

The Self-Taught
Computer Scientist

The beginner’s guide
to data structures &
algorithms

Cory Althoft

WILEY

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.
Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

978-1-119-72441-4
978-1-119-72444-5 (ebk.)
978-1-119-72433-9 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United
States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at Www . COpPYyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and authors have used their best efforts in preparing this

work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work

and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for

a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional
statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential
source of further information does not mean that the publisher and authors endorse the information or services the organization,
website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is
not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation.
You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have
changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable
for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at Www . Wi 1ey .com.

Library of Congress Control Number: 2021942313

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in
the United States and other countries, and may not be used without written permission. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

I dedicate this book to my wife, Bobbi, and my daughter, Luca. I love you both so much!

Cory Althoff is an author, programmer, and speaker. His first book, The Self-Taught Programmer, has
been published in seven languages and introduced the term self-taught programmer into the common
lexicon. Book Authority named The Self-Taught Programmer one of the greatest programming books
of all time, and The Next Web listed it as one of the 10 books that will help you become a better
software engineer. More than 200,000 developers are part of the self-taught programmer community
he created through his popular Facebook group, blog, newsletter, and Udemy course. Cory lives in
California with his wife and daughter.

Dr. Hannu Parviainen is an astrophysicist researching extrasolar planets at the Instituto de Astrofisica
de Canarias, one of the world’s leading astrophysics institutes and host of the largest optical telescope
currently in existence. He previously worked as a postdoctoral researcher at the University of Oxford
for several years. His core topics include scientific computing and modern numerical methods, and
he has more than 20 years of experience in the Python programming language.

I want to give a huge thank-you to all the wonderful people who made this book possible. First up
is my wife, Bobbi, the love of my life who has always supported me. I want to thank my dad, James
Althoff, who has spent an enormous amount of time helping me with this book. Next up is Steve Bush:
thank you so much for reading my book and giving me feedback. I also want to thank my project
editor, Robyn Alvarez, and technical editor, Hannu Parviainen. Finally, I also would like to thank my
editor, Devon Lewis, for making this project happen and for being incredibly flexible. Finally, I want
to thank my daughter, Luca, for being the best daughter in the world and inspiring me to work as
hard as I can. I love you, Luca! I couldn’t have done it without all of your support. Thanks so much!

Introduction to Algorithms. 1
What Is an Algorithm?. 3
RECUISION . . 19
Search Algorithms. 25
Sorting Algorithms 37
String Algorithmso 55
Math. ..o 63
Self-Taught Inspiration: Margaret Hamilton. 79
Data Structureso i e 81
What Is a Data Structure? 83
ATTAYS et e 87
Linked Listso .o 101
StACKS . . e 113
QUEBUBS . o et e e 127
Hash Tables.o 137

viii Contents at a Glance

Binary Heaps.ot 163
Graphs . o 173
Self-Taught Inspiration: Elon Musk. i 189
NEXt StEPS .« et 191

Introduction to Algorithms. 1
What Is an Algorithm?. 3
Analyzing Algorithmso 4
Constant Timeo 8
Logarithmic Time e e 9
Linear Time. .ttt e e 10
Log-Linear TImMeot e e 1
QuUadratic TiMe. . . oot 11
CUDIC TiMe. .« 13
Exponential TImeo ot 14
Best-Case vs. Worst-Case Complexityttt 15
Space Complexity.ot e 15
Why Is This Important?. e 16
VocabUIarY . . oo e 17
Challenge. . ..o 18
RECUISION . . e 19
When to Use ReCUrSION.o oot 23
Vocabulary . ..o e 23
Challenge. . .. oo 23
Search Algorithms. 25
Linear Search 25
WhentoUsealinear Search i 27

Binary Searcho 27

X

Contents

When to Use a Binary Search 30
Searching for Characters.« ...t e e 32
Vocabulary 34
Challenge. . ..o 35
Sorting Algorithms 37
Bubble Sort 37
When to Use Bubble Sort 41
INSErtion SOMt . . o\ttt e 42
When to Use Insertion Sort.t 45
MEIgE SOTt. .ttt e 45
When to Use Merge Sortottt e 52
Sorting Algorithms in Pythono o 53
Vocabularyo 54
Challenge.o 54
String Algorithmso 55
Anagram Detection 55
Palindrome Detection. oottt e 56
Last Digitot e 57
Caesar CIpher. . ..t e 58
VocabUIary . . oo e 61
Challenge. . ..o 61
Math. .o 63
BiNary. . o 63
Bitwise Operators.ot 66
FizzBuzz 70
Greatest Common Factor. i 72
Euclid’s Algorithm.o e 74
PriMES o 75
VocabUIary . . oo 77
Challenge. . ..o 78

Self-Taught Inspiration: Margaret Hamilton. 79

Contents xi

Data Structures i e 81
What Is a Data Structure? 83
Vocabulary 85
Challenge. . ..o 86
ATy S e 87
Array Performance ot e 88
Creating @an AITay oottt 90
MOVING ZEIOS. .« . v ettt e e et e e e e e e e e e e e 91
Combining TWO LiStS . . .ottt e 94
Finding the Duplicatesina List.ttt i i 95
Finding the Intersection of Two Lists. i e 98
Vocabulary 99
Challenge. . ..o 100
Linked Listso 101
Linked List Performancet 103
Create a Linked Listttt 104
Search a Linked List oo e 107
Removing a Node from a Linked List 108
Reversea Linked List o i 109
FindingalLinked List Cycleo o e 110
Vocabulary m
Challenges oot 112
StaCKS . . o 113
When to Use Stackst e 114
Creatinga Stack. e 115
Using Stacks to Reverse Strings. ovu ittt e e 119
Min Stack. . . oo 120
Stacked Parentheses. i 123
Vocabulary 125

Challengesot 125

Contents
QUEBUBS . o oot e e 127
When to Use QUEUESottt e e e e e 128
Creating @a QUEUE.ot e e 129
Python’s Built-In Queue Class oot 134
Create a Queue Using Two Stacks.t 134
Vocabulary e 136
Challenge.ot e 136
Hash Tables. 137
WhentoUseHash Tables i e 140
Characters ina Stringo v it e e 141
TWO SUM 143
Vocabulary e 144
Challenge. . ..o 145
Binary Trees. oo 147
When to Use TreeS . . . oo vttt et et e e e et e e e 150
Creatinga Binary Tree i 153
Breadth-First Tree Traversal.ttt e 155
More Tree Traversals.ottt et e e e e e e 157
Inverta Binary Tree. oot e 160
Vocabulary e 162
Challengesot e 162
Binary Heaps.o 163
Whento Use Heaps oottt e e e e 167
CreatingaHeap 167
Connecting Ropes with Minimal Cost.o i 169
Vocabularyo 171
Challenge.o 171
Graphs . . 173
When to Use Graphs.ot 177

Contents x

Dijkstra’s Algorithm 180
Vocabulary e 186
Challenge. . ..o 187
Self-Taught Inspiration: Elon Musk. o i 189
NeXt StepS . .ot 191
What's NeXt? .« .o e e 191
Climbing the Freelance Ladder. i e 192
How to Getan Interview. o 192
How to Prepare for a Technical Interview i i 193
Additional RESOUICES. vttt e e e e 194
Final Thoughtso o e e 194

y journey learning to code started when I graduated from college with a political science degree.
After I left school, I struggled to get a job. I didn’t have the skills employers were looking
for, and I watched as my friends who studied more practical subjects went on to get high-paying
jobs. Meanwhile, I was stuck applying for jobs and not getting them, making no money, and feeling
like a failure. So, living in Silicon Valley and being surrounded by coders, I decided to try to learn to
program. Little did I know that I was about to start the craziest and most fulfilling journey of my life.

This attempt wasn’t my first shot at learning to code: I had tried to learn to program in the past
without success. During my freshman year of college, I took a programming class, found it impossible
to understand, and quickly dropped it. Unfortunately, most schools teach Java as a first programming
language, which is challenging for beginners to understand. Instead of Java, I decided to teach myself
Python, one of the easiest languages for beginners to learn. Despite learning an easy-to-understand
language, I still almost gave up. I had to piece together information from many different sources, which
was frustrating. It also didn’t help that I felt like I was on my journey alone. I didn’t have a class full
of students I could study with and lean on for support.

I was close to giving up when I started spending more time in online programming communities
like Stack Overflow. Joining a community kept me motivated, and I began to gain momentum again.
There were many ups and downs, and at times I felt like quitting, but less than a year after I made
my fateful decision to learn to program, I was working as a software engineer at eBay. A year earlier, I
would have been lucky to get a customer support job. Now, I was getting paid $50 an hour to program
for a well-known tech company. I couldn’t believe it! The best part wasn't the money, though. Once
I became a software engineer, my confidence increased tenfold. After learning to code, I felt like I
could accomplish anything.

After eBay, I started working at a startup in Palo Alto. Eventually, I decided to take some time off
work and go on a backpacking trip to Southeast Asia. I was in the backseat of a taxi driving through
the narrow streets of Seminyak, Bali, in the rain when I had an idea. Back home, people were always
asking me about my experience as a software engineer. Working as a software engineer in Silicon
Valley is not unusual, but I was different from many of my peers because I do not have a computer
science degree.

My idea was to write a book called The Self-Taught Programmer: not only about programming but
about everything I learned to get hired as a software engineer. In other words, I wanted to help people
take the same journey I did. So I set out to create a roadmap for aspiring self-taught programmers.
I spent a year writing The Self-Taught Programmer and self-published it. I wasn’t sure if anyone would
read it, and I thought most likely no one would, but I wanted to share my experience anyway. To my
surprise, it sold thousands of copies in the first few months. With those sales came messages from
people from around the world who were either self-taught programmers or wanted to become one.

Introduction xv

These messages inspired me, so I decided to help solve another problem I faced learning to program:
feeling alone on the journey. My solution was to create a Facebook group called Self-Taught Program-
mers, a place for programmers to support one another. It now has more than 60,000 members and
has evolved into a supportive community filled with self-taught programmers helping each other by
answering questions, trading knowledge, and sharing success stories. If you want to become part of
our community, you can join at https://facebook.com/groups/selftaughtprogrammers. You can
also subscribe to my newsletter at theselftaughtprogrammer.io.

When I used to post things online about working as a software engineer without a computer science
degree, I would always get at least a few negative comments that it is impossible to work as a pro-
grammer without a degree. Some people would cry, “What do you self-taught programmers think you
are doing? You need a degree! No company is going to take you seriously!” These days, the comments
are few and far between. When they do come, I point the commenter to the Self-Taught Programmers
group. We have self-taught programmers working at companies worldwide in every position, from
junior software engineers to principal software engineers.

Meanwhile, my book continued to sell better than I ever thought possible and is even a popular
Udemy course as well. Interacting with so many wonderful people learning to program has been an
amazing and humbling experience, and I am excited to continue my journey with this book. This
book is my follow-up to my first book, The Self-Taught Programmer, so if you haven’t already read it,
you should go back and read that first, unless you already understand programming basics. This book
assumes you can program in Python, so if you can’t, you can either go back and read my first book,
take my Udemy course, or learn Python using whatever resource works best for you.

What You Will Learn

While my first book, The Self-Taught Programmer, introduces programming and the skills you need to
learn to program professionally, this book is an introduction to computer science. Specifically, it is an
introduction to data structures and algorithms. Computer science is the study of computers and how
they work. When you go to college to become a software engineer, you don’t major in programming;
you major in computer science. Computer science students study math, computer architecture, com-
pilers, operating systems, data structures and algorithms, network programming, and more.

Each of these topics is the subject of many very long books, and covering them all is way beyond
the scope of this book. Computer science is a massive subject. You can study it your entire life and
still have more to learn. This book does not aim to cover everything you would learn about if you
went to school to get a computer science degree. Instead, my goal is to give you an introduction to
some of the essential concepts in computer science so that you will excel in different situations as a
self-taught programmer.

As a self-taught programmer, the two most important subjects for you to understand are data struc-
tures and algorithms, which is why I decided to focus this book on them. I divided this book into two
parts. Part I is an introduction to algorithms. You will learn what an algorithm is and what makes one

https://facebook.com/groups/selftaughtprogrammers
http://theselftaughtprogrammer.io

xvi Introduction

better than another, and you will learn different algorithms such as linear and binary search. Part II
is an introduction to data structures. You will learn what a data structure is and study arrays, linked
lists, stacks, queues, hash tables, binary trees, binary heaps, and graphs. Then, I wrap up by covering
what to do once you've finished this book, including the next steps you can take and other resources
to help you on your journey learning to program.

In my previous book, I explained how it doesn’t make sense to study computer science before you
learn to program. That doesn’t mean you can ignore it, though. You have to study computer science
if you want to become a successful programmer. It is as simple as this: if you don’t understand com-
puter science, you will not get hired. Almost every company that employs programmers makes them
pass a technical interview as part of the application process, and technical interviews all focus on the
same subject: computer science. Specifically, they focus on data structures and algorithms. To get hired
at Facebook, Google, Airbnb, and all of today’s hottest companies, big and small alike, you have to
pass a technical interview focusing on data structures and algorithms. If you don’t have a depth of
knowledge in these two subjects, you will get crushed in your technical interviews. A technical inter-
view is not something you can wing. Your potential employer will ask you detailed questions about
data structures, algorithms, and more, and you better know the answers if you want to get hired.

On top of that, when you get hired for your first job, your employer and co-workers will expect
you to know computer science basics. If they have to explain to you why an O(n**3) algorithm is not
a good solution, they won't be happy with you. That is the situation I found myself in when I got my
first programming job at eBay. I was on a team with incredibly talented programmers from Stanford,
Berkley, and Cal Tech. They all had a deep understanding of computer science, and I felt insecure and
out of place. As a self-taught programmer, studying computer science will help you avoid this fate.

Furthermore, studying data structures and algorithms will make you a better programmer. Feedback
loops are the key to mastering a skill. A feedback loop is when you practice a skill and get immediate
feedback on whether you did a good job. When you are practicing programming, there is no feedback
loop. For example, if you create a website, the website may work, but your code could be horrible.
There is no feedback loop to tell you if your code is any good or not. When you are studying algo-
rithms, however, that is not the case. There are many famous computer science algorithms, which
means you can write code to solve a problem, compare your result to the existing algorithm, and
instantly know whether you wrote a decent solution. Practicing with a positive feedback loop like this
will improve your coding skills.

The biggest mistake I made as a new self-taught programmer attempting to break into the software
industry was not spending enough time studying data structures and algorithms. If I had spent more
time studying them, my journey would have been much more manageable. You don’t have to make
that mistake!

As T mentioned, computer science is a massive subject. There is a reason why computer science
students spend four years studying it: there is a lot to learn. You may not have four years to spend
studying computer science. Fortunately, you don’t have to. This book covers many of the most impor-
tant things you need to know to have a successful career as a software engineer. Reading this book

Introduction xvii

will not replace a four-year computer science degree. However, if you read this book and practice the
examples, you will have a solid foundation for passing a technical interview. You will start feeling
comfortable on a team of computer science majors, and you will also significantly improve as a
programmer.

Who Is This Book For?

So I've convinced you that self-taught programmers can program professionally and that you need to
study computer science, especially data structures and algorithms. But does that mean you can’t read
this book unless you are learning to program outside of school? Of course not! Everyone is welcome
in the self-taught community! My first book was surprisingly popular with college students. A few
college professors even contacted me and told me they were teaching their programming classes
using my book.

College students studying computer science often ask me if they should drop out. My goal is to
inspire as many people to learn to program as possible. That means letting people know it is possible
to program professionally without a degree in computer science. If you are already in school studying
computer science, that works too, and no, you should not drop out. Stay in school, kids! Even if you
are in school, you can still be part of the self-taught community by applying our “always be learning”
mindset to your schoolwork and going above and beyond to learn even more than your professors
teach you.

So how do you know if you are ready to study computer science? Easy. If you already know how
to program, you are ready! I wrote this book for anyone who wants to learn more about computer
science. Whether you are reading this book to fill in the gaps in your knowledge, prepare for a technical
interview, feel knowledgeable at your job, or become a better programmer, I wrote this book for you.

Self-Taught Success Stories

I got hired as a software engineer without a degree, and I hear new success stories from self-taught
programmers every day. As a self-taught programmer, you absolutely can have a successful career as
a software engineer without a degree. I know this can be a sticking point for some people, so before
we dive into computer science, I want to share a few self-taught programmer success stories from my
Facebook group.

Matt Munson

First up is Matt Munson, a member of the Self-Taught Programmers Facebook group. Here is his story
in his own words:

xviii Introduction

It all started when I lost my job at Fintech. To make ends meet, I started working odd jobs:
cutting lenses for glasses, fixing and tuning cars, working as a carnie, and doing small side
programming projects. Despite my best efforts, after a few months, I lost my apartment. This
is the story of how I escaped homelessness by becoming a programmer.

When I lost my job, I was enrolled in school. After I lost my house, I kept doing schoolwork
out of my car and tent for a couple of months. My family wasn’t able to help me. They didn’t
understand minimum wage jobs don’t pay anywhere near enough to feed one person and keep
gas in the tank while keeping a roof over your head. Nonetheless, I was still unwilling to
reach out to my friends for help. In September; I sold my truck, cashed what I had left in a
401(k), and drove the 1,800 or so miles from my hometown in Helena, Montana, to take my
chances in Austin, Texas.

Within a week, I had two or three interviews, but no companies wanted to take a chance on a
homeless guy, skilled or not. After a few months of this, I had friends and strangers donating
to my GoFundMe to try to help me get back on my feet. At this point, I was eating about once
a day, seldom anything good, in any sense of the word. My only shot at getting out of this
situation was becoming a programmer.

Finally, I decided to do one last push. I sent out my résumé en masse to any job I remotely had
a chance of being qualified for. The next day, a small startup called me for an interview. I did
my best to look decent. I shaved, put on clean clothes, tied my hair back, showered (a hell of
a task for the homeless), and showed up. I came clean, explained my situation, explained why
I took my chances here in Austin, did my best during the interview to show I may not be the
best as I stood there at that moment, but given an opportunity, I would work my ass off to
show that one day I could be the best.

I left feeling like I bombed the interview. I thought maybe my honesty had sunk my chances,
but a week and a half later; after feeling like giving up entirely, the startup called me back in
for a second interview.

When I showed up, it was only the big dog. The boss said he was impressed by my honesty,
and he wanted to give me a chance. He told me I had a decent foundation, and I was like a
box: a sturdy but relatively empty box. He thought I was sturdy enough to handle anything
they threw at me, and I would learn on the job. Finally, he told me I would start on
December 6.

Introduction xix

One year later; I live in a much nicer apartment than before becoming a programmer. I am
respected among my co-workers, and they even ask my opinion on significant company mat-
ters. You can do or be anything. Never be afraid to try, even if it means taking a real chance
at everything falling apart.

Tianni Myers

Next up is Tianni Myers, who read The Self-Taught Programmer and emailed me the following story
about his journey learning to code outside of school:

My self-taught journey started in a web design class I took in college while working toward a
bachelor’s degree in media communications. At the time, I was interested in writing and had
dreams of working in marketing. My goals shifted after deciding to learn to program. I'm
writing to share my self-taught story about how I went from retail cashier to a junior web
developer in 12 months.

I started out learning the basics of HTML and CSS on Code Academy. I wrote my first Python
program, a numbers game; the computer picked a random number, and the user had three
tries to guess the correct one. That project and Python got me excited about computers.

My mornings started at 4 a.m., making a cup of coffee. I spent 6 to 10 hours a day reading
programming books and writing code. At the time, I was 21, and I worked part-time at
Goodwill to make ends meet. I had never been happier because I spent most of my day doing
what I loved, which was building and creating various programming languages as my tools.

I was on Indeed one day casually applying for jobs. I wasn't expecting to get a response, but I
did a few days later from a marketing agency. I did a SQL assessment on Indeed followed by a
phone interview, then a code assessment, and soon after an in-person interview. During my
interview, the web development director and two senior developers sat down and reviewed my
answets for the code assessment. I felt good because they were blown away by some of my
answers and pleasantly surprised when I told them I was self-taught. They told me some of
my answers were better than ones given by senior developers that they had previously given
the same code assessment. Two weeks latet; they hired me.

If you can put in the work and get through the pain, then you can make your dreams come
true as I did.

xx Introduction

Getting Started

The code examples in this book are in Python. I chose Python because it is one of the easiest program-
ming languages to read. Throughout the book, I formatted the code examples like this:

for i in range(100):
print("Hello, World!")

>> Hello, World!
>> Hello, World!
>> Hello, World!

The text# http://tinyurl.com/h4qntgk contains a URL that takes you to a web page that contains
the code from it, so you can easily copy and paste it into Python’s IDLE text editor if you are having
problems getting the code to run. The text that comes after >> is the output of Python’s interactive
shell. Ellipses after an output (. ..) mean “and so on.” If there is no >> after an example, it means
either the program doesn’t produce any output or I am explaining a concept, and the output is not
important. Anything in a paragraph in monospaced font is some form of code or code output or
programming jargon.

Installing Python

To follow the examples in this book, you need to have Python version 3 installed. You can download
Python for Windows and Unix at http://python.org/downloads. If you are on Ubuntu, Python 3
comes installed by default. Make sure you download Python 3, not Python 2. Some of the examples
in this book will not work if you are using Python 2.

Python is available for 32-bit and 64-bit computers. If you purchased your computer after 2007, it
is most likely a 64-bit computer. If you aren’t sure, an Internet search should help you figure it out.

If you are on Windows or a Mac, download the 32- or 64-bit version of Python, open the file, and
follow the instructions. You can also visit http://theselftaughtprogrammer.io/installpython for
videos explaining how to install Python on each operating system.

Troubleshooting

If you are having difficulties installing Python, please post a message in the Self-Taught Programmers
Facebook group. You can find it at https://facebook.com/groups/selftaughtprogrammers. When
you post code in the Self-Taught Programmer Facebook group (or anywhere else online asking for
help), make sure to put your code in a GitHub Gist. Never send a screenshot of your code. When
people help you, they often need to run your program themselves. When you send a screenshot,

http://tinyurl.com/h4qntgk
http://python.org/downloads
http://theselftaughtprogrammer.io/installpython
https://facebook.com/groups/selftaughtprogrammers

Introduction xxi

they have to type all of your code by hand, whereas if you send your code in a GitHub Gist, they can
quickly copy and paste it into their IDE.

Challenges

Many of the chapters in this book end with a coding challenge for you to solve. These challenges are
meant to test your understanding of the material, make you a better programmer, and help prepare
you for a technical interview. You can find the solutions to all of the challenges in this book on GitHub
at https://github.com/calthoff/tstcs_challenge_solutions.

As you are reading this book and solving the challenges, I encourage you to share your wins with
the self-taught community by using #selftaughtcoder on Twitter. Whenever you feel like you are
making exciting progress on your journey learning to code, send a motivational tweet using
fiselftaughtcoder so other people in the community can get motivated by your progress. Feel free
to also tag me: @coryalthoff.

Sticking with It

There is one last thing I want to cover before you dive into learning computer science. If you are
reading this book, you've already taught yourself to program. As you know, the most challenging part
about picking up a new skill like programming isn’t the difficulty of the material: it is sticking with
it. Sticking with learning new things is something I struggled with for years until I finally learned a
trick that I would like to share with you, called Don’t Break the Chain.

Jerry Seinfeld invented Don't Break the Chain. He came up with it when he was crafting his first
stand-up comedy routine. First, he hung a calendar up in his room. Then, if he wrote a joke at the
end of each day, he gave himself a red X (I like the idea of green check marks better) on the calendar
for that day. That’s it. That is the entire trick, and it is incredibly powerful.

Once you start a chain (two or more green check marks in a row), you will not want to break it.
Two green check marks in a row become five green check marks in a row. Then 10. Then 20. The
longer your streak gets, the harder it will be for you to break it. Imagine it is the end of the month,
and you are looking at your calendar. You have 29 green check marks. You need only one more for a
perfect month. There is no way you won’t accomplish your task that day. Or as Jerry Seinfeld describes it:

After a few days, yowll have a chain. Just keep at it, and the chain will grow longer every
day. You'll like seeing that chain, especially when you get a few weeks under your belt. Your
only job next is to not break the chain.

My dedication to preserving one of my chains has led me to do crazy things, like going to the gym
in the middle of the night, to keep it intact. There is no better feeling than looking back at the calendar
page containing your first perfect month and seeing it filled with green check marks. If you are ever

https://github.com/calthoff/tstcs_challenge_solutions

