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Preface

The Internet of Things (IoT) is revolutionizing the world and impacting the daily
lives of billions of people. Supporting use cases for households, manufacturers,
transportation, agriculture, healthcare, and much more, IoT carries many potentials
and expectations for prospering human society. Technologically, we are at an early
stage of IoT development, aiming at connecting tens of billions of devices to make
homes, communities, factories, farms, and everywhere else smart and automated.
Tremendous efforts are necessary to advance IoT research and development.

Two cornerstones of IoT are data collection/exchange and data analysis. The
former demands connectivity solutions, while the latter requires computing solu-
tions. Due to the broad scope of IoT and the drastically different characteristics
and requirements of IoT use cases, no “one-size-fits-all” design can meet the
expectations of all use cases. Therefore, customizing connectivity or computing
solutions for specific use cases is challenging yet essential. There are many system
features and performance measures to consider in the customization, such as
connection link density, resource overhead, transmission and computation delay,
service reliability, energy efficiency, and device mobility, and making proper trade-
offs among them is critical.

Accounting for all performance metrics and making optimal trade-offs can yield
high complexity. Correspondingly, artificial intelligence (AI) solutions, such as
neural networks and reinforcement learning, can become useful. Powered by AI
methods, connectivity or computing solutions can learn from experience to handle
the complexity, assuming that sufficient data are available for training. Specifically,
AI can play various roles in IoT, including data traffic load prediction, access
control, and computation task scheduling, to name a few.

In this book, we focus on connectivity and edge computing in IoT and present
our designs for four representative IoT use cases, i.e., smart factory, rural IoT,
Internet of vehicles, and mobile virtual reality. We thoroughly review the existing
research in this field, including many works published in recent years. Then, through
innovative designs, we demonstrate the necessity and potential of customizing
solutions based on the use cases. In addition, we exploit AI methods to empower our
solutions. The four research works included in this book serve a collective objective:
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enabling on-demand data collection and/or analysis for IoT use cases, especially in
resource-limited IoT systems. We hope that this book will inspire further research
on connectivity and edge computing in the field of IoT.

Milwaukee, WI, USA Jie Gao

Waterloo, ON, Canada Mushu Li

Waterloo, ON, Canada Weihua Zhuang

July 2021
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Chapter 1
Introduction

In this chapter, we first provide an overview of the Internet of Things from the
perspectives of connected devices, use cases, deployment efforts, and technical
advancement. Then, connectivity and edge computing in IoT are introduced,
respectively, focusing on the requirements, available options, and challenges. The
role of artificial intelligence in IoT and challenges in developing AI-based solutions
are also discussed. Last, we present the scope and organization of this book.

1.1 The Era of Internet of Things

We are entering the era of the Internet of Things (IoT). Targeting to connect
billions of devices, such as wearables, appliances, and industrial actuators, and a
variety of systems, such as sensor networks, transportation management centers,
and power grids, IoT has become a major driver worldwide for innovations in
both business and technology development. The global IoT market size in 2020
is estimated to be approximately 309 billions in USD, and the forecast for 2021
and 2028 is 831 billions and 1855 billions, respectively, with an annual growth
rate of 25.4% between 2021 and 2028 [1]. Meanwhile, the number of networked
devices is expected to increase from around 20 billions in 2020 to almost 30 billions
in 2023, with almost 15 billion machine-to-machine (M2M) connections in 2023
[2]. Moreover, it is predicted that platforms connecting devices, cloud servers, and
application providers will harvest comparable revenue from emerging IoT use cases
and from traditional information technology (IT) use cases by 2023 [3].

IoT is a broad concept that covers a wide range of use cases. In manufacturing
industries, IoT solutions can improve asset management, optimize supply chains,
and enable factory automation [4]. In agriculture, IoT platforms can facilitate plant
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2 1 Introduction

status monitoring, and pest and disease control [5]. In urban management, IoT
techniques can enable smart cities by integrating smart street lighting, intelligent
traffic control, fire and pollution detection, etc., to promote safe, comfortable,
and energy-efficient living conditions [6]. In healthcare, IoT applications can
support remote in-home health monitoring for proactive and preventive diagnosis
interventions [7]. In the airline business, IoT platforms can reduce fuel costs and
service disruption and thereby improve customer experience [8]. Other promising
IoT applications include crude oil production, wildfire detection, search and rescue,
smart campus, augmented shopping, and so on [9–13].

Many countries and regions have started IoT programs or pilot projects. For
example, the IoT European Large-Scale Pilots Programme has been promoting
partnerships across Europe since 2016 and conducting various IoT projects with
a total budget of e100 millions, including ACTIVAGE (for elderly smart living),
AUTOPILOT (for automated driving), IoF2020 (for the Internet of food and farm)
[14]. In the United States, New York City published its IoT strategy in March
2021 with an objective to create an IoT ecosystem for consumer, industry, and
government use cases [15], while other cities, such as Las Vegas, are on course to
become smart cities [16]. In China, the number of licensed IoT connections has
reached 600 millions by 2018, and a major focus of future IoT development is
intelligent manufacturing [17]. In addition to the above programs or pilot projects,
many industry leaders have invested in and developed IoT platforms, examples of
which include Amazon Web Services, Microsoft Azure IoT Platform, IBM Watson
IoT Platform, and Siemens MindSphere [18].

Besides various investment from governments and industries, technology
advancement in device hardware, software, communications, cloud/edge
computing, artificial intelligence (AI), etc., have been propelling the development
and deployment of IoT. Improvement in hardware enables the production of
IoT devices with smaller sizes and lower costs [19]. Improvements in software
allow IoT devices and platforms to become more secure, reliable, and energy-
efficient [20, 21]. Advancement in communication technologies enables a massive
scale of connections required for realizing IoT as well as new communication
paradigms, such as M2M communications [22, 23]. Modern cloud and edge
computing technologies provide versatile paradigms of data processing for IoT
applications, allowing on-demand computing service provisioning through task
offloading [24]. Lastly, advances in AI techniques render intelligent and automated
connectivity and computing solutions in IoT [25].

This book focuses on the connectivity and computing aspects of IoT, with a
particular focus on use case-specific designs and AI-based solutions. The rest of
this chapter will discuss the basics of connectivity, edge computing, and the role of
AI in IoT.
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1.2 Connectivity in IoT

Connectivity is the foundation of IoT as it enables data collection from or exchange
among networked IoT devices. Different network topology, connectivity require-
ments, and connectivity options may apply in IoT, depending on the application.

Regarding network operation, IoT applications can be implemented in a dis-
tributed, a decentralized, or a centralized manner. Examples of distributed IoT
applications include distributed sensing and communication in autonomous driv-
ing [26] and plant monitoring for predictive maintenance in manufacturing [27],
which require a low response time and need to process collected data locally.
Examples of decentralized IoT applications include localization [28] and edge com-
puting [29], which leverage infrastructure and resources on network edge to serve
end users without relying on cloud servers. Additionally, many IoT applications
adopt a client-server mode and exploit centralized cloud computing platforms, such
as the enterprise platforms mentioned in Sect. 1.1. Examples of such applications
are metropolitan-area intelligent transportation system planning [30] and large-scale
supervisory control and data acquisition [31], which rely on extensive computing
and storage resources provided by data centers.

Regarding connectivity requirements, IoT applications may require high connec-
tion density, low communication delay, long communication range, high transmis-
sion rate, or combinations of those. In a smart city scenario, 30,000 connections
per square kilometer (km2) may be needed just for connecting household water,
electricity, and gas meters, which send messages with intervals between 30 min
and 24 h [32]. Such connections are delay-tolerant and usually have a short range,
e.g., 15 meters (m). In a factory automation setting, process state monitoring may
involve 10,000 devices per km2 [33]. Such connections span factory plants with
a typical size around 300 m × 300 m × 50 m, and the delay tolerance is on the
level of 50 milliseconds (ms). In internet of vehicles (IoV), a vehicle may need to
simultaneously communicate with hundreds of other vehicles [34]. The connections
for such communications can be transient, and the delay tolerance can be very strict,
e.g., 10 ms for road safety applications.

Regarding connectivity options, various wireless communication standards and
techniques are available for IoT. The three use cases of the fifth generation (5G)
cellular networks, i.e., enhanced mobile broadband (eMBB), ultra-reliable low-
latency communications (URLLC), and massive machine-type communications
(mMTC), aim at providing support for various IoT applications [35]. Meanwhile,
802.11ax, or Wi-Fi 6, has enhanced support for IoT and is suitable for smart home
applications [36]. In addition, a few low-power wide-area (LPWA) technologies
and standards, such as Long-Term Evolution for Machine-Type Communications
(LTE-M), Long Range (LoRa), Narrowband IoT (NB-IoT), support cost-effective
long-range communications and are suitable for applications such as smart logistics
and environment or wild-life monitoring [37]. In the future, IoT devices may also
be connected via satellites.



4 1 Introduction

Given the varieties of IoT applications and their connectivity requirements,
finding optimal connectivity solutions is challenging, and such challenge is aggran-
dized when considering network heterogeneity, device mobility, network resource
limitations, cost-effectiveness, and scalability. As a result, despite various potential
options as mentioned above, customized designs are necessary for providing the best
support to specific applications due to their unique characteristics and requirements.
In Chap. 2, we will customize a connectivity solution for industrial IoT and
demonstrate the potential of such customized designs for connecting IoT devices.
In Chaps. 3 and 4, we will present connectivity solutions related to computing task
offloading and result delivery in edge computing.

1.3 Edge Computing in IoT

Most IoT applications require not only data collection or exchange but also data
analysis. As a result, they demand a computing paradigm and related resources. The
data processing may happen on end user devices (such as sensors or vehicles), edge
facilities (such as local network controllers), or cloud computing servers (such as
Amazon Elastic Compute Cloud).

On-device processing is feasible for devices such as smartphones and vehicles,
which have the hardware, software, and other resources for on-board comput-
ing [38]. Meanwhile, a significant portion of IoT devices, such as sensors and
parking meters, are low-cost devices with limited processing power, storage, or
battery [39]. With no or minimum on-device processing capability, such devices
may resort to cloud computing and leverage resources in a cloud for data process-
ing [40]. The cloud computing paradigm enables a variety of IoT applications and
is especially suitable for applications running in a client-server mode. However,
cloud computing requires devices to upload the data for processing to a cloud server,
which can cause excessive traffic loads for the IoT networks when a massive number
of devices rely on cloud computing. In addition, the round-trip communication,
i.e., data uploading and computing result delivery, can cause a large delay that is
unacceptable for applications such as autonomous driving and industrial robot arm
control [41]. To reduce network traffic load and delay, edge computing has emerged
as a solution, in which computing resources are deployed outside of the cloud and
close to end users on network edge [42]. Such a computing paradigm is known as
mobile edge computing or multi-access edge computing (MEC).

With the advent of edge computing, applications that require low-delay com-
puting can leverage computing servers on the network edge [43]. This creates
new opportunities for both IoT service providers and network operators. In smart
healthcare, data collected by smartphones or wearable devices can be processed
at an edge server for health monitoring applications such as gait analysis and fall
risk assessment [44]. In smart cities, videos captured by cameras can be processed
at edge servers for surveillance and event recognition [45, 46]. In autonomous
driving, vehicles can upload data collected by cameras, radars, and other sensors
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to edge servers and enhance road safety via data analysis such as object recognition
and tracking. In addition, many applications in various domains that leverage edge
computing are emerging [47].

On the other hand, edge computing renders IoT networks more complex. New
challenges arise, which often involve the synergy of computing and connectivity.
For example, edge computing servers can be deployed at the access points (APs) of
femtocells (e.g., home networks), small cells, and macrocells, and each deployment
option has its own pros and cons [48]. In addition, the joint scheduling of
transmission and computing tasks becomes critical for supporting applications with
stringent delay requirements [49]. In highly dynamic networks such as vehicular
networks, computing service migration or collaborative computing can be necessary
for handling device mobility [50]. In Chaps. 3–5, we present edge computing
solutions in representative IoT scenarios, such as IoV, and discuss various issues
related to edge computing, such as task scheduling, content caching, collaborative
computing, and computing result delivery.

1.4 AI in IoT

The world has witnessed a rapid advancement of AI in the past decade, with
many successful real-world applications, especially in the field of natural language
processing and computer vision [51]. Such success inspires the investigation on
potential applications of AI in IoT, and many ideas have emerged for various use
cases, such as mining, healthcare, and transportation [52, 53].

Incorporating of AI in IoT is natural. First, involving a massive number of
devices, diverse applications, and spatiotemporally-variant service demands, IoT
networks are complex and dynamic. AI potentially offers a viable alternative
approach to managing IoT networks with the desired scalability and adaptability,
while satisfying diverse and often stringent application requirements. Second, the
effectiveness of AI relies on abundant data, e.g., for training neural networks, while
a massive number of IoT devices can generate or provide a massive amount of data
to fuel AI. Last, AI methods are suitable for data analysis in many IoT applications,
such as health monitoring and fault pattern identification in smart grids [54].

AI can play a multifarious role in IoT, in terms of both the connectivity and the
edge computing. Specifically, AI can be used for network traffic load prediction
to facilitate IoT network planning [55]. AI can also be adopted in medium access
control (MAC) to enhance IoT network throughput or fairness [56]. In addition,
AI can be applied to handle computing task scheduling [57], offloading [58],
and migration [59] for effective edge computing with minimum computing delay,
balanced computing load distribution, or adaptivity to network dynamics.

Despite a tremendous potential of AI in empowering various IoT applications,
many challenges exist in AI-based solutions for IoT. Specifically, choosing appro-
priate AI methods for considered IoT applications, while taking practicality into
account, is essential yet challenging. Moreover, AI functionality deployment, com-


