


Table of Contents
COVER
TITLE PAGE
INTRODUCTION

THE WORLD OF .NET
THE WORLD OF C#
WHAT'S NEW IN C#
WHAT'S NEW IN ASP.NET CORE
WHAT'S NEW WITH WINDOWS
WHAT YOU NEED TO WRITE AND RUN C# CODE
WHAT THIS BOOK COVERS
CONVENTIONS
SOURCE CODE
ERRATA

PART I: The C# Language
1 .NET Applications and Tools

FROM .NET FRAMEWORK TO .NET CORE TO
.NET
.NET TERMS
.NET SUPPORT LENGTH
APPLICATION TYPES AND TECHNOLOGIES
DEVELOPER TOOLS
USING THE . NET CLI
SUMMARY

2 Core C#
FUNDAMENTALS OF C#
NULLABLE TYPES

file:///tmp/calibre_5.42.0_tmp_4vkr91d8/tbzc9d91_pdf_out/OPS/cover.xhtml


USING PREDEFINED TYPES
CONTROLLING PROGRAM FLOW
ORGANIZATION WITH NAMESPACES
WORKING WITH STRINGS
COMMENTS
C# PREPROCESSOR DIRECTIVES
C# PROGRAMMING GUIDELINES
SUMMARY

3 Classes, Records, Structs, and Tuples
CREATING AND USING TYPES
PASS BY VALUE OR BY REFERENCE
CLASSES
RECORDS
STRUCTS
ENUM TYPES
REF, IN, AND OUT
TUPLES
VALUETUPLE
DECONSTRUCTION
PATTERN MATCHING
PARTIAL TYPES
SUMMARY

4 Object-Oriented Programming in C#
OBJECT ORIENTATION
INHERITANCE WITH CLASSES
MODIFIERS
INHERITANCE WITH RECORDS
USING INTERFACES



GENERICS
SUMMARY

5 Operators and Casts
OPERATORS
USING BINARY OPERATORS
TYPE SAFETY
OPERATOR OVERLOADING
COMPARING OBJECTS FOR EQUALITY
IMPLEMENTING CUSTOM INDEXERS
USER-DEFINED CONVERSIONS
SUMMARY

6 Arrays
MULTIPLE OBJECTS OF THE SAME TYPE
SIMPLE ARRAYS
MULTIDIMENSIONAL ARRAYS
JAGGED ARRAYS
ARRAY CLASS
ARRAYS AS PARAMETERS
ENUMERATORS
USING SPAN WITH ARRAYS
INDICES AND RANGES
ARRAY POOLS
BITARRAY
SUMMARY

7 Delegates, Lambdas, and Events
REFERENCING METHODS
DELEGATES
LAMBDA EXPRESSIONS



EVENTS
SUMMARY

8 Collections
OVERVIEW
COLLECTION INTERFACES AND TYPES
LISTS
STACKS
LINKED LISTS
SORTED LIST
DICTIONARIES
SETS
PERFORMANCE
IMMUTABLE COLLECTIONS
SUMMARY

9 Language Integrated Query
LINQ OVERVIEW
STANDARD QUERY OPERATORS
PARALLEL LINQ
EXPRESSION TREES
LINQ PROVIDERS
SUMMARY

10 Errors and Exceptions
HANDLING ERRORS
PREDEFINED EXCEPTION CLASSES
CATCHING EXCEPTIONS
USER-DEFINED EXCEPTION CLASSES
CALLER INFORMATION
SUMMARY



11 Tasks and Asynchronous Programming
WHY ASYNCHRONOUS PROGRAMMING IS
IMPORTANT
TASK-BASED ASYNC PATTERN
TASKS
ERROR HANDLING
CANCELLATION OF ASYNC METHODS
ASYNC STREAMS
ASYNC WITH WINDOWS APPS
SUMMARY

12 Reflection, Metadata, and Source Generators
INSPECTING CODE AT RUNTIME AND
DYNAMIC PROGRAMMING
CUSTOM ATTRIBUTES
USING REFLECTION
USING DYNAMIC LANGUAGE EXTENSIONS
FOR REFLECTION
EXPANDOOBJECT
SOURCE GENERATORS
SUMMARY

13 Managed and Unmanaged Memory
MEMORY
MEMORY MANAGEMENT UNDER THE HOOD
STRONG AND WEAK REFERENCES
WORKING WITH UNMANAGED RESOURCES
UNSAFE CODE
SPAN<T>
PLATFORM INVOKE
SUMMARY



PART II: Libraries
14 Libraries, Assemblies, Packages, and NuGet

THE HELL OF LIBRARIES
ASSEMBLIES
CREATING AND USING LIBRARIES
CREATING NUGET PACKAGES
MODULE INITIALIZERS
SUMMARY

15 Dependency Injection and Configuration
WHAT IS DEPENDENCY INJECTION?
USING THE .NET DI CONTAINER
USING THE HOST CLASS
LIFETIME OF SERVICES
INITIALIZATION OF SERVICES USING
OPTIONS
USING CONFIGURATION FILES
CONFIGURATION WITH .NET APPLICATIONS
AZURE APP CONFIGURATION
SUMMARY

16 Diagnostics and Metrics
DIAGNOSTICS OVERVIEW
LOGGING
METRICS
ANALYTICS WITH VISUAL STUDIO APP
CENTER
APPLICATION INSIGHTS
SUMMARY

17 Parallel Programming
OVERVIEW



PARALLEL CLASS
TASKS
CANCELLATION FRAMEWORK
CHANNELS
TIMERS
THREADING ISSUES
INTERLOCKED
MONITOR
SPINLOCK
WAITHANDLE
MUTEX
SEMAPHORE
EVENTS
BARRIER
READERWRITERLOCKSLIM
LOCKS WITH AWAIT
SUMMARY

18 Files and Streams
OVERVIEW
MANAGING THE FILE SYSTEM
ITERATING FILES
WORKING WITH STREAMS
USING READERS AND WRITERS
COMPRESSING FILES
WATCHING FILE CHANGES
JSON SERIALIZATION
USING FILES AND STREAMS WITH THE
WINDOWS RUNTIME



SUMMARY
19 Networking

OVERVIEW
WORKING WITH UTILITY CLASSES
USING SOCKETS
USING TCP CLASSES
USING UDP
USING WEB SERVERS
THE HTTPCLIENT CLASS
HTTPCLIENT FACTORY
SUMMARY

20 Security
ELEMENTS OF SECURITY
VERIFYING USER INFORMATION
ENCRYPTING DATA
ENSURING WEB SECURITY
SUMMARY

21 Entity Framework Core
INTRODUCING EF CORE
CREATING A MODEL
SCAFFOLDING A MODEL FROM THE
DATABASE
MIGRATIONS
WORKING WITH QUERIES
LOADING RELATED DATA
WORKING WITH RELATIONSHIPS
SAVING DATA
CONFLICT HANDLING



USING TRANSACTIONS
USING AZURE COSMOS DB
SUMMARY

22 Localization
GLOBAL MARKETS
NAMESPACE SYSTEM.GLOBALIZATION
RESOURCES
LOCALIZATION WITH ASP.NET CORE
LOCALIZATION WITH WINUI
SUMMARY

23 Tests
OVERVIEW
UNIT TESTING
USING A MOCKING LIBRARY
ASP.NET CORE INTEGRATION TESTING
SUMMARY

PART III: Web Applications and Services
24 ASP.NET Core

UNDERSTANDING WEB TECHNOLOGIES
CREATING AN ASP.NET CORE WEB PROJECT
ADDING CLIENT-SIDE CONTENT
CREATING CUSTOM MIDDLEWARE
ENDPOINT ROUTING
REQUEST AND RESPONSE
SESSION STATE
HEALTH CHECKS
DEPLOYMENT
SUMMARY



25 Services
UNDERSTANDING TODAY'S SERVICES
REST SERVICES WITH ASP.NET CORE
CREATING A .NET CLIENT
USING EF CORE WITH SERVICES
AUTHENTICATION AND AUTHORIZATION
WITH AZURE AD B2C
IMPLEMENTING AND USING SERVICES WITH
GRPC
USING AZURE FUNCTIONS
MORE AZURE SERVICES
SUMMARY

26 Razor Pages and MVC
SETTING UP SERVICES FOR RAZOR PAGES
AND MVC
RAZOR PAGES
ASP.NET CORE MVC
SUMMARY

27 Blazor
BLAZOR SERVER AND BLAZOR
WEBASSEMBLY
CREATING A BLAZOR SERVER WEB
APPLICATION
BLAZOR WEBASSEMBLY
RAZOR COMPONENTS
SUMMARY

28 SignalR
OVERVIEW
CREATING A SIMPLE CHAT USING SIGNALR



GROUPING CONNECTIONS
STREAMING WITH SIGNALR
SUMMARY

PART IV: Apps
29 Windows Apps

INTRODUCING WINDOWS APPS
INTRODUCING XAML
WORKING WITH CONTROLS
WORKING WITH DATA BINDING
IMPLEMENTING NAVIGATION
IMPLEMENTING LAYOUT PANELS
SUMMARY

30 Patterns with XAML Apps
WHY MVVM?
DEFINING THE MVVM PATTERN
SAMPLE SOLUTION
MODELS
SERVICES
VIEW MODELS
VIEWS
MESSAGING USING EVENTS
SUMMARY

31 Styling Windows Apps
STYLING
SHAPES
GEOMETRY
TRANSFORMATION
BRUSHES



STYLES AND RESOURCES
TEMPLATES
ANIMATIONS
VISUAL STATE MANAGER
SUMMARY

INDEX
COPYRIGHT
DEDICATION
ABOUT THE AUTHOR

ABOUT THE TECHNICAL EDITOR
ACKNOWLEDGMENTS
END USER LICENSE AGREEMENT

List of Illustrations
Chapter 1

FIGURE 1-1
FIGURE 1-2

Chapter 5
FIGURE 5-1

Chapter 6
FIGURE 6-1
FIGURE 6-2
FIGURE 6-3
FIGURE 6-4
FIGURE 6-5
FIGURE 6-6



FIGURE 6-7
Chapter 8

FIGURE 8-1
FIGURE 8-2
FIGURE 8-3
FIGURE 8-4

Chapter 9
FIGURE 9-1
FIGURE 9-2

Chapter 13
FIGURE 13-1
FIGURE 13-2
FIGURE 13-3
FIGURE 13-4
FIGURE 13-5
FIGURE 13-6

Chapter 14
FIGURE 14-1
FIGURE 14-2
FIGURE 14-3

Chapter 16
FIGURE 16-1
FIGURE 16-2
FIGURE 16-3
FIGURE 16-4



FIGURE 16-5
Chapter 17

FIGURE 17-1
Chapter 18

FIGURE 18-1
Chapter 19

FIGURE 19-1
FIGURE 19-2

Chapter 20
FIGURE 20-1

Chapter 22
FIGURE 22-1
FIGURE 22-2
FIGURE 22-3
FIGURE 22-4
FIGURE 22-5
FIGURE 22-6
FIGURE 22-7

Chapter 23
FIGURE 23-1

Chapter 24
FIGURE 24-1
FIGURE 24-2

Chapter 25
FIGURE 25-1



FIGURE 25-2
FIGURE 25-3
FIGURE 25-4
FIGURE 25-5
FIGURE 25-6

Chapter 26
FIGURE 26-1
FIGURE 26-2
FIGURE 26-3
FIGURE 26-4
FIGURE 26-5
FIGURE 26-6
FIGURE 26-7
FIGURE 26-8
FIGURE 26-9
FIGURE 26-10

Chapter 27
FIGURE 27-1
FIGURE 27-2
FIGURE 27-3
FIGURE 27-4
FIGURE 27-5

Chapter 28
FIGURE 28-1
FIGURE 28-2



FIGURE 28-3
FIGURE 28-4
FIGURE 28-5

Chapter 29
FIGURE 29-1
FIGURE 29-2
FIGURE 29-3
FIGURE 29-4
FIGURE 29-5
FIGURE 29-6
FIGURE 29-7
FIGURE 29-8
FIGURE 29-9
FIGURE 29-10
FIGURE 29-11
FIGURE 29-12
FIGURE 29-13
FIGURE 29-14
FIGURE 29-15
FIGURE 29-16
FIGURE 29-17
FIGURE 29-18
FIGURE 29-19
FIGURE 29-20

Chapter 30



FIGURE 30-1
FIGURE 30-2
FIGURE 30-3
FIGURE 30-4

Chapter 31
FIGURE 31-1
FIGURE 31-2
FIGURE 31-3
FIGURE 31-4
FIGURE 31-5
FIGURE 31-6
FIGURE 31-7
FIGURE 31-8
FIGURE 31-9
FIGURE 31-10
FIGURE 31-11
FIGURE 31-12
FIGURE 31-13
FIGURE 31-14



PROFESSIONAL
C# and .NET
 
2021 Edition
 
 

Christian Nagel

 
 
 
 
 



INTRODUCTION
EVEN THOUGH .NET was announced in the year 2000, it
is not becoming a grandfather technology. Instead, .NET
keeps increasing developer traction since it has become
open source and is available not only on Windows but also
on Linux platforms. .NET can also run within the browser
on the client—without the need to install a plugin—by using
the WebAssembly standard.
As new enhancements for C# and .NET are coming, a focus
lies not only on performance gains but also on ease of use.
.NET more and more is a choice for new developers.
C# is also attractive for long-term developers. Every year,
Stack Overflow asks developers about the most loved,
dreaded, and wanted programming languages and
frameworks. For several years, C# has been within the top
10 of the most loved programming languages. ASP.NET
Core now holds the top position as the most loved web
framework. .NET Core is number one in the most loved
other frameworks/libraries/tools category. See
https://insights.stackoverflow.com/survey/2020 for details.
When you use C# and ASP.NET Core, you can create web
applications and services (including microservices) that run
on Windows, Linux, and Mac. You can use the Windows
Runtime to create native Windows apps using C#, XAML,
and .NET. You can create libraries that you share between
ASP.NET Core, Windows apps, and .NET MAUI. You can
also create traditional Windows Forms and WPF
applications.
Most of the samples of this book are built to run on a
Windows or Linux system. Exceptions are the Windows app
samples that run only on the Windows platform. You can

https://insights.stackoverflow.com/survey/2020


use Visual Studio, Visual Studio Code, or Visual Studio for
the Mac as the developer environment; only the Windows
app samples require Visual Studio.

THE WORLD OF .NET
.NET has a long history; the first version was released in
the year 2002. The new .NET generation with a complete
rewrite of .NET (.NET Core 1.0 in the year 2016) is very
young. Recently, many features from the old .NET version
have been brought to .NET Core to ease the migration
experience.
When creating new applications, there is no reason not to
move to the new .NET versions. Whether old applications
should stay with the old version of .NET or be migrated to
the new one depends on the features used, how difficult the
migration is, and what advantages you gain after the
application is migrated. The best options here need to be
considered with an application-by-application analysis.
The new .NET provides easy ways to create Windows and
web applications and services. You can create
microservices running in Docker containers in a
Kubernetes cluster; create web applications; use the new
OpenTelemetry standard to analyze distributed traces in a
vendor-independent manner; create web applications
returning HTML, JavaScript, and CSS; and create web
applications returning HTML, JavaScript, and .NET
binaries that run in the client's browser in a safe and
standard way using WebAssembly. You can create Windows
applications in traditional ways using WPF and Windows
Forms and make use of modern XAML features and
controls that support the fluent design with WinUI and
mobile applications with .NET MAUI.



.NET uses modern patterns. Dependency injection is built
into core services, such as ASP.NET Core and EF Core,
which not only makes unit testing easier but also allows
developers to easily enhance and change features from
these technologies.
.NET runs on multiple platforms. Besides Windows and
macOS, many Linux environments are supported, such as
Alpine, CentOS, Debian, Fedora, openSUSE, Red Hat,
SLES, and Ubuntu.
.NET is open source (https://github.com/dotnet) and freely
available. You can find meeting notes for the C# compiler
(https://github.com/dotnet/csharplang), the source code for the
C# compiler (https://github.com/dotnet/Roslyn), the .NET
runtime and libraries (https://github.com/dotnet/runtime), and
ASP.NET Core (https://github.com/dotnet/aspnetcore) with
Razor Pages, Blazor, and SignalR.
Here's a summary of some of the features of the new .NET:

.NET is open source.

.NET uses modern patterns.

.NET supports development on multiple platforms.
ASP.NET Core can run on Windows and Linux.

THE WORLD OF C#
When C# was released in the year 2002, it was a language
developed for the .NET Framework. C# was designed with
ideas from C++, Java, and Pascal. Anders Hejlsberg had
come to Microsoft from Borland and brought experience
from the language development of Delphi. At Microsoft,
Hejlsberg worked on Microsoft's version of Java, named
J++, before creating C#.

https://github.com/dotnet
https://github.com/dotnet/csharplang
https://github.com/dotnet/Roslyn
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore


NOTE   Today, Anders Hejlsberg has moved to
TypeScript (although he still influences C#), and Mads
Torgersen is the project lead for C#. C# improvements
are discussed openly at
https://github.com/dotnet/csharplang, and you can read C#
language proposals and event meeting notes. You can
also submit your own proposals for C#.

C# started not only as an object-oriented general-purpose
programming language but was a component-based
programming language that supported properties, events,
attributes (annotations), and building assemblies (binaries
including metadata).
Over time, C# was enhanced with generics, Language
Integrated Query (LINQ), lambda expressions, dynamic
features, and easier asynchronous programming. C# is not
an easy programming language because of the many
features it offers, but it's continuously evolving with
features that are practical to use. With this, C# is more
than an object-oriented or component-based language; it
also includes ideas of functional programming—things that
are of practical use for a general-purpose language
developing all kinds of applications.
Nowadays, a new version of C# is released every year. C#
8 added nullable reference types, and C# 9 added records
and more. C# 10 is releasing with .NET 6 in 2021 and C#
11 will be released with .NET 7 in 2022. Because of the
frequency of changes nowadays, check the GitHub
repository for the book (read more in the section “Source
Code”) for continuous updates.

WHAT'S NEW IN C#

https://github.com/dotnet/csharplang


Every year, a new version of C# is released, with many new
features available in each version. The latest versions
include features such as nullable reference types to reduce
exceptions of type NullableReferenceException and instead let
the compiler help more; features to increase productivity
such as indices and ranges; switch expressions that make
the switch statement look old; features for using
declarations; and enhancements with pattern matching.
Top-level statements allow reducing the number of source
code lines with small applications and records—classes
where the compiler creates boilerplate code for equality
comparison, deconstruction, and with expressions. Code
generators allow creating code automatically while the
compiler runs. All these new features are covered in this
book.

WHAT'S NEW IN ASP.NET CORE
ASP.NET Core now contains new technology for creating
web applications: Blazor Server and Blazor WebAssembly.
With Blazor, you have a full-stack option to write C# code
both for the client and for the server. With Blazor Server,
the Razor components you create containing HTML and C#
code run on the server. With Blazor WebAssembly, Razor
components written with C# and HTML run on the client
using the HTML 5 standard WebAssembly that allows you
to run binary code in the browser, which is supported by all
modern web browsers.
For creating services, you can now use gRPC with ASP.NET
Core for binary communication between services. This is a
great option for service-to-service communication to reduce
the bandwidth needed, as well as CPU and memory usage if
a lot of data transfer is needed.



WHAT'S NEW WITH WINDOWS
For developing applications for Windows, a new technology
combines the features of the Universal Windows Platform
and desktop applications: WinUI 3. WinUI is the native UI
platform for Windows 10 applications. With WinUI 3, you
can use modern XAML code that includes compiled binding
to create desktop applications. New controls with
Microsoft's fluent design system are available. These
controls are not delivered with the Windows Runtime as
was previously the case with the Universal Windows
Platform (UWP). These controls are developed
independently of the Windows 10 version that allows you to
use the newest controls with Windows 10 versions 1809
and above. As the roadmap available with WinUI shows,
these new controls will be usable from WPF applications as
well.

WHAT YOU NEED TO WRITE AND RUN
C# CODE
.NET runs on Windows, Linux, and Mac operating systems.
You can create and build your programs on any of these
operating systems using Visual Studio Code
(https://code.visualstudio.com). You can build and run most
of the samples on Windows or Linux and use the .NET
development tools of your choice. Only the WinUI
applications require you to use the Windows platform, and
here, Visual Studio is the best option to use. The minimum
version required to build and run the WinUI application is
version 16.10.
The command line plays an important part when using the
.NET CLI and the Azure CLI; you can use the new Windows
Terminal. With the newest Windows 10 versions, this

https://code.visualstudio.com/


terminal is delivered as part of Windows. With older
versions, you can download it from the Microsoft Store.
Most .NET developers use the Windows platform as their
development machine. When using the Windows Subsystem
for Linux (WSL 2), you can build and run your .NET
applications in a Linux environment, and you can install
different Linux distributions from your Windows
environment and access the same files. Visual Studio even
allows debugging your .NET applications while they run in
a Linux environment on WSL 2.
With some samples of the book, Microsoft Azure is shown
as an optional hosting environment to run your web
applications, use Azure Functions, and use Entity
Framework Core to access SQL Server and Azure Cosmos
DB. For this, you can use a free trial offering from
Microsoft Azure; visit https://azure.microsoft.com/free to
register.

https://azure.microsoft.com/free


WHAT THIS BOOK COVERS
This book covers these four major parts:

The C# language
Using base class libraries from .NET
Developing web applications and services
Developing Windows applications

Let's get into the different parts and all the chapters in
more detail.

Part I, “The C# Language”
The first part of this book covers all the aspects of the C#
programming language. You learn the syntax options and
see how the C# syntax integrates with classes and
interfaces from .NET. This part gives good grounding in the
C# language. This section doesn't presume knowledge of
any particular programming language, but it's assumed you
are an experienced programmer. You start looking at C#'s
basic syntax and data types before getting into advanced
C# features.

Chapter 1, “.NET Applications and Tools,” covers what
you need to know to create .NET applications. You
learn about the .NET CLI and create a Hello World
application using C# 9 top-level statements.
Chapter 2, “Core C#,” dives into core C# features and
gives you details on top-level statements and
information on declaration of variables and data types.
The chapter covers target-typed new expressions,
explains nullable reference types, and defines a
program flow that includes the new switch expressions.



Chapter 3, “Classes, Records, Structs, and Tuples,”
gives you information to create reference or value
types, create and use tuples, and make use of the C# 9
enhancement to create and use records.
Chapter 4, “Object-Oriented Programming in C#,” goes
into details of object-oriented techniques with C# and
demonstrates all the C# keywords for object
orientation. It also covers using inheritance with C# 9
records.
Chapter 5, “Operators and Casts,” explains the C#
operators, and you also learn how to overload standard
operators for custom types.
Chapter 6, “Arrays,” doesn't stop with simple arrays;
you learn using multidimensional and jagged arrays,
use the Span type to access arrays, and use the new
index and range operators to access arrays.
Chapter 7, “Delegates, Lambdas, and Events,” covers
.NET pointers to methods, lambda expressions with
closures, and .NET events.
Chapter 8, “Collections,” dives into the different kind of
collections, such as lists, queues, stacks, dictionaries,
and immutable collections. The chapter also gives you
the information you need to decide which collection to
use in what scenario.
Chapter 9, “Language Integrated Query,” gives you the
C# language integrated query features to query data
from your collections. You also learn how to use
multiple CPU cores with a query and what's behind
expression trees that are used when you use LINQ to
access your database with Entity Framework Core.
Chapter 10, “Errors and Exceptions,” covers how you
should deal with errors, throw and catch exceptions,
and filter exceptions when catching them.



Chapter 11, “Tasks and Asynchronous Programming,”
shows the C# keywords async and await in action— not
only with the task-based async pattern but also with
async streams, which is a new feature since C# 8.
Chapter 12, “Reflection, Metadata, and Source
Generators,” covers using and reading attributes with
C#. The attributes will not just be read using reflection,
but you'll also see the functionality of source
generators that allow creating source code during
compile time.
Chapter 13, “Managed and Unmanaged Memory,” is
the last chapter of Part I, which not only shows using
the IDisposable interface with the using statement and
the new using declaration but also demonstrates using
the Span type with managed and unmanaged memory.
You can read about using Platform Invoke both with
Windows and with Linux environments.

Part II, “Libraries”
Part II starts with creating custom libraries and NuGet
packages, but the major topics covered with Part II are for
using .NET libraries that are important for all application
types.

Chapter 14, “Libraries, Assemblies, Packages, and
NuGet,” explains the differences between assemblies
and NuGet packages. In this chapter, you learn how to
create NuGet packages and are introduced to a new C#
feature, module initializers, which allow you to run
initial code in a library.
Chapter 15, “Dependency Injection and Configuration,”
gives detail about how the Host class is used to
configure a dependency injection container and the
built-in options to retrieve configuration information



from a .NET application with different configuration
providers, including Azure App Configuration and user
secrets.
Chapter 16, “Diagnostics and Metrics,” continues using
the Host class to configure logging options. You also
learn about reading metric information that's offered
from some NET providers, using Visual Studio App
Center, and extending logging for distributed tracing
with OpenTelemetry.
Chapter 17, “Parallel Programming,” covers myriad
features available with .NET for parallelization and
synchronization. Chapter 11 shows the core
functionality of the Task class. In Chapter 17, more of
the Task class is shown, such as forming task
hierarchies and using value tasks. The chapter goes
into issues of parallel programming such as race
conditions and deadlocks, and for synchronization, you
learn about different features available with the lock
keyword, the Monitor, SpinLock, Mutex, Semaphore classes,
and more.
Chapter 18, “Files and Streams,” not only covers
reading and writing from the file system with new
stream APIs that allow using the Span type but also
covers the new .NET JSON serializer with classes in the
System.Text.Json namespace.
In Chapter 19, “Networking,” you learn about
foundational classes for network programming, such as
the Socket class and how to create applications using
TCP and UDP. You also use the HttpClient factory
pattern to create HttpClient objects with automatic
retries if transient errors occur.
Chapter 20, “Security,” gives you information about
cryptography classes for encrypting data, explains how


