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Preface to the Second Edition

Due to limited experimental data reported since the publication of the first edition,
the study on generalized dynamics of soft-matter quasicrystals has not achieved great
progress. In this second edition, we still mainly focus on the mathematical model
but provide some applications additional to the first edition.

Nevertheless, there are still some steady progress in the experimental study in
the field. The observation of the 10-fold symmetry soft-matter quasicrystal is an
example,1 the importance of which will be beyond that of the first discovered 12-fold
one, although the details have not been openly discussed yet. This finding extended
the presence of soft-matter quasicrystals in a broader range and would bring fruitful
expectations in both experimental and theoretical studies.

Another progress is the experimental and theoretical study on the correlations
between the Frank-Kasper phase and soft-matter quasicrystals in giant molecules.
This contribution was made by the group of Prof. Stephen Z. D. Cheng and will be
introduced in Chap. 2 in the second edition.

In theoretical aspects, we will also introduce the recent progress.
In this circumstance, we strengthen the discussions on possible applications of

the theory and the method in new areas, for example, thermodynamic stability, three-
dimensional problems, device physics, liquid crystals, general softmatter, etc., which
will be introduced in Chaps. 13–16. Of course, the applications are in the preliminary
phase.

Thanks to the suggestions from the readers, we paid more attention to supplement
recent computational models and simulation results in the second edition to visualize
the theoretical formulas. In addition, although errors and mistakes in the first edition
have been corrected, there might still be errors and mistakes. The authors are grateful
to any criticism from the readers so that we can continuously improve the book.

1 The 10-fold symmetry quasicrystals in soft matter will be reported by Expanding Quasiperiodicity
in Soft Matter: Decagonal Quasicrystals by Hierarchical Packing Frustrations. Authors: Yuchu Liu,
Tong Liu, Xiaoyun Yan, Qing-Yun Guo, Huanyu Lei, Zongwu Huang, Rui Zhang, Yu Wang, Jing
Wang, Feng Liu, Feng-Gang Bian, E. W. Meijer, Takuzo Aida, Mingjun Huang, Stephen Z. D.
Cheng, Proc. Natl. Acad. Sci., in press, 2021.
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vi Preface to the Second Edition

The first author thanks the National Natural Science Foundation of China and
the Alexander von Humboldt Foundation of Germany for their support over the last
decades. The work is also partially supported by the School of Physics, Beijing
Institute of Technology.

We thank Professors T. C. Lubensky from the University of Pennsylvania, the
USA, Stephen Z. D. Cheng from the University of Akron, the USA and South China
University of Technology,Yu-GuiYao fromBeijing Institute of Technology,Wei-Qiu
Chen from Zhejiang University, Xian-Fang Li from Central South University, Ming-
Jun Huang from South China University of Technology, China and C. Peng from the
University of Memphis, the USA for their kind advice and helpful discussions.

The authors are grateful to researcher in metallic materials Prof. Zi-Tong Li,
former student Fang Wang from Beijing Institute of Technology for their hard work
during the preparation of this second edition.

Due to their important contributions to the second edition, Wenge Yang, Hui
Cheng, and Xiao-Hong Sun are invited as co-authors to take charge of the book with
me.

Beijing, China
December 2021

Tian-You Fan



Preface to the First Edition

Since 2004, quasicrystals have been discovered in various kinds of soft matters,
including liquid crystals, colloids, polymers, and nanoparticles. In particular, 18-
fold symmetry quasicrystals in colloids were observed in 2011. More recently the
quasicrystals with 12-fold symmetry were also found in surfactants. The forma-
tion mechanisms of these kinds of quasicrystals are associated closely with the
self-assembly of spherical building blocks by supramolecules, compounds, and
block copolymers, and so on, which is quite different from that of the metallic
alloy quasicrystals. They can be identified as soft-matter quasicrystals, exhibiting
natures of quasicrystals with soft-matter characters. Soft-matter behavior is between
solid and simple fluid, while the quasicrystals form in highly ordered structures
with crystalline-forbidden symmetry. These features are very complex yet extremely
interesting and attractive. Since 2004, soft-matter quasicrystal studies have attracted
attention in mathematics, physics, chemistry, and materials science.

So far all observed soft-matter quasicrystals are two-dimensional quasicrystals. It
is well known that two-dimensional quasicrystals consist of only two distinct types,
one presents 5-, 8-, 10-, and 12-fold symmetries, the other 7-, 9-, 14-, and 18-fold
ones according to the group symmetry theory. Therefore, two terminological phrases
can be defined such as the first and second kinds of two-dimensional quasicrystals
respectively. The two-dimensional solid quasicrystals observed so far only belong
to the first kind, while soft-matter quasicrystals discovered up to now belong to both
kinds. It is likely other soft-matter quasicrystals beyond 12- and 18-fold symmetries
could be found. Therefore, it is quite important to develop a suite of general principles
to describe elasticity and fluid dynamics.

It is quite difficult to study these new phases due to the complexity of their struc-
tures and limited experimental data including the basic physical constants. It is true
for theoretical studies as well. For example, the symmetry groups of soft-matter
quasicrystals have yet been thoroughly investigated, and only some preliminarywork
has been reported so far (the details are not included in the book). In conjunction with
this issue, the study on constitutive laws for phason and phonon-phason coupling is
still difficult.
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viii Preface to the First Edition

Despite only very limited experimental and theoretical studies reported so far,
there is great potential to push these directions forward. For example, the soft-
matter quasicrystals as a new ordered phase are connected with symmetry breaking,
like those discussed in solid quasicrystals. Thus, elementary excitations such as
phonon and phason are important issues in the study of quasicrystals based on
the Landau phenomenological theory. For soft-matter quasicrystals, furthermore,
another elementary excitation—fluid phonon will be considered besides phonon and
phason. According to the Landau school, the liquid acoustic wave is a fluid phonon
(refer toLifshitzEMandPitaevskii LP, Statistical Physics, Part 2, Pergamon,Oxford,
1980). This is suitable for describing the liquid effect of soft matter, which can be
seen as complex liquids or structured liquids. The elementary excitations—phonon,
phason, and fluid phonon and their coupling terms constitute themain feature of these
new phases. They will be discussed as a major issue through this book. The fluid
phonon was first introduced in the quasicrystals study. Correspondingly, the equation
of state should also be introduced in soft-matter quasicrystal study. Combining these
two key conceptswith the hydrodynamics principle established in solid quasicrystals,
the dynamics of soft-matter quasicrystals can be constructed. For solid quasicrystals,
there has been tremendous progress over last decades, for example, Lubensky TC,
Symmetry, elasticity, and hydrodynamics in quasiperiodic structures, in Introduc-
tion to Quasicrystals, ed by Jaric MV, Boston: Academic Press, 190-289,1988; Hu
ZC et al, Symmetry groups, physical property tensors, elasticity and dislocations in
quasicrystals, Rep. Prog. Phys., 63(1), 1-39, 2000; Fan T Y, Mathematical Theory of
Elasticity of Quasicrystals and Its Applications, Beijing: Science Press/Heidelberg,
Springer-Verlag, 1st edition, 2010, 2nd edition 2016. Based on the development of
the theory of solid quasicrystals, we will extend the quantitative analysis into the rich
phenomena of soft-matter quasicrystals.

Some applications will be discussed on the distribution, deformation, and motion
of soft-matter quasicrystals. The mathematical principles and applications required
are briefly reviewed in the first six chapters of this book (for more details, refer to
Chaikin J and Lubensky TC, Principles of Condensed Matter Physics, New York:
Cambridge University Press, 1995). The computational applications on soft-matter
quasicrystals are quite preliminary, but they verified partially themathematicalmodel
and explored the distinguished dynamic behavior from solid quasicrystals. In addi-
tion, specimens and flow modes adopted in the computation modeling might be
intuitive, observable, and can be verified easily.

The author thanks the National Natural Science Foundation of China and
Alexander von Humboldt Foundation of Germany for their financial support over the
years and Professors U. Messerschmidt fromMax-Planck Institut fur Mikrostruktur-
physik inHalle,H.-R. Trebin fromStuttgardUniversitaet inGermany, T.C. Lubensky
from the University of Pennsylvania, Stephen Z. D. Cheng from the University of
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Akron in the USA, H. H. Wensink from Utrecht University in Netherland, Xian-
Fang Li from Central South University in China, and Wei-Qiu Chen from Zhejiang
University in China for their cordial encouragement and helpful discussions.

Beijing, China
December 2016

Tian-You Fan



Contents

1 Introduction to Soft Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Discovery of Soft-Matter Quasicrystals and Their Properties . . . . . . 5
2.1 Experimental Observation of Quasicrystalline Phases

in Soft Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Characters of Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . 14
2.3 Some Concepts Concerning Possible Generalized

Dynamics on Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . 15
2.4 First and Second Kinds of Two-Dimensional Quasicrystals . . . . . 16
2.5 Motivation of Our Discussion in the Book . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Introduction on Elasticity and Hydrodynamics of Solid
Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Physical Basis of Elasticity of Quasicrystals, Phonons,

and Phasons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Deformation Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Stress Tensors and Equations of Motion . . . . . . . . . . . . . . . . . . . . . 25
3.4 Free Energy Density and Elastic Constants . . . . . . . . . . . . . . . . . . . 26
3.5 Generalized Hooke’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Boundary Conditions and Initial Conditions . . . . . . . . . . . . . . . . . . 29
3.7 Solutions of Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Hydrodynamics of Solid Quasicrystals . . . . . . . . . . . . . . . . . . . . . . 31

3.8.1 Viscosity of Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.2 Hydrodynamics of Solid Quasicrystals . . . . . . . . . . . . . . . 32

3.9 Solution of the Hydrodynamics of Solid Quasicrystals . . . . . . . . . 33
3.10 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xi



xii Contents

4 Case Study of Equation of State in Several Structured Fluids . . . . . . 37
4.1 Introduction of Equation of State in Some Fluids . . . . . . . . . . . . . . 37
4.2 Possible Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Applications to Dynamics of Soft-Matter Quasicrystals . . . . . . . . 40
4.4 The Incompressible Model of Soft Matter . . . . . . . . . . . . . . . . . . . . 40
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Poisson Brackets and Derivation of Equations of Motion
in Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1 Brownian Motion and Langevin Equation . . . . . . . . . . . . . . . . . . . . 43
5.2 Extended Version of Langevin Equation . . . . . . . . . . . . . . . . . . . . . 43
5.3 Multivariable Langevin Equation, Coarse-Graining . . . . . . . . . . . . 44
5.4 Poisson Bracket Method in Condensed Matter Physics . . . . . . . . . 45
5.5 Application of Poisson Bracket to Quasicrystals . . . . . . . . . . . . . . 46
5.6 Equations of Motion of Soft-Matter Quasicrystals . . . . . . . . . . . . . 47

5.6.1 Generalized Langevin Equation . . . . . . . . . . . . . . . . . . . . . 47
5.6.2 Derivation of Generalized Dynamic Equations

of Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Poisson Brackets Based on Lie Algebra . . . . . . . . . . . . . . . . . . . . . . 51
5.8 On Solving Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Oseen Theory and Oseen Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1 Navier–Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Stokes Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Stokes Paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4 Oseen Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Oseen Steady Solution of the Flow of Incompressible Fluid

Past Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6 The Reference Meaning of Oseen Theory and Oseen

Solution to the Study in Soft Matter . . . . . . . . . . . . . . . . . . . . . . . . . 67
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Dynamics of Soft-Matter Quasicrystals with 12-Fold
Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1 Two-Dimensional Governing Equations of Soft-Matter

Quasicrystals of 12-Fold Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Simplification of Governing Equations . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1 Steady Dynamic Problem of Soft-Matter
Quasicrystals with 12-Fold Symmetry . . . . . . . . . . . . . . . 73

7.2.2 Pure Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Dislocation and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3.1 Limitation of Zero-Order Solution of Dislocation,
Possible Modification Considering the Fluid Effect . . . . 76

7.4 Generalized Oseen Approximation Under the Condition
of Lower Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



Contents xiii

7.5 Steady Dynamic Equations Under Oseen Modification
in Polar Coordinate System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.6 Flow Past a Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.6.1 Two-Dimensional Flow Past Obstacle . . . . . . . . . . . . . . . . 79
7.6.2 Quasi-Steady Analysis—Numerical Solution

by Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . 80
7.6.3 Numerical Results and Analysis . . . . . . . . . . . . . . . . . . . . 80

7.7 Three-Dimensional Equations of Generalized Dynamics
of Soft-Matter Quasicrystals with 12-Fold Symmetry . . . . . . . . . . 89

7.8 Governing Equations of Generalized Dynamics
of Incompressible Soft-Matter Quasicrystals of 12-Fold
Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.9 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Dynamics of 10-Fold Symmetrical Soft-Matter Quasicrystals . . . . . . 95
8.1 Statement on Soft-Matter Quasicrystals of 10-Fold

Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Two-Dimensional Basic Equations of Soft-Matter

Quasicrystals of Point Groups 10, 10 . . . . . . . . . . . . . . . . . . . . . . . 95
8.3 Dislocations and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.4 Probe on Modification of Dislocation Solution

by Considering the Fluid Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.5 Transient Dynamic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.5.1 Specimen and Initial-Boundary Conditions . . . . . . . . . . . 102
8.5.2 Numerical Analysis and Results . . . . . . . . . . . . . . . . . . . . 103

8.6 Three-Dimensional Equations of Point Group 10mm
Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.7 Incompressible Complex Fluid Model of Soft-Matter
Quasicrystals with 10-Fold Symmetry . . . . . . . . . . . . . . . . . . . . . . . 114

8.8 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Dynamics of 8-Fold Symmetric Soft-Matter Quasicrystal
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.1 Basic Equations of 8-Fold Symmetric Soft-Matter

Quasicrystal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Dislocation in 8-Fold Symmetric Soft-Matter Quasicrystals . . . . 121

9.2.1 Elastic Static Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.2.2 Modification with Consideration of the Fluid Effect . . . . 123

9.3 Transient Dynamics Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.3.1 Specimen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

9.4 Flow Past a Circular Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.5 Three-Dimensional Systems with 8-Fold Symmetric

Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



xiv Contents

9.6 Incompressible Model of the 8-Fold Symmetric
Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9.7 Solution Example of an Incompressible Model . . . . . . . . . . . . . . . 132
9.8 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10 Dynamics of 18-Fold Symmetric Soft-Matter Quasicrystals . . . . . . . 135
10.1 Six-Dimensional Embedded Space . . . . . . . . . . . . . . . . . . . . . . . . . . 135
10.2 Elasticity of the Possible 18-Fold Symmetric Solid

Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
10.3 Dynamics of 18-Fold Symmetric Quasicrystals with 18

mm Point Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.4 The Steady Dynamic and the Static Case of the First

and the Second Phason Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.5 Dislocations and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.5.1 The Zero-Order Approximate Solution
for Dislocations in 18-Fold Symmetric
Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.5.2 Modification to the Solution (10.5.3) to (10.5.6)
Considering the Fluid Effect . . . . . . . . . . . . . . . . . . . . . . . . 147

10.6 Discussion on Transient Dynamics Analysis . . . . . . . . . . . . . . . . . . 147
10.7 Three-Dimensional Equations of Generalized Dynamics

of 18-Fold Symmetric Soft-Matter Quasicrystals . . . . . . . . . . . . . . 148
10.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.7.2 Some Basic Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.7.3 Three-Dimensional Equations of Generalized

Dynamics of Point Group 18 mm Soft-Matter
Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.8 Incompressible Generalized Dynamics of 18-Fold
Symmetric Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . 155

10.9 Other Solutions and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

11 The Possible 7-, 9-, and 14-fold Symmetry Quasicrystals
in Soft Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.1 The Possible 7-fold Symmetry Quasicrystals with

Point Group 7m of Soft Matter and the Dynamic Theory . . . . . . . 159
11.2 The Possible 9-fold Symmetrical Quasicrystals with Point

Group 9m of Soft Matter and Their Dynamics . . . . . . . . . . . . . . . . 163
11.3 Dislocation Solutions of the Possible 9-fold Symmetrical

Quasicrystals of Soft Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.4 The Possible 14-fold Symmetrical Quasicrystals with Point

Group 14mm of Soft Matter and Their Dynamics . . . . . . . . . . . . . 169
11.5 The Numerical Solution of Dynamics of 14-fold

Symmetrical Quasicrystals of Soft Matter . . . . . . . . . . . . . . . . . . . . 172
11.6 Incompressible Complex Fluid Model . . . . . . . . . . . . . . . . . . . . . . . 173



Contents xv

11.7 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

12 Re-Discussion on Symmetry Breaking and Elementary
Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

13 AnApplication to theThermodynamic Stability of Soft-Matter
Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
13.2 Extended Free Energy of the Quasicrystal System in Soft

Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
13.3 The Positive Definite Nature of the Rigidity Matrix

and the Stability of the Soft-Matter Quasicrystals
with 12-Fold Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

13.4 Comparison and Examination of Results of Soft-Matter
Quasicrystals with 12-Fold Symmetry . . . . . . . . . . . . . . . . . . . . . . . 189

13.5 The Stability of 8-Fold Symmetry Soft-Matter
Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

13.6 The Stability of 10-Fold Symmetry Soft-Matter
Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

13.7 The Stability of the 18-Fold Symmetry Soft-Matter
Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
13.7.1 A Brief Review on Some Fundamental Relations

from the Dynamics of the Second Kind
of Soft-Matter Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . 194

13.7.2 Extended Free Energy of the Quasicrystals System
of Second Kind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

13.7.3 The Positive Definite Nature of the Rigidity
Matrix and the Stability of the Soft-Matter
Quasicrystals with 18-Fold Symmetry . . . . . . . . . . . . . . . 197

13.7.4 Comparison and Examination . . . . . . . . . . . . . . . . . . . . . . 199
13.7.5 Some Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

13.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

14 Applications to Device Physics—Photon Band Gap
of Holographic Photonic Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
14.2 Design and Formation of Holographic PQCs . . . . . . . . . . . . . . . . . 204
14.3 Band Gap of 8-fold PQCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
14.4 Band Gap of Multi-fold Complex PQCs . . . . . . . . . . . . . . . . . . . . . 207
14.5 Fabrication of 10-Fold Holographic PQCs . . . . . . . . . . . . . . . . . . . 207

14.5.1 Material and Writing System . . . . . . . . . . . . . . . . . . . . . . . 207
14.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

14.6 Band Gap of Cholesteric Liquid Crystal . . . . . . . . . . . . . . . . . . . . . 211



xvi Contents

14.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

15 Possible Applications to General Soft Matter . . . . . . . . . . . . . . . . . . . . 215
15.1 A Basis of Dynamics of Two-Dimensional Soft Matter . . . . . . . . 215
15.2 The Outline on Governing Equations of Dynamics of Soft

Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
15.3 The Modification and Supplement to Eq. (15.2.1) . . . . . . . . . . . . . 218
15.4 Solution of the Dynamics of Soft Matter . . . . . . . . . . . . . . . . . . . . . 219
15.5 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

16 An Application to Smectic A Liquid Crystals, Dislocation,
and Crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
16.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
16.2 The Kleman-Pershan Solution of Screw Dislocation . . . . . . . . . . . 224
16.3 Common Fundamentals of Discussion . . . . . . . . . . . . . . . . . . . . . . . 224
16.4 The Simplest and Most Direct Solution and the Additional

Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
16.5 Mathematical Mistakes of the Classical Solution . . . . . . . . . . . . . . 227
16.6 The Physical Mistakes of the Classical Solution . . . . . . . . . . . . . . 228
16.7 Meaning of the Present Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
16.8 Solution of Plastic Crack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

17 Conclusion Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Correction to: Introduction on Elasticity and Hydrodynamics
of Solid Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C1



Notations

r Radius vector
D Domain
S Boundary of domain
Su Boundary part where the displacements are given
St Boundary part where the tractions are given (or Sσ where the

applied stresses are given)
ρ Mass density (g/cm3)
p Fluid pressure (Pa = N/m2)
u Phonon type displacement field (cm)
w Phason type displacement field (or second phason displace-

ment field for second kind quasicrystals with 7-, 9-, 14-,
18-fold symmetry) (cm)

V Fluid velocity field (or fluid phonon field) (cm/s)

εi j = 1
2

(
∂ui
∂x j

+ ∂u j

∂xi

)
Phonon strain tensor

wi j = ∂wi
∂x j

Phason strain tensor (or second phason strain tensor for
second kind quasicrystals with 7-, 9-, 14-, 18-fold symmetry)

ξ̇i j = 1
2

(
∂Vi
∂x j

+ ∂Vj

∂xi

)
Fluid phonon deformation tensor (1/s)

σi j Phonon stress tensor (Pa)
Hi j Phason stress tensor (or second phason stress tensor for

second kind quasicrystals with 7-, 9-, 14-, 18-fold symmetry)
(Pa)

σ
′
i j Viscous stress tensor (Pa)

pi j = −pδi j + σ
′
i j Fluid phonon stress tensor (Pa)

Ci jkl Phonon elastic coefficient tensor (Pa)
Ki jkl Phason elastic coefficient tensor (or second kind phason

elastic coefficient tensor for quasicrystals with 7-, 9-, 14-,
18-fold symmetry) (Pa)

Ri jkl Phonon-phason coupling elastic coefficient tensor (u–w
coupling elastic coefficient tensor) (Pa)

xvii



xviii Notations

η First viscosity coefficient of fluid (0.1 Pa · s = Poise)
η/ρ First kinetic viscosity coefficient of fluid (cm2/s)
ζ Second viscosity coefficient of fluid (0.1 Pa · s = Poise)
ζ/ρ Second kinetic viscosity coefficient of fluid (cm2/s)

u Phonon dissipation coefficient (m3 · s/kg)

w Phason dissipation coefficient (or second kind phason dissipa-

tion coefficient tensor for quasicrystalswith 7-, 9-, 14-,18-fold
symmetry) (m3 · s/kg)

v First phason type displacement field (only for second kind
quasicrystals) (cm)

vi j = ∂vi
∂x j

First phason strain tensor (only for second kind quasicrystals)
τi j First phason stress tensor (only for second kind quasicrystals)

(Pa)
ri jkl Phonon-first phason coupling elastic coefficient tensor (or

u–v coupling elastic coefficient tensor only for second kind
quasicrystals) (Pa)


v The first kind phason dissipation coefficient of quasicrystals
(m3 · s/kg)



Chapter 1
Introduction to Soft Matter

Soft-matter quasicrystals are observed in liquid crystals, colloids, polymers, and
surfactants, etc., which brings new family members to soft matter with crystallo-
graphic forbidden symmetry. Soft matter is a type of common material, introduced
by de Gennes [1] in 1991, including liquid crystals, colloids, polymers, foams, emul-
sions, surfactants, biomacromolecules, etc. They are neither ideal solid nor simple
fluid, but presents characteristics of both solid and fluid, and belongs to an interme-
diate phase between isotropic fluid and ideal solid macroscopically. Sometimes one
calls them anisotropic fluids, structured fluids, or complex fluids [2–5], more exactly
speaking, as anisotropic liquids, structured liquids, or complex liquids.

As pointed out by Guo [6], if every atom of a molecule possesses the thermal
energy kBT in an ideal solid, e.g., solid crystal, here kB being theBoltzmann constant,
T the absolute temperature, the thermal energy per unit volume kBT/ l30 , may char-
acterize an entropy state of the crystal, here l0 ∼ 0.1 nm the typical lattice size or
interatomic distance. For soft-matter systems, the structure and dynamic properties
are related to mesoscopic size l ∼ 10 − 100 nm (e.g., the size of the long-chain of
polymers, or the size of self-assembly structures, etc.). Fluctuation, thermal motion,
and self-organization or self-assembly are often induced by entropy with thermal
energy per unit volume kBT/ l3. Apparently, at room temperature, the thermal energy
per unit volume of soft matter is lower by 6–9 orders of magnitude than that of the
ideal crystals. This may explain the softness of soft matter from the perspective of the
intra-structure of materials. In contrast, the ideal solid presents very high stiffness.
The distinction between soft matter and ideal solid is significant. The thermal energy
per unit volume concept may provide a basis by some analogies between soft matter
and ideal solid. The other differences between soft matter and conventional materials
will be discussed in the following description, but won’t be elaborated in detail or in
depth here.

For simplicity, we here only consider hydrodynamics, or generalized dynamics,
of soft-matter quasicrystals. More strictly speaking, only the fluidity or the flow
effect from the perspective of fluid is considered apart from elasticity and interac-
tion between fluidity and elasticity of the matter. The fluidity, elasticity, and their
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2 1 Introduction to Soft Matter

interaction are the only portions of the behavior of soft matter, which would help us
to understand the distribution, deformation, and motion of soft-matter quasicrystals
in a macroscope. In this case, the micro-scale structures of the matter have not been
concerned. Although the mesoscale structures are important for soft matter, it has
not been considered in general in our presentation apart from some special excep-
tions. In this sense, the modeling on hydrodynamics or generalized dynamics of soft
matter and soft-matter quasicrystals is a macro-and continuum-medium-study, with
low-frequency and long-wavelength characteristics, which have been discussed in
solid quasicrystals, and will be extended to the soft-matter case.

Among various kinds of soft-matter systems, liquid crystals are typical and rela-
tively well studied, and their material constants have been reported more in detail.
From a macroscopic and continuum point of view, a similar process from liquid
crystals can be extended to the study of soft-matter quasicrystals. For example, the
generalized Newton’s fluid law can approximately be used in some cases, and the
generalized Hooke’s elasticity law can also be applied, but the deformation in soft-
matter quasicrystals is more complex. The deformation of liquid crystals consists of
bulk deformation and local curvature variation. For the bulk deformation the conven-
tional generalized Hooke’s law still holds, but the deformation induced by curvature
variation needs additional terms to be included, which are beyond the discussion in
this chapter, and we will return to this issue in Chap. 16 where we discuss the curva-
ture of smectic A liquid crystals. As an intermediate phase between simple fluid and
ideal solid, the soft matter presents many behavior differences from those of isotropic
liquids and ideal crystals. For example, in ordinary liquid and nematic liquid crystals,
there is only one acoustic wave, i.e., longitudinal sound wave. In solid crystals and
amorphous solids, there are three acoustic wave speeds under the linear deformation,

i.e., c1 =
√

λ+2μ
ρ

or
(
or c1 =

√
L+2M

ρ

)
, c2 = c3 =

√
μ

ρ

(
or c2 = c3 =

√
M
ρ

)
, as

discussed in Chaps. 7–11 of this book. Smectic A liquid crystal has only one nonzero
displacement component, the longitudinal shear state in the elastic deformation, so
it is often categorized as a one-dimensional crystal. For a pure solid, the acoustic

wave speed is ∼
√

E
ρ
where E is the elastic modulus, ρ the mass density; For a

pure fluid, the acoustic speed is ∼
√

∂p
∂ρ
, p the fluid pressure. For smectic A liquid

crystals, there are both acoustic wave speeds ∼
√

E
ρ
and ∼

√
∂p
∂ρ
, where the first

speed often depends on the angle between wave vector k and the normal vector n
of the layer of the smectic A liquid crystal. In general, soft matter behaves differ-
ently from simple fluid and ideal solid. Due to complicated nonlinear behavior, the
spectra and dispersion relations of soft matter cannot be easily determined, so as the

wave speeds. Often one introduces
√

λ+2μ
ρ

,
√

μ

ρ
and

√
∂p
∂ρ

(in some cases we denote√
∂p
∂ρ

= c4 for simplicity) to describe wave propagating speeds in the soft matter
as a coarse approximation, and the realistic wave speeds in the matter present quite
different in magnitude and nature, and so far the relevant mechanism is not yet clear.
The successful introduction to the computation can partly reveal these questions.
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For liquid crystals, the dynamic viscosity coefficient η (in the unit 1 Poise =
0.1 Pa s) is introduced to describe the fluid effect. Sometimes, the kinetic viscosity
coefficient η/ρ also is used, note that the unit is cm2/s rather than Poise. The elastic
modulus E (in the unit 108 erg/cm3 = 107 Pa = 10 MPa) is used to describe the bulk
deformation. The Poisson ratio ν may be negative unlike that for solid. These basic
material constants are fundamental and useful for us to deal with the mechanical
problems of soft-matter quasicrystals in the late chapters. The viscosity of liquid
crystals is quite large (about 100 times that of water), and liquid crystals present
a certain degree of elasticity behavior. In general, people do not consider elasticity
in simple fluid, and viscosity in ideal solid (at least they are not so important). In
the following chapters, we carry out the analysis and computation on distribution,
deformation, andmotion of soft-matter quasicrystals following the successful experi-
ences from the study of the liquid crystal. Apart from these, some physical constants,
e.g., the phonon dissipation coefficient �u and phason dissipation coefficient �w for
soft-matter quasicrystals are not available from experimental reports, so we just take
relevant values from solid quasicrystals [7] as references.

Another important feature of motion in soft matter is its small Reynolds number
Re. According to the definition, Re = ρUa

η
, where a represents the characteristic

size of the matter or flow field. Because the characteristic velocity U is small and
the viscosity coefficient η is large, in general, the Reynolds number is small, i.e.,
Re = 10−4 ∼ 1. In this case, the force due to viscosity is much larger due to inertia.
Omitting the inertia terms, we can take the Stokes assumption in the equation of
motion sometimes, like in the classical fluid dynamics. This simplifies the governing
equations which are still very complicated. Not like in classical fluid dynamics where
one has obtained quite a lot of approximate analytic solutions, the analytic solution
or even approximate analytic solution cannot be derived. Although the governing
equations in classical fluid dynamics are complex, they are much simpler than those
in generalized dynamics of soft matter. It should be pointed out that the Stokes
approximation in a two-dimensional case leads to the famous Stokes paradox—
there was no solution. Oseen [8] analyzed the Stokes paradox physically in depth.
To overcome the paradox, the Stokes approximation equations must be modified.
They should be replaced by Oseen approximation equations and yield reasonable
solutions in the two-dimensional case. Further discussion on this issue can be found
in Sommerfeld [9], Sleozkin [10], and Kochin et al. [11]. When we discuss the soft
matter dynamics, especially the two-dimensional problems, we will get in touch with
similar problems, and the Oseen theory provides a useful guideline. Note that the
Ref. [10] points out Oseen approximation holds for the cases Re < 10, which is
helpful for the study of soft matter.

In addition, the above introduction regarding the soft matter is very limited and
preliminary, which only provides the most elementary knowledge for presentation
and application in the current chapter. Readers are suggested to refer to monographs
[2–5] for a broader understanding of soft matter and related research findings. The
generalized dynamics and possible generalized dynamics will be introduced in the
subsequent chapters.
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Chapter 2
Discovery of Soft-Matter Quasicrystals
and Their Properties

2.1 Experimental Observation of Quasicrystalline Phases
in Soft Matter

Quasicrystals have long-range orientational order but no translational symmetry. As
a consequence, sharp diffraction spots can occur but are unable to be described by 230
crystallographic space groups in both real and reciprocal spaces. There are three types
of quasicrystals: one-, two- and three-dimensional quasicrystals. In one-dimensional
quasicrystals, the quasiperiodic arrangement of atoms is along one direction, while
the plane perpendicular to which has a regular two-dimensional periodic arrange-
ment. There are several sub-classes of one-dimensional quasicrystals. One typical
arrangement along the unique quasiperiodic direction follows a Fibonacci sequence.
In two-dimensional quasicrystals, there is a quasiperiodic two-dimensional plane
with a periodic arrangement perpendicular to this plane, resulting in a true layer
structure within which no transitional symmetry exists. Typical two-dimensional
quasicrystals include pentagonal, octagonal, decagonal, and dodecagonal quasicrys-
tals with 5-, 8-, 10- and 12-fold symmetry respectively. In the three-dimensional
quasicrystals, the atomic arrangement is quasiperiodic in all three directions, in
which the icosahedral quasicrystal is the typical one. Three independent vectors
used in traditional crystallography are not enough to index the diffraction peaks in
quasicrystals, instead, at least four linearly independent vectors are needed [1]. The
necessary n vectors span independently in n (n > 3) dimensional space. In other
words, the quasicrystals in three-dimensional space can be constructed from a peri-
odic crystal in a higher n dimensional space. The real structure of quasicrystal in
three-dimensional physical space can be obtained by appropriate projection/section
technique preserving the symmetries from n dimensional space [2]. Five miller
indices are needed for describing a two-dimensional polygonal quasicrystal and six
miller indices for three-dimensional icosahedral quasicrystal.

Before the discovery of alloy quasicrystals, Roger Penrose created a set of
prototiles to tile a plane quasi-periodically with a strict marching rule for preserving
the fivefold rotational symmetry. Later on, this famous Penrose tilingmotivatedmuch
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6 2 Discovery of Soft-Matter Quasicrystals and Their Properties

work on the theory of quasicrystals. The third type of Penrose tiling (P3) is composed
of two types of rhombi tiles with different angles. An equivalent Penrose tiling can
also be constructed in three-dimensional space, resulting in icosahedral symmetry.
The fivefold Penrose tiling is a geometry expression of pentagonal quasicrystals
similar to other 2d symmetries including 8-, 10-, and 12-fold, as illustrated in
Fig. 2.1a–c for examples [3]. The corresponding lattice vectors in reciprocal space
can be obtained through projection from higher dimensional spaces as shown in
the middle panel of Fig. 2.1. Four linear independent planar vectors are needed to
describe the related rotational symmetry. The simulated diffraction patterns exhibit
8-, 10-, and 12-fold symmetries as shown in the bottom panel of Fig. 2.1. The fifth
vector is along with the plan’s normal direction.

Fig. 2.1 Two-dimensional tilings (top), projection of the unit vectors of the polygonal recip-
rocal lattices in four-dimensional space (middle) and simulated diffraction patterns (bottom) in
the quasiperiodic plane for a octagonal, b decagonal, and c dodecagonal quasicrystals [3]


