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With the breakthrough of the Convolutional Neural Network (CNN) for image 
classification in 2012, Deep Learning (DL) has successfully solved many complex 
problems and widely used in our everyday life, automotive, finance, retail, and 
healthcare. In 2016, Artificial Intelligence (AI) exceeded human intelligence that 
Google AlphaGo won the GO world championship through Reinforcement 
Learning (RL). AI revolution gradually changes our world, like a personal 
 computer (1977), Internet (1994), and smartphone (2007). However, most of the 
efforts focus on software development rather than hardware challenges:

 ● Big input data
 ● Deep neural network
 ● Massive parallel processing
 ● Reconfigurable network
 ● Memory bottleneck
 ● Intensive computation
 ● Network pruning
 ● Data sparsity

This book shows how to resolve the hardware problems through various design 
ranging from CPU, GPU, TPU to NPU. Novel hardware can be evolved from those 
designs for further performance and power improvement:

 ● Parallel architecture
 ● Streaming Graph Theory
 ● Convolution optimization
 ● In- memory computation
 ● Near- memory architecture
 ● Network sparsity
 ● 3D neural processing

Preface



Prefacexiv

Organization of the Book
Chapter 1 introduces neural network and discusses neural network develop-

ment history.
Chapter 2 reviews Convolutional Neural Network (CNN) model and describes 

each layer functions and examples.
Chapter  3 lists out several parallel architectures, Intel CPU, Nvidia GPU, 

Google TPU, and Microsoft NPU. It emphasizes hardware/software integration for 
performance improvement. Nvidia Deep Learning Accelerator (NVDLA) open- 
source project is chosen for FPGA hardware implementation.

Chapter  4 introduces a streaming graph for massive parallel computation 
through Blaize GSP and Graphcore IPU. They apply the Depth First Search (DFS) 
for task allocation and Bulk Synchronous Parallel Model (BSP) for parallel 
operations.

Chapter 5 shows how to optimize convolution with the University of California, 
Los Angeles (UCLA) Deep Convolutional Neural Network (DCNN) accelerator 
filter decomposition and Massachusetts Institute of Technology (MIT) Eyeriss 
accelerator Row Stationary dataflow.

Chapter 6 illustrates in- memory computation through Georgia Institute of 
Technologies Neurocube and Stanford Tetris accelerator using Hybrid Memory 
Cube (HMC) as well as University of Bologna Neurostream accelerator using 
Smart Memory Cubes (SMC).

Chapter  7 highlights near- memory architecture through the Institute of 
Computing Technology (ICT), Chinese Academy of Science, DaDianNao super-
computer and University of Toronto Cnvlutin accelerator. It also shows Cnvlutin 
how to avoid ineffectual zero operations.

Chapter 8 chooses Stanford Energy Efficient Inference Engine, Institute of 
Computing Technology (ICT), Chinese Academy of Science Cambricon- X, 
Massachusetts Institute of Technology (MIT) SCNN processor and Microsoft 
SeerNet accelerator to handle network sparsity.

Chapter  9 introduces an innovative 3D neural processing with a network 
bridge to overcome power and thermal challenges. It also solves the memory bot-
tleneck and handles the large neural network processing.

In English edition, several chapters are rewritten with more detailed descrip-
tions. New deep learning hardware architectures are also included. Exercises 
challenge the reader to solve the problems beyond the scope of this book. The 
instructional slides are available upon request.

We shall continue to explore different deep learning hardware architectures (i.e. 
Reinforcement Learning) and work on a in-memory computing architecture with 
new high-speed arithmetic approach. Compared with the Google Brain floating- 
point (BFP16) format, the new approach offers a wider dynamic range, higher 
performance, and less power dissipation. It will be included in a future revision.

Albert Chun Chen Liu
Oscar Ming Kin Law
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