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Preface to the Solutions Manual for the Third Edition

This manual is written for instructors, not students. It includes worked solutions for many
(roughly 75%) of the problems in the text. For the computational exercises I have given the
output generated by my program, or sometimes a program listing. Most of the programming
was done in MATLAB, some in FORTRAN. (The author is well aware that FORTRAN
is archaic, but there is a lot of “legacy code" in FORTRAN, and the author believes there
is value in learning a new language, even an archaic one.) When the text has a series of
exercises that are obviously similar and have similar solutions, then sometimes only one of
these problems has a worked solution included. When computational results are asked for
a series of similar functions or problems, only a subset of solutions are reported, largely
for the sake of brevity. Some exercises that simply ask the student to perform a straight-
forward computation are skipped. Exercises that repeat the same computation but with a
different method are also often skipped, as are exercises that ask the student to “verify” a
straight-forward computation.

Some of the exercises were designed to be open-ended and almost “essay-like.” For
these exercises, the only solution typically provided is a short hint or brief outline of the
kind of discussion anticipated by the author.

In many exercises the student needs to construct an upper bound on a derivative of some
function in order to determine how small a parameter has to be to achieve a desired level of
accuracy. For many of the solutions this was done using a computer algebra package and
the details are not given.

Students who acquire a copy of this manual in order to obtain worked solutions to
homework problems should be aware that none of the solutions are given in enough detail
to earn full credit from an instructor.

The author freely admits the potential for error in any of these solutions, especially since
many of the exercises were modified after the final version of the text was submitted to the
publisher and because the ordering of the exercises was changed between editions. While
we tried to make all the appropriate corrections, the possibility of error is still present, and
undoubtedly the author’s responsibility.

Because much of the manual was constructed by doing “copy-and-paste” from the files
for the text, the enumeration of many tables and figures will be different. I have tried to
note what the number is in the text, but certainly may have missed some instances.

Suggestions for new exercises and corrections to these solutions are very welcome.
Contact the author at jfe@ams.org or jfepperson@gmail.com.

Differences from the text The text itself went through a copy-editing process after 
this manual was completed. As was to be expected, the wording of several problems was 
slightly changed. None of these changes should affect the problem in terms of what is 
expected of students; the vast majority of the changes were to replace “previous problem” 
(a bad habit of mine) with “Problem X.Y” (which I should have done on my own, in the 
first place). Some punctuation was also changed. The point of adding this note is to 
explain the textual differences which might be noticed between the text and this manual. 
If something needs clarification, please contact me at the above email.





CHAPTER 1

INTRODUCTORY CONCEPTS AND
CALCULUS REVIEW

1.1 BASIC TOOLS OF CALCULUS

Exercises:
1. Show that the third-order Taylor polynomial for f(x) = (x+1)−1, about x0 = 0, is

p3(x) = 1− x+ x2 − x3.

Solution: We have f(0) = 1 and

f ′(x) = − 1

(x+ 1)2
, f ′′(x) =

2

(x+ 1)3
, f ′′′(x) = − 6

(x+ 1)4
,

so that f ′(0) = −1, f ′′(0) = 2, f ′′′ = −6. Therefore,

p3(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(x)

= 1 + x(−1) +
1

2
x2(2) +

1

6
x3(−6)

= 1− x+ x2 − x3.

2. What is the third-order Taylor polynomial for f(x) =
√
x+ 1, about x0 = 0?
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2 INTRODUCTORY CONCEPTS AND CALCULUS REVIEW

Solution: We have f(x0) = 1 and

f ′(x) =
1

2(x+ 1)1/2
, f ′′(x) = − 1

4(x+ 1)3/2
, f ′′′(x) =

3

8(x+ 1)5/2
,

so that f ′(0) = 1/2, f ′′(0) = −1/4, f ′′′ = 3/8. Therefore

p3(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) +

1

6
x3f ′′′(x)

= 1 + x(1/2) +
1

2
x2(−1/4) +

1

6
x3(3/8)

= 1− (1/2)x− (1/8)x2 + (1/16)x3.

3. What is the sixth-order Taylor polynomial for f(x) =
√
1 + x2, using x0 = 0? Hint:

Consider the previous problem.

4. Given that

R(x) =
|x|6

6!
eξ

for x ∈ [−1, 1], where ξ is between x and 0, find an upper bound for |R|, valid for
all x ∈ [−1, 1], that is independent of x and ξ.

5. Repeat the above, but this time require that the upper bound be valid only for all
x ∈ [− 1

2 ,
1
2 ].

Solution: The only significant difference is the introduction of a factor of 26 in the
denominator:

|R(x)| ≤
√
e

26 × 720
= 3.6× 10−5.

6. Given that

R(x) =
|x|4

4!

(
−1

1 + ξ

)
for x ∈ [− 1

2 ,
1
2 ], where ξ is between x and 0, find an upper bound for |R|, valid for

all x ∈ [− 1
2 ,

1
2 ], that is independent of x and ξ.

7. Use a Taylor polynomial to find an approximate value for
√
e that is accurate to

within 10−3.

Solution: There are two ways to do this. We can approximate f(x) = ex and use
x = 1/2, or we can approximate g(x) =

√
x and use x = e. In addition, we can be

conventional and take x0 = 0, or we can take x0 ̸= 0 in order to speed convergence.

The most straightforward approach (in my opinion) is to use a Taylor polynomial for
ex about x0 = 0. The remainder after k terms is

Rk(x) =
xk+1

(k + 1)!
eξ.

We quickly have that

|Rk(x)| ≤
e1/2

2k+1(k + 1)!
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and a little playing with a calculator shows that

|R3(x)| ≤
e1/2

16× 24
= 0.0043

but

|R4(x)| ≤
e1/2

32× 120
= 4.3× 10−4.

So we would use

e1/2 ≈ 1 +
1

2
+

1

2

(
1

2

)2

+
1

6

(
1

2

)3

+
1

24

(
1

2

)4

= 1.6484375.

To fourteen digits,
√
e = 1.64872127070013, and the error is 2.84 × 10−4, much

smaller than required.

8. What is the fourth-order Taylor polynomial for f(x) = 1/(x+ 1), about x0 = 0?

Solution: We have f(0) = 1 and

f ′(x) = − 1

(x+ 1)2
, f ′′(x) =

2

(x+ 1)3
, f ′′′(x) = − 6

(x+ 1)4
, f ′′′′(x) =

24

(x+ 1)5
,

so that f ′(0) = −1, f ′′(0) = 2, f ′′′ = −6, f ′′′′(0) = 24. Thus,

p4(x) = 1 + x(−1) +
1

2
x2(2) +

1

6
x3(−6) +

1

24
x4(24) = 1− x+ x2 − x3 + x4.

9. What is the fourth-order Taylor polynomial for f(x) = 1/x, about x0 = 1?

10. Find the Taylor polynomial of third-order for sinx, using:

(a) x0 = π/6.
Solution: We have

f(x0) =
1

2
, f ′(x0) =

√
3

2
, f ′′(x0) = −1

2
, f ′′′(x0) = −

√
3

2
,

so

p3(x) =
1

2
+

√
3

2

(
x− π

6

)
− 1

4

(
x− π

6

)2
−

√
3

12

(
x− π

6

)3
;

(b) x0 = π/4;

(c) x0 = π/2.

11. For each function below construct the third-order Taylor polynomial approximation,
using x0 = 0, and then estimate the error by computing an upper bound on the
remainder, over the given interval.

(a) f(x) = e−x, x ∈ [0, 1];

(b) f(x) = ln(1 + x), x ∈ [−1, 1];

(c) f(x) = sinx, x ∈ [0, π];

(d) f(x) = ln(1 + x), x ∈ [−1/2, 1/2];
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(e) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2].

Solution:

(a) The polynomial is

p3(x) = 1− x+
1

2
x2 − 1

6
x3,

with remainder
R3(x) =

1

24
x4e−ξ.

This can be bounded above, for all x ∈ [0, 1], by

|R3(x)| ≤
1

24
e

(b) The polynomial is

p3(x) = x− 1

2
x2 +

1

3
x3,

with remainder
R3(x) =

1

4
x4

1

(1 + ξ)4
.

We can’t bound this for all x ∈ [−1, 1], because of the potential division by
zero.

(c) The polynomial is

p3(x) = x− 1

6
x3,

with remainder
R3(x) =

1

120
x5 cos ξ.

This can be bounded above, for all x ∈ [0, π], by

|R3(x)| ≤
π5

120
.

(d) The polynomial is the same as in (b), of course,

p3(x) = x− 1

2
x2 +

1

3
x3,

with remainder
R3(x) =

1

4
x4

1

(1 + ξ)4
.

For all x ∈ [−1/2, 1/2] this can be bounded by

R3(x) ≤
1

4
(1/24)

1

(1− (1/2))4
=

1

4
.

(e) The polynomial is
p3(x) = 1− x+ x2 − x3,

with remainder
R3(x) = x4

1

(1 + ξ)5
.
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This can be bounded above, for all x ∈ [−1/2, 1/2], by

|R3(x)| ≤ (1/2)4
1

(1− 1/2)5
= 2.

Obviously, this is not an especially good approximation.

12. Construct a Taylor polynomial approximation that is accurate to within 10−3, over
the indicated interval, for each of the following functions, using x0 = 0.

(a) f(x) = sinx, x ∈ [0, π];

(b) f(x) = e−x, x ∈ [0, 1];

(c) f(x) = ln(1 + x), x ∈ [−1/2, 1/2];

(d) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2];

(e) f(x) = ln(1 + x), x ∈ [−1, 1].

Solution:

(a) The remainder here is

Rn(x) =
(−1)n+1

(2n+ 1)!
x2n+1 cos c,

for c ∈ [0, π]. Therefore, we have

|Rn(x)| ≤
1

(2n+ 1)!
|π|2n+1 ≤ π2n+1

(2n+ 1)!
.

Simple manipulations with a calculator then show that

max
x∈[0,π]

|R6(x)| ≤ 0.4663028067× 10−3

but
max

x∈[0,π]
|R5(x)| ≤ 0.7370430958× 10−2.

Therefore the desired Taylor polynomial is

p11(x) = 1− x+
1

6
x3 − 1

120
x5 − 1

7!
x7 +

1

9!
x9 +

1

11!
x11.

(b) The remainder here is

Rn(x) =
(−1)n+1

(n+ 1)!
xn+1e−c,

for c ∈ [0, 1]. Therefore, we have

|Rn(x)| ≤
1

(n+ 1)!
|x|n+1 ≤ 1

(n+ 1)!
.

Simple manipulations with a calculator then show that

max
x∈[0,1]

|R6(x)| ≤ 0.0001984126984
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but
max
x∈[0,1]

|R5(x)| ≤ 0.1388888889× 10−2

Therefore the desired Taylor polynomial is

p6(x) = 1− x+
1

2
x2 − 1

6
x3 +

1

24
x4 − 1

120
x5 +

1

720
x6.

(c) f(x) = ln(1 + x), x ∈ [0, 3/4].

(d) Solution: The remainder is now

|Rn(x)| ≤
(1/2)n+1

(n+ 1)
,

and n = 8 makes the error small enough.

(e) f(x) = ln(1 + x), x ∈ [0, 1/2].

13. Repeat the above, this time with a desired accuracy of 10−6.

14. Since
π

4
= arctan 1,

we can estimateπ by estimating arctan 1. How many terms are needed in the Gregory
series for the arctangent to approximate π to 100 decimal places? 1,000? Hint: Use
the error term in the Gregory series to predict when the error gets sufficiently small.

Solution: The remainder in the Gregory series approximation is

Rn(x) = (−1)n+1

∫ x

0

t2n+2

1 + t2
dt,

so to get 100 decimal places of accuracy for x = 1, we require

|Rn(1)| =
∣∣∣∣∫ 1

0

t2n+2

1 + t2
dt

∣∣∣∣ ≤ ∫ 1

0

t2n+2dt =
1

2n+ 3
≤ 10−100,

thus, we have to take n ≥ (10100 − 3)/2 terms. For 1,000 places of accuracy we
therefore need n ≥ (101000 − 3)/2 terms.

Obviously, this is not the best procedure for computing many digits of π!

15. Elementary trigonometry can be used to show that

arctan(1/239) = 4 arctan(1/5)− arctan(1).

This formula was developed in 1706 by the English astronomer John Machin. Use
this to develop a more efficient algorithm for computing π. How many terms are
needed to get 100 digits of accuracy with this form? How many terms are needed
to get 1,000 digits? Historical note: Until 1961, this was the basis for the most
commonly used method for computing π to high accuracy.

Solution: We now have two Gregory series, thus complicating the problem a bit.
We have

π = 4arctan(1) = 16 arctan(1/5)− 4 arctan(1/239).



BASIC TOOLS OF CALCULUS 7

Define pm,n ≈ π as the approximation generated by using an m term Gregory series
to approximate arctan(1/5) and an n term Gregory series for arctan(1/239). Then
we have

pm,n − π = 16Rm(1/5)− 4Rn(1/239),

where Rk is the remainder in the Gregory series. Therefore,

|pm,n − π| ≤

∣∣∣∣∣16(−1)m+1

∫ 1/5

0

t2m+2

1 + t2
dt− 4(−1)n+1

∫ 1/239

0

t2n+2

1 + t2
dt

∣∣∣∣∣
≤ 16

(2m+ 3)52m+3
+

4

(2n+ 3)2392n+3
.

To finish the problem we have to apportion the error between the two series, which
introduces some arbitrariness into the problem. If we require that they be equally
accurate, then we have that

16

(2m+ 3)52m+3
≤ ϵ

and
4

(2n+ 3)2392n+3
≤ ϵ.

Using properties of logarithms, these become

log(2m+ 3) + (2m+ 3) log 5 ≥ log 16− log ϵ

and
log(2n+ 3) + (2n+ 3) log 239 ≥ log 4− log ϵ.

For ϵ = (1/2) × 10−100, these are satisfied for m = 70, n = 20. For ϵ =
(1/2) × 10−1000, we get m = 712, n = 209. Changing the apportionment of the
error doesn’t change the results by much at all.

16. In 1896, a variation on Machin’s formula was found:

arctan(1/239) = arctan(1)− 6 arctan(1/8)− 2 arctan(1/57),

and this began to be used in 1961 to compute π to high accuracy. How many terms
are needed when using this expansion to get 100 digits of π? 1,000 digits?

Solution: We now have three series to work with, which complicates matters only
slightly more compared to the previous problem. If we define pk,m,n ≈ π based on

π = 4arctan(1) = 24 arctan(1/8) + 8 arctan(1/57) + 4 arctan(1/239),

taking k terms in the series for arctan(1/8), m terms in the series for arctan(1/57),
and n terms in the series for arctan(1/239), then we are led to the inequalities

log(2k + 3) + (2k + 3) log 8 ≥ log 24− log ϵ,

log(2m+ 3) + (2m+ 3) log 57 ≥ log 8− log ϵ,

and
log(2n+ 3) + (2n+ 3) log 239 ≥ log 4− log ϵ.
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For ϵ = (1/3) × 10−100, we get k = 54, m = 27, and n = 19; for ϵ = (1/3) ×
10−1000 we get k = 552, m = 283, and n = 209.

Note: In both of these problems a slightly more involved treatment of the error might
lead to fewer terms being required.

17. What is the Taylor polynomial of order 3 for f(x) = x4 + 1, using x0 = 0?

Solution: This is very direct:

f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x,

so that
p3(x) = 1 + x(0) +

1

2
x2(0) +

1

6
x3(0) = 1.

18. What is the Taylor polynomial of order 4 for f(x) = x4+1, using x0 = 0? Simplify
as much as possible.

19. What is the Taylor polynomial of order 2 for f(x) = x3 + x, using x0 = 1?

20. What is the Taylor polynomial of order 3 for f(x) = x3+x, using x0 = 1? Simplify
as much as possible.

Solution: We note that f ′′′(1) = 6, so we have (using the solution from the previous
problem)

p4(x) = 3x2 − 2x+ 1 +
1

6
(x− 1)3(6) = x3 + x.

The polynomial is its own Taylor polynomial.

21. Let p(x) be an arbitrary polynomial of degree less than or equal to n. What is its
Taylor polynomial of degree n, about an arbitrary x0?

22. The Fresnel integrals are defined as

C(x) =

∫ x

0

cos(πt2/2)dt,

and

S(x) =

∫ x

0

sin(πt2/2)dt.

Use Taylor expansions to find approximations to C(x) and S(x) that are 10−4

accurate for all x with |x| ≤ 1
2 . Hint: Substitute x = πt2/2 into the Taylor

expansions for the cosine and sine.

Solution: We will show the work for the case of S(x), only. We have

S(x) =

∫ x

0

sin(πt2/2)dt =

∫ x

0

pn(t
2)dt+

∫ x

0

Rn(t
2)dt.

Looking more carefully at the remainder term, we see that it is given by

rn(x) = ±
∫ x

0

t2(2n+3)

(2n+ 3)!
cos ξdt.
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Therefore,

|rn(x)| ≤
∫ 1/2

0

t2(2n+3)

(2n+ 3)!
dt =

(1/2)4n+7

(4n+ 7)(2n+ 3)!
.

A little effort with a calculator shows that this is less than 10−4 for n ≥ 1; therefore
the polynomial is

p(x) =

∫ x

0

(t2 − (1/6)t6)dt = −x
7

42
+
x3

3
.

23. Use the Integral Mean Value Theorem to show that the “pointwise” form (1.3) of
the Taylor remainder (usually called the Lagrange form) follows from the “integral”
form (1.2) (usually called the Cauchy form).

24. For each function in Problem 11, use the Mean Value Theorem to find a value M
such that

|f(x1)− f(x2)| ≤M |x1 − x2|

is valid for all x1, x2 in the interval used in Problem 11.

Solution: This amounts to finding an upper bound on |f ′| over the interval given.
The answers are as given below.

(a) f(x) = e−x, x ∈ [0, 1]; M ≤ 1.

(b) f(x) = ln(1+ x), x ∈ [−1, 1]; M is unbounded, since f ′(x) = 1/(1+ x) and
x = −1 is possible.

(c) f(x) = sinx, x ∈ [0, π]; M ≤ 1.

(d) f(x) = ln(1 + x), x ∈ [−1/2, 1/2]; M ≤ 2.

(e) f(x) = 1/(x+ 1), x ∈ [−1/2, 1/2]. M ≤ 4.

25. A function is called monotone on an interval if its derivative is strictly positive or
strictly negative on the interval. Suppose f is continuous and monotone on the
interval [a, b], and f(a)f(b) < 0; prove that there is exactly one value α ∈ [a, b]
such that f(α) = 0.

Solution: Since f is continuous on the interval [a, b] and f(a)f(b) < 0, the In-
termediate Value Theorem guarantees that there is a point c where f(c) = 0, i.e.,
there is at least one root. Suppose now that there exists a second root, γ. Then
f(c) = f(γ) = 0. By the Mean Value Theorem, then, there is a point ξ between c
and γ such that

f ′(ξ) =
f(γ)− f(c)

γ − c
= 0.

But this violates the hypothesis that f is monotone, since a monotone function
must have a derivative that is strictly positive or strictly negative. Thus we have a
contradiction, thus there cannot exist the second root.

A very acceptable argument can be made by appealing to a graph of the function.

26. Finish the proof of the Integral Mean Value Theorem (Theorem 1.5) by writing up
the argument in the case that g is negative.
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Solution: All that is required is to observe that if g is negative, then we have∫ b

a

g(t)f(t)dt ≤
∫ b

a

g(t)fmdt = fm

∫ b

a

g(t)dt,

and ∫ b

a

g(t)f(t)dt ≥
∫ b

a

g(t)fMdt = fM

∫ b

a

g(t)dt.

The proof is completed as in the text.

27. Prove Theorem 1.6, providing all details.

28. Let ck > 0, be given, 1 ≤ k ≤ n, and let xk ∈ [a, b], 1 ≤ k ≤ n. Then, use the
Discrete Average Value Theorem to prove that, for any function f ∈ C([a, b]),∑n

k=1 ckf(xk)∑n
k=1 ck

= f(ξ),

for some ξ ∈ [a, b].

Solution: We can’t apply the Discrete Average Value Theorem to the problem as it
is posed originally, so we have to manipulate a bit. Define

γj =
cj∑n
k=1 ck

;

then
n∑

j=1

γj = 1

and now we can apply the Discrete Average Value Theorem to finish the problem.

29. Discuss, in your own words, whether or not the following statement is true: “The
Taylor polynomial of degree n is the best polynomial approximation of degree n to
the given function near the point x0.”

▹ • • • ◃

1.2 ERROR, APPROXIMATE EQUALITY, AND ASYMPTOTIC ORDER
NOTATION

Exercises:
1. Use Taylor’s Theorem to show that ex = 1 + x+O(x2) for x sufficiently small.

2. Use Taylor’s Theorem to show that 1−cos x
x = 1

2x+O(x3) for x sufficiently small.

Solution: We can expand the cosine in a Taylor series as

cosx = 1− 1

2
x2 +

1

24
x4 cos ξ.
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If we substitute this into (1− cosx)/x and simplify, we get

1− cosx

x
=

1

2
x− 1

24
x3 cos ξ,

so that we have∣∣∣∣1− cosx

x
− 1

2
x

∣∣∣∣ = ∣∣∣∣ 124x3 cos ξ
∣∣∣∣ ≤ 1

24
|x3| = C|x3|

where C = 1/24. Therefore, 1−cos x
x = 1

2x+O(x3).

3. Use Taylor’s Theorem to show that

√
1 + x = 1 +

1

2
x+O(x2)

for x sufficiently small.

Solution: We have, from Taylor’s Theorem, with x0 = 0,

√
1 + x = 1 +

1

2
x− 1

8
x2(1 + ξ)−3/2,

for some ξ between 0 and x. Since∣∣∣∣18x2(1 + ξ)−3/2

∣∣∣∣ ≤ C|x2|

for all x sufficiently small, the result follows. For example, we have∣∣∣∣18x2(1 + ξ)−3/2

∣∣∣∣ ≤ 1

8
× 2

√
2|x2|

for all x ∈ [−1/2, 1/2].

4. Use Taylor’s Theorem to show that

(1 + x)−1 = 1− x+ x2 +O(x3)

for x sufficiently small.

Solution: This time, Taylor’s Theorem gives us that

(1 + x)−1 = 1− x+ x2 − x3/(1 + ξ)4

for some ξ between 0 and x. Thus, for all x such that |x| ≤ m,∣∣(1 + x)−1 − (1− x+ x2)
∣∣ = ∣∣x3/(1 + ξ)4

∣∣ ≤ |x|3/(1−m)4 = C|x|3,

where C = 1/(1−m)4.

5. Show that
sinx = x+O(x3).

6. Recall the summation formula

1 + r + r2 + r3 + · · ·+ rn =
n∑

k=0

rk =
1− rn+1

1− r
.
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Use this to prove that
n∑

k=0

rk =
1

1− r
+O(rn+1).

Hint: What is the definition of the O notation?

7. Use the above result to show that 10 terms (k = 9) are all that is needed to compute

S =

∞∑
k=0

e−k

to within 10−4 absolute accuracy.

Solution: The remainder in the 9 term partial sum is

|R9| =
∣∣∣∣ e−10

1− e−1

∣∣∣∣ = 0.000071822 < 10−4.

8. Recall the summation formula
n∑

k=1

k =
n(n+ 1)

2
.

Use this to show that
n∑

k=1

k =
1

2
n2 +O(n).

9. State and prove the version of Theorem 1.7 which deals with relationships of the
form x = xn +O(β(n)).

Solution: The theorem statement might be something like the following:

Theorem: Let x = xn +O(β(n)) and y = yn +O(γ(n)), with bβ(n) > γ(n) for
all n sufficiently large. Then

x+ y = xn + yn +O(β(n) + γ(n)),

x+ y = xn + yn +O(β(n)),

Ax = Axn +O(β(n)).

In the last equation, A is an arbitrary constant, independent of n.

The proof parallels the one in the text almost perfectly, and so is omitted.

10. Use the definition of O to show that if y = yh +O(hp), then hy = hyh +O(hp+1).

11. Show that if an = O(np) and bn = O(nq), then anbn = O(np+q).

Solution: We have
|an| ≤ Ca|np|

and
|bn| ≤ Cb|nq|.

These follow from the definition of the O notation. Therefore,

|anbn| ≤ Ca|np||bn| ≤ (Ca|np|)(Cb|nq|) = (CaCb)|np+q|
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which implies that anbn = O(np+q).

12. Suppose that y = yh + O(β(h)) and z = zh + O(β(h)), for h sufficiently small.
Does it follow that y − z = yh − zh (for h sufficiently small)?

13. Show that

f ′′(x) =
f(x+ h)− 2f(x) + f(x− h)

h2
+O(h2)

for all h sufficiently small. Hint: Expand f(x± h) out to the fourth order terms.

Solution: This is a straight-forward manipulation with the Taylor expansions

f(x+ h) = f(x) + hf ′(x) +
1

2
h2f ′′(x) +

1

6
h3f ′′′(x) +

1

24
h4f ′′′′(ξ1)

and

f(x− h) = f(x)− hf ′(x) +
1

2
h2f ′′(x)− 1

6
h3f ′′′(x) +

1

24
h4f ′′′′(ξ2).

Add the two expansions to get

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +
1

24
h4(f ′′′′(ξ1) + f ′′′′(ξ2)).

Now solve for f ′′(x).

14. Explain, in your own words, why it is necessary that the constant C in (1.8) be
independent of h.

▹ • • • ◃

1.3 A PRIMER ON COMPUTER ARITHMETIC

Exercises:
1. In each problem below, A is the exact value, and Ah is an approximation to A. Find

the absolute error and the relative error.

(a) A = π, Ah = 22/7;

(b) A = e, Ah = 2.71828;

(c) A = 1
6 , Ah = 0.1667;

(d) A = 1
6 , Ah = 0.1666.

Solution:

(a) Abs. error ≤ 1.265× 10−3, rel. error ≤ 4.025× 10−4;

(b) Abs. error ≤ 1.828× 10−6, rel. error ≤ 6.72× 10−7;

(c) Abs. error ≤ 3.334× 10−5, rel. error ≤ 2.000× 10−4;

(d) Abs. error ≤ 6.667× 10−5, rel. error ≤ 4× 10−4.
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2. Perform the indicated computations in each of three ways: (i) Exactly; (ii) Using
three-digit decimal arithmetic, with chopping; (iii) Using three-digit decimal arith-
metic, with rounding. For both approximations, compute the absolute error and the
relative error.

(a) 1
6 + 1

10 ;

(b) 1
6 × 1

10 ;

(c) 1
9 +

(
1
7 + 1

6

)
;

(d)
(
1
7 + 1

6

)
+ 1

9 .

3. For each function below explain why a naive construction will be susceptible to
significant rounding error (for x near certain values), and explain how to avoid this
error.

(a) f(x) = (
√
x+ 9− 3)x−1;

(b) f(x) = x−1(1− cosx);

(c) f(x) = (1− x)−1(lnx− sinπx);

(d) f(x) = (cos(π + x)− cosπ)x−1;

(e) f(x) = (e1+x − e1−x)(2x)−1.

Solution: In each case, the function is susceptible to subtractive cancellation which
will be amplified by division by a small number. The way to avoid the problem is to
use a Taylor expansion to make the subtraction and division both explicit operations.
For instance, in (a), we would write

f(x) = ((3+(1/6)x−(1/216)x2+O(x3))−3)x−1 = (1/6)−(1/216)x+O(x2).

To get greater accuracy, take more terms in the Taylor expansion.

4. For f(x) = (ex − 1)/x, how many terms in a Taylor expansion are needed to get
single precision accuracy (7 decimal digits) for all x ∈ [0, 12 ]? How many terms are
needed for double precision accuracy (14 decimal digits) over this same range?

5. Using single precision arithmetic, only, carry out each of the following computations,
using first the form on the left side of the equals sign, then using the form on the right
side, and compare the two results. Comment on what you get in light of the material
in 1.3.

(a) (x+ ϵ)3 − 1 = x3 + 3x2ϵ+ 3xϵ2 + ϵ3 − 1, x = 1.0, ϵ = 0.000001.

(b) −b+
√
b2 − 2c = 2c(−b−

√
b2 − 2c)−1, b = 1, 000, c = π.

Solution: “Single precision” means 6 or 7 decimal digits, so the point of the problem
is to do the computations using 6 or 7 digits.

(a) Using MATLAB’s single command on the author’s laptop (running MATLAB
R2019b), we get

(x+ ϵ)3 − 1 = 3.000002999797857× 10−6

but
x3 + 3x2ϵ+ 3xϵ2 + ϵ3 − 1 = 3.000003000019902× 10−6.

§
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(b) Using the same software and hardware, we get

−b+
√
b2 − 2c = −0.003141597588410

but

2c
(
−b−

√
b2 − 2c

)−1

= −0.003141597588407.

What is interesting is how modern hardware and software have dramatically
improved the results here. Earlier editions, which relied upon results using
FORTRAN or C on a late 1990s Sun workstation, showed much more of a
difference.

6. Consider the sum

S =
m∑

k=0

e−14(1−e−0.05k)

wherem = 2×105. Again using only single precision, compute this two ways: First,
by summing in the order indicated in the formula; second, by summing backwards,
i.e., starting with the k = 200, 000 term and ending with the k = 0 term. Compare
your results and comment upon them.

7. (a) Using the computer of your choice, find three values a, b, and c, such that

(a+ b) + c ̸= a+ (b+ c).

(b) Repeat for your favorite calculator app.

(c) Do this for single precision in your preferred computing environment.

Solution: (a) The key issue is to get an approximation to the machine epsilon,
then take a = 1, b = c = (2/3)u or something similar. This will guarantee that
(a+ b) + c = a but a+ (b+ c) > a. There is an additional issue, in that MATLAB
always rounds unformatted output, so to see that you got a different result you have
to use (ugh!) fprintf to print out enough digits. On my laptop, I was able to use

a = 1

b = 1.101642356786233× 10−16

c = 1.101642356786233× 10−16

and then fprintf told me that

D = (a+ b) + c = 1.00000000000000000,

E = a+ (b+ c) = 1.00000000000000022.

It is an interesting aspect of the history of this book, that when this exercise was
first written (“a long time ago, in a computational environment far, far, away”),
actual physical calculators were still commonplace (as opposed to smartphone/tablet
apps). On an elderly Sharp calculator, circa 1997, the author found that a = 1,
b = 4× 10−10, and c = 4× 10−10 worked. Using a scientific calculator app on his
phone, the author found that a = 1, b = 4 × 10−16, and c = 4 × 10−16 worked.
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(However, he was not able to get this to work on the Windows 10 calculator app. It
would make an interesting quasi-research question to explain why.)

(b) Using MATLAB’s single command (carefully), I used

a = 1

b = 3.9572964× 10−8

c = b.

Then,

D = (a+ b) + c = 1

E = a+ (b+ c) = 1.0000001.

8. Assume we are using 3-digit decimal arithmetic. For ϵ = 0.0001, a1 = 5, compute

a2 = a0 +

(
1

ϵ

)
a1

for a0 equal to each of 1, 2, and 3. Comment.

9. Let ϵ ≤ u. Explain, in your own words, why the computation

a2 = a0 +

(
1

ϵ

)
a1

is potentially rife with rounding error. (Assume that a0 and a1 are of comparable
size.) Hint: See previous problem.

Solution: This is just a generalization of the previous problem. If ϵ is small enough,
then a2 will be independent of a0.

10. Using the computer and language of your choice, write a program to estimate the
machine epsilon.

Solution: There are lots of ways to do this. The basic idea is to add a small number
to 1, and then check to see if the result is different from one, otherwise continue on.
One possible solution is the following:

Algorithm 1.1

Computation of the machine epsilon.

x = 1.e-10;

for k=1:6000

y = 1 + x;

if y <= 1

disp(‘macheps = ’)

disp(x)

break

end

x = x*.99;

end

x
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This produces (on the author’s laptop) u = 1.101642356786233 × 10−16. If we
change the initial x to 0.5, and decrement by a factor of 2 each step, we get u =
1.110223024625157× 10−16, which, being larger, is a better estimate. (Why?)

11. We can compute e−x using Taylor polynomials in two ways, either using

e−x ≈ 1− x+
1

2
x2 − 1

6
x3 + . . .

or using

e−x ≈ 1

1 + x+ 1
2x

2 + 1
6x

3 + . . .
.

Discuss, in your own words, which approach is more accurate. In particular, which
one is more (or less) susceptible to rounding error?

Solution: Because of the alternating signs in the first approach, there is some concern
about subtractive cancellation when it is used.

12. What is the machine epsilon for a computer that uses binary arithmetic, 24 bits for
the fraction, and rounds? What if it chops?

Solution: Recall that the machine epsilon is the largest number x such that the
computer returns 1+ x = x. We therefore need to find the largest number x that can
be represented with 24 binary digits such that 1+ x, when rounded to 24 bits, is still
equal to 1. This is perhaps best done by explicitly writing out the addition in binary
notation. We have

1 + x = 1.000 0000 0000 0000 0000 00002

+ 0.000 0000 0000 0000 0000 0000 dddd dddd dddd dddd dddd dddd2.

If the machine chops, then we can set all of the d values to 1 and the computer will
still return 1 + x = 1; if the machine rounds, then we need to make the first digit a
zero. Thus, the desired values are

uround =
23∑
k=1

2−k−24 = 0.596× 10−7,

and

uchop =

24∑
k=1

2−k−23 = 0.119× 10−6.

13. What is the machine epsilon for a computer that uses octal (base 8) arithmetic,
assuming it retains 8 octol digits in the fraction?

▹ • • • ◃

1.4 A WORD ON COMPUTER LANGUAGES AND SOFTWARE

(No exercises in this section.)
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1.5 A BRIEF HISTORY OF SCIENTIFIC COMPUTING

(No exercises in this section.)




