously. There will be the ongoing question of
quality vs. just getting something to production. Cutting corners will only add code
fragility and technical debt and may prolong a successful completion.

A challenge every team will face is code competency. Developers must take the
initiative to be strong with the programming language chosen and embrace distributed
system design. Design patterns and best practices are great as they relate to the code in
monoliths and inside the microservices. But new patterns must also be learned with how
microservices communicate, handling failures, dependencies, and data consistency.

Another challenge for teams developing microservices is that there is more than
code to consider. In the later section on “Cross-Cutting Concerns,” items are described
that affect every microservice, therefore every developer. Everyone should be involved in
understanding (if not also creating) the items that help you understand the health of the
architectural system. User stories or whatever task-based system you use will need additional
time and tasks. This includes helping with testing the system and not just the microservices.

Microservice Beginning

With a primary system needing to work with other systems, there arose an issue of the
primary system being required to know all the communication details of each connected
system. The primary system, in this case, is your main application. Since each connected
system had its own way of storing information, services it provided, and communication
8
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method, the primary system had to know all these details. This is a “tightly coupled”
architecture. Suppose one of the connected systems changes to another system, a
tremendous amount of change was required. Service-Oriented Architecture (SOA)
aimed to eliminate the hassle and confusion. By using a standard communication
method, each system could interact with less coupling.

The Enterprise Service Bus (ESB), introduced in 2002, was used to communicate
messages to the various systems. An ESB provides a way for a “Publish/Subscribe” model
in which each system could work with or ignore the message as they were broadcasted.
Security, routing, and guaranteed message delivery are also aspects of an ESB.

When needing to scale a service, the whole infrastructure had to scale as well. With
microservices, each service can scale independently. By shifting from ESB to protocols
like HTTP, the endpoints become more intelligent about what and how to communicate.
The messaging platform is no longer required to know the message payload, only the
endpoint to give it to. “Smart Endpoints, Dumb Pipes” is how Martin Fowler succinctly
stated.

So why now, in the last few years, have microservices gained attention? With the
cost of supportive infrastructure, it is cheaper to build code and test to see if one or more
microservices are the right way to go. Network and CPU have tremendously increased
in power and are far more cost-effective today than yesteryear. Today, we can crunch
through substantial amounts of data using mathematical models with data analytics and
are gaining knowledge at a faster rate. For only $35, a Raspberry Pi can be bought and
utilized to host microservices!

Cost is a huge factor, but so are the programming languages and platforms. Today,
more than a handful of languages like C#, Python, and Node are great for microservices.
Platforms like Kubernetes, Service Fabric, and others are vastly capable of maintaining
microservices running in Docker containers. There are also far more programmers
in the industry that can quickly take advantage of architectural patterns like SOA and
microservices.

With the ever-increasing demand for software programmers, there also exists the
demand for quality. It is way too easy for programmers to solve simple problems and
believe they are “done.” In reality, quality software is highly demanding of our time,
talents, and patience. Just because microservices are cheaper and, in some cases, easier
to create, they are by no means easy.
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Architecture Comparison

Since most microservices stem from a monolithic application, we will compare the two
architectures. Monoliths are the easiest to create, so it is no surprise this architecture is
the de facto standard when creating applications. Companies need new features quickly
for a competitive edge over others. The better and quicker the feature is in production,
the sooner anticipated profits are obtained. So, as nearly all applications do, they grow.
The code base grows in size, complexity, and fragility. In Figure 1-3, a monolith is
depicted that contains a user interface layer, a business logic layer with multiple services,
and a persistence layer.

User Interface Layer

Order J Inventory

Shipping Logging

Persistence Layer

Figure 1-3. Depiction of three-tier architecture

A monolith, in the simplest term, is a single executable containing business logic.
This includes all the supportive DLLs. When a monolith deploys, functionality stops and
is replaced. Each service (or component) in a monolith runs “in process.” This means
that each instance of the monolith has the entire code base ready for instantiation.

10
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User Interface Layer

Order Inventory

Account

] Shipping

Logging .

Figure 1-4. Example of microservice architecture

With the microservice architecture, shown in Figure 1-4, business logic is separated out
into out-of-process executables. This allows them to have many instances of each running
on different servers. As mentioned earlier, fault isolation is gained with this separation. If,
for example, shipping was unavailable for a while, orders would still be able to be taken.

What is most realistic is the hybrid architecture, shown in Figure 1-5. Few companies
fully transition to a microservice architecture completely. Many companies will take a
sliver of functionality and partially migrate to a microservice solution.

User Interface Layer

User Interface Layer

Inventory

Shipping Order

\ - Account

. Logging -

Figure 1-5. Depiction of hybrid architecture

Persistence Layer

When migrating from a monolithic to a microservice architecture, there is a huge
danger when too much business functionality is in one microservice. For example, if the
order microservice has tight coupling in the code with inventory management, and all
of that logic was brought over, then you end up with a distributed monolith. You have
gained some separation benefits while retaining many of the burdens the monolith has.

11
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When you decide to venture down the path of creating microservices, start small. By
starting with a small code base, you allow a way back. If the microservice is beyond time,
cost, or patience, you will need to undo or abort changes to the monolith. While making
these changes, continuously execute tests on the monolith looking for breaking code you
did not expect.

Microservice Patterns

Every microservice architecture has challenges such as accessibility, obtaining
configuration information, messaging, and service discovery. There are common
solutions to these challenges called patterns. Various patterns exist to help solve these
challenges and make the architecture solid.

API Gateway/BFF

The API Gateway pattern provides a single endpoint for client applications to the
microservices assigned to it. Figure 1-6 shows a single API Gateway as an access point
for multiple microservices. API Gateways provide functionality such as routing to
microservices, authentication, and load balancing.

oblle WebSite

3rd Party

Consumer

Figure 1-6. Single API Gateway access point
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