

Artificial Intelligence Hardware Design

IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Ekram Hossain, Editor-­in-­Chief

Jón Atli Benediktsson Xiaoou Li Jeffrey Reed

Anjan Bose Lian Yong Diomidis Spinellis

David Alan Grier

Elya B. Joffe

Andreas Molisch

Saeid Nahavandi

Sarah Spurgeon

Ahmet Murat Tekalp

Artificial Intelligence Hardware Design

Challenges and Solutions

Albert Chun Chen Liu and Oscar Ming Kin Law

Kneron Inc.,
San Diego, CA, USA

Copyright © 2021 by The Institute of Electrical and Electronics Engineers, Inc. All rights
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.
com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax
(201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our web site at www.wiley.com.

Library of Congress Cataloging-­in-­Publication data applied for:

ISBN: 9781119810452

Cover design by Wiley
Cover image: © Rasi Bhadramani/iStock/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

10  9  8  7  6  5  4  3  2  1

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

v

Author Biographies  xi
Preface  xiii
Acknowledgments  xv
Table of Figures  xvii

1	 Introduction  1
1.1	 Development History  2
1.2	 Neural Network Models  4
1.3	 Neural Network Classification  4
1.3.1	 Supervised Learning  4
1.3.2	 Semi-supervised Learning  5
1.3.3	 Unsupervised Learning  6
1.4	 Neural Network Framework  6
1.5	 Neural Network Comparison  10
	 Exercise  11
	 References  12

2	 Deep Learning  13
2.1	 Neural Network Layer  13
2.1.1	 Convolutional Layer  13
2.1.2	 Activation Layer  17
2.1.3	 Pooling Layer  18
2.1.4	 Normalization Layer  19
2.1.5	 Dropout Layer  20
2.1.6	 Fully Connected Layer  20
2.2	 Deep Learning Challenges  22
	 Exercise  22
	 References  24

Contents

Contentsvi

3	 Parallel Architecture  25
3.1	 Intel Central Processing Unit (CPU)  25
3.1.1	 Skylake Mesh Architecture  27
3.1.2	 Intel Ultra Path Interconnect (UPI)  28
3.1.3	 Sub Non-unified Memory Access Clustering (SNC)  29
3.1.4	 Cache Hierarchy Changes  31
3.1.5	 Single/Multiple Socket Parallel Processing  32
3.1.6	 Advanced Vector Software Extension  33
3.1.7	 Math Kernel Library for Deep Neural Network (MKL-DNN)  34
3.2	 NVIDIA Graphics Processing Unit (GPU)  39
3.2.1	 Tensor Core Architecture  41
3.2.2	 Winograd Transform  44
3.2.3	 Simultaneous Multithreading (SMT)  45
3.2.4	 High Bandwidth Memory (HBM2)  46
3.2.5	 NVLink2 Configuration  47
3.3	 NVIDIA Deep Learning Accelerator (NVDLA)  49
3.3.1	 Convolution Operation  50
3.3.2	 Single Data Point Operation  50
3.3.3	 Planar Data Operation  50
3.3.4	 Multiplane Operation  50
3.3.5	 Data Memory and Reshape Operations  51
3.3.6	 System Configuration  51
3.3.7	 External Interface  52
3.3.8	 Software Design  52
3.4	 Google Tensor Processing Unit (TPU)  53
3.4.1	 System Architecture  53
3.4.2	 Multiply–Accumulate (MAC) Systolic Array  55
3.4.3	 New Brain Floating-Point Format  55
3.4.4	 Performance Comparison  57
3.4.5	 Cloud TPU Configuration  58
3.4.6	 Cloud Software Architecture  60
3.5	 Microsoft Catapult Fabric Accelerator  61
3.5.1	 System Configuration  64
3.5.2	 Catapult Fabric Architecture  65
3.5.3	 Matrix-Vector Multiplier  65
3.5.4	 Hierarchical Decode and Dispatch (HDD)  67
3.5.5	 Sparse Matrix-Vector Multiplication  68
	 Exercise  70
	 References  71

Contents vii

4	 Streaming Graph Theory  73
4.1	 Blaize Graph Streaming Processor  73
4.1.1	 Stream Graph Model  73
4.1.2	 Depth First Scheduling Approach  75
4.1.3	 Graph Streaming Processor Architecture  76
4.2	 Graphcore Intelligence Processing Unit  79
4.2.1	 Intelligence Processor Unit Architecture  79
4.2.2	 Accumulating Matrix Product (AMP) Unit  79
4.2.3	 Memory Architecture  79
4.2.4	 Interconnect Architecture  79
4.2.5	 Bulk Synchronous Parallel Model  81
	 Exercise  83
	 References  84

5	 Convolution Optimization  85
5.1	 Deep Convolutional Neural Network Accelerator  85
5.1.1	 System Architecture  86
5.1.2	 Filter Decomposition  87
5.1.3	 Streaming Architecture  90
5.1.3.1	 Filter Weights Reuse  90
5.1.3.2	 Input Channel Reuse  92
5.1.4	 Pooling  92
5.1.4.1	 Average Pooling  92
5.1.4.2	 Max Pooling  93
5.1.5	 Convolution Unit (CU) Engine  94
5.1.6	 Accumulation (ACCU) Buffer  94
5.1.7	 Model Compression  95
5.1.8	 System Performance  95
5.2	 Eyeriss Accelerator  97
5.2.1	 Eyeriss System Architecture  97
5.2.2	 2D Convolution to 1D Multiplication  98
5.2.3	 Stationary Dataflow  99
5.2.3.1	 Output Stationary  99
5.2.3.2	 Weight Stationary  101
5.2.3.3	 Input Stationary  101
5.2.4	 Row Stationary (RS) Dataflow  104
5.2.4.1	 Filter Reuse  104
5.2.4.2	 Input Feature Maps Reuse  106
5.2.4.3	 Partial Sums Reuse  106

Contentsviii

5.2.5	 Run-Length Compression (RLC)  106
5.2.6	 Global Buffer  108
5.2.7	 Processing Element Architecture  108
5.2.8	 Network-on-Chip (NoC)  108
5.2.9	 Eyeriss v2 System Architecture  112
5.2.10	 Hierarchical Mesh Network  116
5.2.10.1	 Input Activation HM-NoC  118
5.2.10.2	 Filter Weight HM-NoC  118
5.2.10.3	 Partial Sum HM-NoC  119
5.2.11	 Compressed Sparse Column Format  120
5.2.12	 Row Stationary Plus (RS+) Dataflow  122
5.2.13	 System Performance  123
	 Exercise  125
	 References  125

6	 In-Memory Computation  127
6.1	 Neurocube Architecture  127
6.1.1	 Hybrid Memory Cube (HMC)  127
6.1.2	 Memory Centric Neural Computing (MCNC)  130
6.1.3	 Programmable Neurosequence Generator (PNG)  131
6.1.4	 System Performance  132
6.2	 Tetris Accelerator  133
6.2.1	 Memory Hierarchy  133
6.2.2	 In-Memory Accumulation  133
6.2.3	 Data Scheduling  135
6.2.4	 Neural Network Vaults Partition  136
6.2.5	 System Performance  137
6.3	 NeuroStream Accelerator  138
6.3.1	 System Architecture  138
6.3.2	 NeuroStream Coprocessor  140
6.3.3	 4D Tiling Mechanism  140
6.3.4	 System Performance  141
	 Exercise  143
	 References  143

7	 Near-Memory Architecture  145
7.1	 DaDianNao Supercomputer  145
7.1.1	 Memory Configuration  145
7.1.2	 Neural Functional Unit (NFU)  146
7.1.3	 System Performance  149
7.2	 Cnvlutin Accelerator  150

Contents ix

7.2.1	 Basic Operation  151
7.2.2	 System Architecture  151
7.2.3	 Processing Order  154
7.2.4	 Zero-Free Neuron Array Format (ZFNAf)  155
7.2.5	 The Dispatcher  155
7.2.6	 Network Pruning  157
7.2.7	 System Performance  157
7.2.8	 Raw or Encoded Format (RoE)  158
7.2.9	 Vector Ineffectual Activation Identifier Format (VIAI)  159
7.2.10	 Ineffectual Activation Skipping  159
7.2.11	 Ineffectual Weight Skipping  161
	 Exercise  161
	 References  161

8	 Network Sparsity  163
8.1	 Energy Efficient Inference Engine (EIE)  163
8.1.1	 Leading Nonzero Detection (LNZD) Network  163
8.1.2	 Central Control Unit (CCU)  164
8.1.3	 Processing Element (PE)  164
8.1.4	 Deep Compression  166
8.1.5	 Sparse Matrix Computation  167
8.1.6	 System Performance  169
8.2	 Cambricon-X Accelerator  169
8.2.1	 Computation Unit  171
8.2.2	 Buffer Controller  171
8.2.3	 System Performance  174
8.3	 SCNN Accelerator  175
8.3.1	 SCNN PT-IS-CP-Dense Dataflow  175
8.3.2	 SCNN PT-IS-CP-Sparse Dataflow  177
8.3.3	 SCNN Tiled Architecture  178
8.3.4	 Processing Element Architecture  179
8.3.5	 Data Compression  180
8.3.6	 System Performance  180
8.4	 SeerNet Accelerator  183
8.4.1	 Low-Bit Quantization  183
8.4.2	 Efficient Quantization  184
8.4.3	 Quantized Convolution  185
8.4.4	 Inference Acceleration  186
8.4.5	 Sparsity-Mask Encoding  186
8.4.6	 System Performance  188
	 Exercise  188
	 References  188

Contentsx

9	 3D Neural Processing  191
9.1	 3D Integrated Circuit Architecture  191
9.2	 Power Distribution Network  193
9.3	 3D Network Bridge  195
9.3.1	 3D Network-on-Chip  195
9.3.2	 Multiple-Channel High-Speed Link  195
9.4	 Power-Saving Techniques  198
9.4.1	 Power Gating  198
9.4.2	 Clock Gating  199
	 Exercise  200
	 References  201

Appendix A: Neural Network Topology  203
Index  205

xi

Albert Chun Chen Liu is Kneron’s founder and CEO. He is Adjunct Associate
Professor at National Tsing Hua University, National Chiao Tung University, and
National Cheng Kung University. After graduating from the Taiwan National
Cheng Kung University, he got scholarships from Raytheon and the University of
California to join the UC Berkeley/UCLA/UCSD research programs and then
earned his Ph.D. in Electrical Engineering from the University of California Los
Angeles (UCLA). Before establishing Kneron in San Diego in 2015, he worked in
R&D and management positions in Qualcomm, Samsung Electronics R&D
Center, MStar, and Wireless Information.

Albert has been invited to give lectures on computer vision technology and
artificial intelligence at the University of California and be a technical reviewer
for many internationally renowned academic journals. Also, Albert owned more
than 30 international patents in artificial intelligence, computer vision, and image
processing. He has published more than 70 papers. He is a recipient of the IBM
Problem Solving Award based on the use of the EIP tool suite in 2007 and IEEE
TCAS Darlington award in 2021.

Oscar Ming Kin Law developed his interest in smart robot development in 2014.
He has successfully integrated deep learning with the self-driving car, smart
drone, and robotic arm. He is currently working on humanoid development. He
received a Ph.D. in Electrical and Computer Engineering from the University of
Toronto, Canada.

Oscar currently works at Kneron for in-memory computing and smart robot
development. He has worked at ATI Technologies, AMD, TSMC, and Qualcomm
and led various groups for chip verification, standard cell design, signal integrity,
power analysis, and Design for Manufacturability (DFM). He has conducted dif-
ferent seminars at the University of California, San Diego, University of Toronto,
Qualcomm, and TSMC. He has also published over 60 patents in various areas.

Author Biographies

xiii

With the breakthrough of the Convolutional Neural Network (CNN) for image
classification in 2012, Deep Learning (DL) has successfully solved many complex
problems and widely used in our everyday life, automotive, finance, retail, and
healthcare. In 2016, Artificial Intelligence (AI) exceeded human intelligence that
Google AlphaGo won the GO world championship through Reinforcement
Learning (RL). AI revolution gradually changes our world, like a personal
computer (1977), Internet (1994), and smartphone (2007). However, most of the
efforts focus on software development rather than hardware challenges:

●● Big input data
●● Deep neural network
●● Massive parallel processing
●● Reconfigurable network
●● Memory bottleneck
●● Intensive computation
●● Network pruning
●● Data sparsity

This book shows how to resolve the hardware problems through various design
ranging from CPU, GPU, TPU to NPU. Novel hardware can be evolved from those
designs for further performance and power improvement:

●● Parallel architecture
●● Streaming Graph Theory
●● Convolution optimization
●● In-memory computation
●● Near-memory architecture
●● Network sparsity
●● 3D neural processing

Preface

Prefacexiv

Organization of the Book
Chapter 1  introduces neural network and discusses neural network develop-

ment history.
Chapter 2  reviews Convolutional Neural Network (CNN) model and describes

each layer functions and examples.
Chapter 3  lists out several parallel architectures, Intel CPU, Nvidia GPU,

Google TPU, and Microsoft NPU. It emphasizes hardware/software integration for
performance improvement. Nvidia Deep Learning Accelerator (NVDLA) open-
source project is chosen for FPGA hardware implementation.

Chapter 4  introduces a streaming graph for massive parallel computation
through Blaize GSP and Graphcore IPU. They apply the Depth First Search (DFS)
for task allocation and Bulk Synchronous Parallel Model (BSP) for parallel
operations.

Chapter 5  shows how to optimize convolution with the University of California,
Los Angeles (UCLA) Deep Convolutional Neural Network (DCNN) accelerator
filter decomposition and Massachusetts Institute of Technology (MIT) Eyeriss
accelerator Row Stationary dataflow.

Chapter 6  illustrates in-memory computation through Georgia Institute of
Technologies Neurocube and Stanford Tetris accelerator using Hybrid Memory
Cube (HMC) as well as University of Bologna Neurostream accelerator using
Smart Memory Cubes (SMC).

Chapter 7  highlights near-memory architecture through the Institute of
Computing Technology (ICT), Chinese Academy of Science, DaDianNao super-
computer and University of Toronto Cnvlutin accelerator. It also shows Cnvlutin
how to avoid ineffectual zero operations.

Chapter 8  chooses Stanford Energy Efficient Inference Engine, Institute of
Computing Technology (ICT), Chinese Academy of Science Cambricon-X,
Massachusetts Institute of Technology (MIT) SCNN processor and Microsoft
SeerNet accelerator to handle network sparsity.

Chapter 9  introduces an innovative 3D neural processing with a network
bridge to overcome power and thermal challenges. It also solves the memory bot-
tleneck and handles the large neural network processing.

In English edition, several chapters are rewritten with more detailed descrip-
tions. New deep learning hardware architectures are also included. Exercises
challenge the reader to solve the problems beyond the scope of this book. The
instructional slides are available upon request.

We shall continue to explore different deep learning hardware architectures (i.e.
Reinforcement Learning) and work on a in-memory computing architecture with
new high-speed arithmetic approach. Compared with the Google Brain floating-
point (BFP16) format, the new approach offers a wider dynamic range, higher
performance, and less power dissipation. It will be included in a future revision.

Albert Chun Chen Liu
Oscar Ming Kin Law

xv

First, we would like to thank all who have supported the publication of the book.
We are thankful to Iain Law and Enoch Law for the manuscript preparation and
project development. We would like to thank Lincoln Lee and Amelia Leung for
reviewing the content. We also thank Claire Chang, Charlene Jin, and Alex Liao
for managing the book production and publication. In addition, we are grateful to
the readers of the Chinese edition for their valuable feedback on improving the
content of this book. Finally, we would like to thank our families for their support
throughout the publication of this book.

Albert Chun Chen Liu
Oscar Ming Kin Law

Acknowledgments

xvii

1.1	 High-tech revolution  2
1.2	 Neural network development timeline  2
1.3	 ImageNet challenge  3
1.4	 Neural network model  5
1.5	 Regression  6
1.6	 Clustering  7
1.7	 Neural network top 1 accuracy vs. computational complexity  9
1.8	 Neural network top 1 accuracy density vs. model efficiency [14]  10
1.9	 Neural network memory utilization and computational

complexity [14]  11
2.1	 Deep neural network AlexNet architecture [1]  14
2.2	 Deep neural network AlexNet model parameters  15
2.3	 Deep neural network AlexNet feature map evolution [3]  15
2.4	 Convolution function  16
2.5	 Nonlinear activation functions  18
2.6	 Pooling functions  19
2.7	 Dropout layer  20
2.8	 Deep learning hardware issues [1]  21
3.1	 Intel Xeon processor ES 2600 family Grantley platform ring

architecture [3]  27
3.2	 Intel Xeon processor scalable family Purley platform mesh

architecture [3]  28
3.3	 Two-socket configuration  28
3.4	 Four-socket ring configuration  29
3.5	 Four-socket crossbar configuration  29
3.6	 Eight-socket configuration  30
3.7	 Sub-NUMA cluster domains [3]  31
3.8	 Cache hierarchy comparison  31
3.9	 Intel multiple sockets parallel processing  32

Table of Figures

Table of Figuresxviii

3.10	 Intel multiple socket training performance comparison [4]  32
3.11	 Intel AVX-512 16 bits FMA operations (VPMADDWD + VPADDD)  33
3.12	 Intel AVX-512 with VNNI 16 bits FMA operation (VPDPWSSD)  34
3.13	 Intel low-precision convolution  35
3.14	 Intel Xenon processor training throughput comparison [2]  38
3.15	 Intel Xenon processor inference throughput comparison [2]  39
3.16	 NVIDIA turing GPU architecture  40
3.17	 NVIDIA GPU shared memory  41
3.18	 Tensor core 4 × 4 × 4 matrix operation [9]  42
3.19	 Turing tensor core performance [7]  42
3.20	 Matrix D thread group indices  43
3.21	 Matrix D 4 × 8 elements computation  43
3.22	 Different size matrix multiplication  44
3.23	 Simultaneous multithreading (SMT)  45
3.24	 Multithreading schedule  46
3.25	 GPU with HBM2 architecture  46
3.26	 Eight GPUs NVLink2 configuration  47
3.27	 Four GPUs NVLink2 configuration  48
3.28	 Two GPUs NVLink2 configuration  48
3.29	 Single GPU NVLink2 configuration  48
3.30	 NVDLA core architecture  49
3.31	 NVDLA small system model  51
3.32	 NVDLA large system model  51
3.33	 NVDLA software dataflow  52
3.34	 Tensor processing unit architecture  54
3.35	 Tensor processing unit floorplan  55
3.36	 Multiply–Accumulate (MAC) systolic array  56
3.37	 Systolic array matrix multiplication  56
3.38	 Cost of different numerical format operation  57
3.39	 TPU brain floating-point format  57
3.40	 CPU, GPU, and TPU performance comparison [15]  58
3.41	 Tensor Processing Unit (TPU) v1  59
3.42	 Tensor Processing Unit (TPU) v2  59
3.43	 Tensor Processing Unit (TPU) v3  59
3.44	 Google TensorFlow subgraph optimization  61
3.45	 Microsoft Brainwave configurable cloud architecture  62
3.46	 Tour network topology  63
3.47	 Microsoft Brainwave design flow  63
3.48	 The Catapult fabric shell architecture  64
3.49	 The Catapult fabric microarchitecture  65
3.50	 Microsoft low-precision quantization [27]  66

Table of Figures xix

3.51	 Matrix-vector multiplier overview  66
3.52	 Tile engine architecture  67
3.53	 Hierarchical decode and dispatch scheme  68
3.54	 Sparse matrix-vector multiplier architecture  69
3.55	 (a) Sparse Matrix; (b) CSR Format; and (c) CISR Format  70
4.1	 Data streaming TCS model  74
4.2	 Blaize depth-first scheduling approach  75
4.3	 Blaize graph streaming processor architecture  76
4.4	 Blaize GSP thread scheduling  76
4.5	 Blaize GSP instruction scheduling  77
4.6	 Streaming vs. sequential processing comparison  77
4.7	 Blaize GSP convolution operation  78
4.8	 Intelligence processing unit architecture [8]  80
4.9	 Intelligence processing unit mixed-precision multiplication  81
4.10	 Intelligence processing unit single-precision multiplication  81
4.11	 Intelligence processing unit interconnect architecture [9]  81
4.12	 Intelligence processing unit bulk synchronous parallel model  82
4.13	 Intelligence processing unit bulk synchronous parallel

execution trace [9]  82
4.14	 Intelligence processing unit bulk synchronous parallel inter-chip

execution [9]  83
5.1	 Deep convolutional neural network hardware architecture  86
5.2	 Convolution computation  87
5.3	 Filter decomposition with zero padding  88
5.4	 Filter decomposition approach  89
5.5	 Data streaming architecture with the data flow  91
5.6	 DCNN accelerator COL buffer architecture  91
5.7	 Data streaming architecture with 1×1 convolution mode  92
5.8	 Max pooling architecture  93
5.9	 Convolution engine architecture  94
5.10	 Accumulation (ACCU) buffer architecture  95
5.11	 Neural network model compression  96
5.12	 Eyeriss system architecture  97
5.13	 2D convolution to 1D multiplication mapping  98
5.14	 2D convolution to 1D multiplication – step #1  99
5.15	 2D convolution to 1D multiplication – step #2  100
5.16	 2D convolution to 1D multiplication – step #3  100
5.17	 2D convolution to 1D multiplication – step #4  101
5.18	 Output stationary  102
5.19	 Output stationary index looping  102
5.20	 Weight stationary  103

Table of Figuresxx

5.21	 Weight stationary index looping  103
5.22	 Input stationary  104
5.23	 Input stationary index looping  104
5.24	 Eyeriss Row Stationary (RS) dataflow  105
5.25	 Filter reuse  106
5.26	 Feature map reuse  107
5.27	 Partial sum reuse  107
5.28	 Eyeriss run-length compression  108
5.29	 Eyeriss processing element architecture  109
5.30	 Eyeriss global input network  109
5.31	 Eyeriss processing element mapping (AlexNet CONV1)  110
5.32	 Eyeriss processing element mapping (AlexNet CONV2)  111
5.33	 Eyeriss processing element mapping (AlexNet CONV3)  111
5.34	 Eyeriss processing element mapping (AlexNet CONV4/CONV5)  112
5.35	 Eyeriss processing element operation (AlexNet CONV1)  112
5.36	 Eyeriss processing element operation (AlexNet CONV2)  113
5.37	 Eyeriss processing element (AlexNet CONV3)  113
5.38	 Eyeriss processing element operation (AlexNet CONV4/CONV5)  114
5.39	 Eyeriss architecture comparison  114
5.40	 Eyeriss v2 system architecture  115
5.41	 Network-on-Chip configurations  116
5.42	 Mesh network configuration  117
5.43	 Eyeriss v2 hierarchical mesh network examples  117
5.44	 Eyeriss v2 input activation hierarchical mesh network  118
5.45	 Weights hierarchical mesh network  119
5.46	 Eyeriss v2 partial sum hierarchical mesh network  120
5.47	 Eyeriss v1 neural network model performance [6]  120
5.48	 Eyeriss v2 neural network model performance [6]  121
5.49	 Compressed sparse column format  121
5.50	 Eyeriss v2 PE architecture  122
5.51	 Eyeriss v2 row stationary plus dataflow  123
5.52	 Eyeriss architecture AlexNet throughput speedup [6]  124
5.53	 Eyeriss architecture AlexNet energy efficiency [6]  124
5.54	 Eyeriss architecture MobileNet throughput speedup [6]  124
5.55	 Eyeriss architecture MobileNet energy efficiency [6]  125
6.1	 Neurocube architecture  128
6.2	 Neurocube organization  128
6.3	 Neurocube 2D mesh network  129
6.4	 Memory-centric neural computing flow  130
6.5	 Programmable neurosequence generator architecture  131
6.6	 Neurocube programmable neurosequence generator  131

Table of Figures xxi

6.7	 Tetris system architecture  134
6.8	 Tetris neural network engine  134
6.9	 In-memory accumulation  135
6.10	 Global buffer bypass  136
6.11	 NN partitioning scheme comparison  137
6.12	 Tetris performance and power comparison [7]  138
6.13	 NeuroStream and NeuroCluster architecture  139
6.14	 NeuroStream coprocessor architecture  140
6.15	 NeuroStream 4D tiling  142
6.16	 NeuroStream roofline plot [8]  142
7.1	 DaDianNao system architecture  146
7.2	 DaDianNao neural functional unit architecture  147
7.3	 DaDianNao pipeline configuration  148
7.4	 DaDianNao multi-node mapping  148
7.5	 DaDianNao timing performance (Training) [1]  149
7.6	 DaDianNao timing performance (Inference) [1]  149
7.7	 DaDianNao power reduction (Training) [1]  150
7.8	 DaDianNao power reduction (Inference) [1]  150
7.9	 DaDianNao basic operation  152
7.10	 Cnvlutin basic operation  153
7.11	 DaDianNao architecture  153
7.12	 Cnvlutin architecture  154
7.13	 DaDianNao processing order  155
7.14	 Cnvlutin processing order  156
7.15	 Cnvlutin zero free neuron array format  157
7.16	 Cnvlutin dispatch  157
7.17	 Cnvlutin timing comparison [4]  158
7.18	 Cnvlutin power comparison [4]  158
7.19	 Cnvlutin2 ineffectual activation skipping  159
7.20	 Cnvlutin2 ineffectual weight skipping  160
8.1	 EIE leading nonzero detection network  164
8.2	 EIE processing element architecture  165
8.3	 Deep compression weight sharing and quantization  166
8.4	 Matrix W, vector a and b are interleaved over four processing elements  168
8.5	 Matrix W layout in compressed sparse column format  169
8.6	 EIE timing performance comparison [1]  170
8.7	 EIE energy efficient comparison [1]  170
8.8	 Cambricon-X architecture  171
8.9	 Cambricon-X processing element architecture  172
8.10	 Cambricon-X sparse compression  172
8.11	 Cambricon-X buffer controller architecture  173

Table of Figuresxxii

8.12	 Cambricon-X index module architecture  173
8.13	 Cambricon-X direct indexing architecture  174
8.14	 Cambricon-X step indexing architecture  174
8.15	 Cambricon-X timing performance comparison [4]  175
8.16	 Cambricon-X energy efficiency comparison [4]  175
8.17	 SCNN convolution  176
8.18	 SCNN convolution nested loop  176
8.19	 PT-IS-CP-dense dataflow  178
8.20	 SCNN architecture  179
8.21	 SCNN dataflow  179
8.22	 SCNN weight compression  180
8.23	 SCNN timing performance comparison [5]  181
8.24	 SCNN energy efficiency comparison [5]  182
8.25	 SeerNet architecture  183
8.26	 SeerNet Q-ReLU and Q-max-pooling  184
8.27	 SeerNet quantization  185
8.28	 SeerNet sparsity-mask encoding  187
9.1	 2.5D interposer architecture  192
9.2	 3D stacked architecture  192
9.3	 3D-IC PDN configuration (pyramid shape)  192
9.4	 PDN – Conventional PDN Manthan geometry  194
9.5	 Novel PDN X topology  194
9.6	 3D network bridge  196
9.7	 Neural network layer multiple nodes connection  197
9.8	 3D network switch  197
9.9	 3D network bridge segmentation  197
9.10	 Multiple-channel bidirectional high-speed link  198
9.11	 Power switch configuration  199
9.12	 3D neural processing power gating approach  199
9.13	 3D neural processing clock gating approach  200

