




Artificial Intelligence Hardware Design



IEEE Press
445 Hoes Lane

Piscataway, NJ 08854

IEEE Press Editorial Board
Ekram Hossain, Editor-in-Chief

Jón Atli Benediktsson Xiaoou Li Jeffrey Reed

Anjan Bose Lian Yong Diomidis Spinellis

David Alan Grier

Elya B. Joffe

Andreas Molisch

Saeid Nahavandi

Sarah Spurgeon

Ahmet Murat Tekalp



Artificial Intelligence Hardware Design

Challenges and Solutions

Albert Chun Chen Liu and Oscar Ming Kin Law

Kneron Inc.,  
San Diego, CA, USA

 



Copyright © 2021 by The Institute of Electrical and Electronics Engineers, Inc. All rights 
reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted 
in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or 
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright 
Act, without either the prior written permission of the Publisher, or authorization through 
payment of the appropriate per- copy fee to the Copyright Clearance Center, Inc., 222 Rosewood 
Drive, Danvers, MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web at www.copyright.
com. Requests to the Publisher for permission should be addressed to the Permissions 
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748- 6011, fax 
(201) 748- 6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best 
efforts in preparing this book, they make no representations or warranties with respect to the 
accuracy or completeness of the contents of this book and specifically disclaim any implied 
warranties of merchantability or fitness for a particular purpose. No warranty may be created or 
extended by sales representatives or written sales materials. The advice and strategies contained 
herein may not be suitable for your situation. You should consult with a professional where 
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other 
commercial damages, including but not limited to special, incidental, consequential, or other 
damages.

For general information on our other products and services or for technical support, please 
contact our Customer Care Department within the United States at (800) 762- 2974, outside the 
United States at (317) 572- 3993 or fax (317) 572- 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in 
print may not be available in electronic formats. For more information about Wiley products, 
visit our web site at www.wiley.com.

LibraryofCongressCataloging-in-Publicationdataappliedfor:

ISBN: 9781119810452

Cover design by Wiley
Cover image: © Rasi Bhadramani/iStock/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com


v

Author Biographies xi
Preface xiii
Acknowledgments xv
Table of Figures xvii

1 Introduction 1
1.1	 	Development	History	 2
1.2	 	Neural	Network	Models	 4
1.3	 	Neural	Network	Classification	 4
1.3.1	 Supervised	Learning	 4
1.3.2	 Semi-	supervised	Learning	 5
1.3.3	 Unsupervised	Learning	 6
1.4	 	Neural	Network	Framework	 6
1.5	 	Neural	Network	Comparison	 10
	 Exercise	 11
	 	References	 12

2 Deep Learning 13
2.1	 	Neural	Network	Layer	 13
2.1.1	 Convolutional	Layer	 13
2.1.2	 Activation	Layer	 17
2.1.3	 Pooling	Layer	 18
2.1.4	 Normalization	Layer	 19
2.1.5	 Dropout	Layer	 20
2.1.6	 Fully	Connected	Layer	 20
2.2	 	Deep	Learning	Challenges	 22
	 Exercise	 22
	 	References	 24

Contents



Contentsvi

3 Parallel Architecture 25
3.1	 	Intel	Central	Processing	Unit	(CPU)	 25
3.1.1	 Skylake	Mesh	Architecture	 27
3.1.2	 Intel	Ultra	Path	Interconnect	(UPI)	 28
3.1.3	 Sub	Non-	unified	Memory	Access	Clustering	(SNC)	 29
3.1.4	 Cache	Hierarchy	Changes	 31
3.1.5	 Single/Multiple	Socket	Parallel	Processing	 32
3.1.6	 Advanced	Vector	Software	Extension	 33
3.1.7	 Math	Kernel	Library	for Deep	Neural	Network	(MKL-	DNN)	 34
3.2	 	NVIDIA	Graphics	Processing	Unit	(GPU)	 39
3.2.1	 Tensor	Core	Architecture	 41
3.2.2	 Winograd	Transform	 44
3.2.3	 Simultaneous	Multithreading	(SMT)	 45
3.2.4	 High	Bandwidth	Memory	(HBM2)	 46
3.2.5	 NVLink2	Configuration	 47
3.3	 	NVIDIA	Deep	Learning	Accelerator	(NVDLA)	 49
3.3.1	 Convolution	Operation	 50
3.3.2	 Single	Data	Point	Operation	 50
3.3.3	 Planar	Data	Operation	 50
3.3.4	 Multiplane	Operation	 50
3.3.5	 Data	Memory	and Reshape	Operations	 51
3.3.6	 System	Configuration	 51
3.3.7	 External	Interface	 52
3.3.8	 Software	Design	 52
3.4	 	Google	Tensor	Processing	Unit	(TPU)	 53
3.4.1	 System	Architecture	 53
3.4.2	 Multiply–Accumulate	(MAC)	Systolic	Array	 55
3.4.3	 New	Brain	Floating-	Point	Format	 55
3.4.4	 Performance	Comparison	 57
3.4.5	 Cloud	TPU	Configuration	 58
3.4.6	 Cloud	Software	Architecture	 60
3.5	 	Microsoft	Catapult	Fabric	Accelerator	 61
3.5.1	 System	Configuration	 64
3.5.2	 Catapult	Fabric	Architecture	 65
3.5.3	 Matrix-	Vector	Multiplier	 65
3.5.4	 Hierarchical	Decode	and Dispatch	(HDD)	 67
3.5.5	 Sparse	Matrix-	Vector	Multiplication	 68
	 Exercise	 70
	 	References	 71



Contents vii

4 Streaming Graph Theory 73
4.1	 	Blaize	Graph	Streaming	Processor	 73
4.1.1	 Stream	Graph	Model	 73
4.1.2	 Depth	First	Scheduling	Approach	 75
4.1.3	 Graph	Streaming	Processor	Architecture	 76
4.2	 	Graphcore	Intelligence	Processing	Unit	 79
4.2.1	 Intelligence	Processor	Unit	Architecture	 79
4.2.2	 Accumulating	Matrix	Product	(AMP)	Unit	 79
4.2.3	 Memory	Architecture	 79
4.2.4	 Interconnect	Architecture	 79
4.2.5	 Bulk	Synchronous	Parallel	Model	 81
	 Exercise	 83
	 	References	 84

5 Convolution Optimization 85
5.1	 	Deep	Convolutional	Neural	Network	Accelerator	 85
5.1.1	 System	Architecture	 86
5.1.2	 Filter	Decomposition	 87
5.1.3	 Streaming	Architecture	 90
5.1.3.1	 Filter	Weights	Reuse	 90
5.1.3.2	 Input	Channel	Reuse	 92
5.1.4	 Pooling	 92
5.1.4.1	 Average	Pooling	 92
5.1.4.2	 Max	Pooling	 93
5.1.5	 Convolution	Unit	(CU)	Engine	 94
5.1.6	 Accumulation	(ACCU)	Buffer	 94
5.1.7	 Model	Compression	 95
5.1.8	 System	Performance	 95
5.2	 	Eyeriss	Accelerator	 97
5.2.1	 Eyeriss	System	Architecture	 97
5.2.2	 2D	Convolution	to 1D	Multiplication	 98
5.2.3	 Stationary	Dataflow	 99
5.2.3.1	 Output	Stationary	 99
5.2.3.2	 Weight	Stationary	 101
5.2.3.3	 Input	Stationary	 101
5.2.4	 Row	Stationary	(RS)	Dataflow	 104
5.2.4.1	 Filter	Reuse	 104
5.2.4.2	 Input	Feature	Maps	Reuse	 106
5.2.4.3	 Partial	Sums	Reuse	 106



Contentsviii

5.2.5	 Run-	Length	Compression	(RLC)	 106
5.2.6	 Global	Buffer	 108
5.2.7	 Processing	Element	Architecture	 108
5.2.8	 Network-	on-	Chip	(NoC)	 108
5.2.9	 Eyeriss	v2	System	Architecture	 112
5.2.10	 Hierarchical	Mesh	Network	 116
5.2.10.1	 Input	Activation	HM-	NoC	 118
5.2.10.2	 Filter	Weight	HM-	NoC	 118
5.2.10.3	 Partial	Sum	HM-	NoC	 119
5.2.11	 Compressed	Sparse	Column	Format	 120
5.2.12	 Row	Stationary	Plus	(RS+)	Dataflow	 122
5.2.13	 System	Performance	 123
	 Exercise	 125
	 	References	 125

6 In- Memory Computation 127
6.1	 	Neurocube	Architecture	 127
6.1.1	 Hybrid	Memory	Cube	(HMC)	 127
6.1.2	 Memory	Centric	Neural	Computing	(MCNC)	 130
6.1.3	 Programmable	Neurosequence	Generator	(PNG)	 131
6.1.4	 System	Performance	 132
6.2	 	Tetris	Accelerator	 133
6.2.1	 Memory	Hierarchy	 133
6.2.2	 In-	Memory	Accumulation	 133
6.2.3	 Data	Scheduling	 135
6.2.4	 Neural	Network	Vaults	Partition	 136
6.2.5	 System	Performance	 137
6.3	 	NeuroStream	Accelerator	 138
6.3.1	 System	Architecture	 138
6.3.2	 NeuroStream	Coprocessor	 140
6.3.3	 4D	Tiling	Mechanism	 140
6.3.4	 System	Performance	 141
	 Exercise	 143
	 	References	 143

7 Near- Memory Architecture 145
7.1	 	DaDianNao	Supercomputer	 145
7.1.1	 Memory	Configuration	 145
7.1.2	 Neural	Functional	Unit	(NFU)	 146
7.1.3	 System	Performance	 149
7.2	 	Cnvlutin	Accelerator	 150



Contents ix

7.2.1	 Basic	Operation	 151
7.2.2	 System	Architecture	 151
7.2.3	 Processing	Order	 154
7.2.4	 Zero-	Free	Neuron	Array	Format	(ZFNAf)	 155
7.2.5	 The	Dispatcher	 155
7.2.6	 Network	Pruning	 157
7.2.7	 System	Performance	 157
7.2.8	 Raw	or	Encoded	Format	(RoE)	 158
7.2.9	 Vector	Ineffectual	Activation	Identifier	Format	(VIAI)	 159
7.2.10	 Ineffectual	Activation	Skipping	 159
7.2.11	 Ineffectual	Weight	Skipping	 161
	 Exercise	 161
	 	References	 161

8 Network Sparsity 163
8.1	 	Energy	Efficient	Inference	Engine	(EIE)	 163
8.1.1	 Leading	Nonzero	Detection	(LNZD)	Network	 163
8.1.2	 Central	Control	Unit	(CCU)	 164
8.1.3	 Processing	Element	(PE)	 164
8.1.4	 Deep	Compression	 166
8.1.5	 Sparse	Matrix	Computation	 167
8.1.6	 System	Performance	 169
8.2	 	Cambricon-	X	Accelerator	 169
8.2.1	 Computation	Unit	 171
8.2.2	 Buffer	Controller	 171
8.2.3	 System	Performance	 174
8.3	 	SCNN	Accelerator	 175
8.3.1	 SCNN	PT-	IS-	CP-	Dense	Dataflow	 175
8.3.2	 SCNN	PT-	IS-	CP-	Sparse	Dataflow	 177
8.3.3	 SCNN	Tiled	Architecture	 178
8.3.4	 Processing	Element	Architecture	 179
8.3.5	 Data	Compression	 180
8.3.6	 System	Performance	 180
8.4	 	SeerNet	Accelerator	 183
8.4.1	 Low-	Bit	Quantization	 183
8.4.2	 Efficient	Quantization	 184
8.4.3	 Quantized	Convolution	 185
8.4.4	 Inference	Acceleration	 186
8.4.5	 Sparsity-	Mask	Encoding	 186
8.4.6	 System	Performance	 188
	 Exercise	 188
	 	References	 188



Contentsx

9 3D Neural Processing 191
9.1	 3D	Integrated	Circuit	Architecture	 191
9.2	 	Power	Distribution	Network	 193
9.3	 3D	Network	Bridge	 195
9.3.1	 3D	Network-	on-	Chip	 195
9.3.2	 Multiple-	Channel	High-	Speed	Link	 195
9.4	 	Power-	Saving	Techniques	 198
9.4.1	 Power	Gating	 198
9.4.2	 Clock	Gating	 199
	 Exercise	 200
	 	References	 201

Appendix A: Neural Network Topology 203
Index 205



xi

Albert Chun Chen Liu is Kneron’s founder and CEO. He is Adjunct Associate 
Professor at National Tsing Hua University, National Chiao Tung University, and 
National Cheng Kung University. After graduating from the Taiwan National 
Cheng Kung University, he got scholarships from Raytheon and the University of 
California to join the UC Berkeley/UCLA/UCSD research  programs and then 
earned his Ph.D. in Electrical Engineering from the University of California Los 
Angeles (UCLA). Before establishing Kneron in San Diego in 2015, he worked in 
R&D and management positions in Qualcomm, Samsung Electronics R&D 
Center, MStar, and Wireless Information.

Albert has been invited to give lectures on computer vision technology and 
 artificial intelligence at the University of California and be a technical reviewer 
for many internationally renowned academic journals. Also, Albert owned more 
than 30 international patents in artificial intelligence, computer vision, and image 
processing. He has published more than 70 papers. He is a recipient of the IBM 
Problem Solving Award based on the use of the EIP tool suite in 2007 and IEEE 
TCAS Darlington award in 2021.

Oscar Ming Kin Law developed his interest in smart robot development in 2014. 
He has successfully integrated deep learning with the self-driving car, smart 
drone, and robotic arm. He is currently working on humanoid development. He 
received a Ph.D. in Electrical and Computer Engineering from the University of 
Toronto, Canada.

Oscar currently works at Kneron for in-memory computing and smart robot 
development. He has worked at ATI Technologies, AMD, TSMC, and Qualcomm 
and led various groups for chip verification, standard cell design, signal integrity, 
power analysis, and Design for Manufacturability (DFM). He has conducted dif-
ferent seminars at the University of California, San Diego, University of Toronto, 
Qualcomm, and TSMC. He has also published over 60 patents in various areas.

 Author Biographies





xiii

With the breakthrough of the Convolutional Neural Network (CNN) for image 
classification in 2012, Deep Learning (DL) has successfully solved many complex 
problems and widely used in our everyday life, automotive, finance, retail, and 
healthcare. In 2016, Artificial Intelligence (AI) exceeded human intelligence that 
Google AlphaGo won the GO world championship through Reinforcement 
Learning (RL). AI revolution gradually changes our world, like a personal 
 computer (1977), Internet (1994), and smartphone (2007). However, most of the 
efforts focus on software development rather than hardware challenges:

 ● Big input data
 ● Deep neural network
 ● Massive parallel processing
 ● Reconfigurable network
 ● Memory bottleneck
 ● Intensive computation
 ● Network pruning
 ● Data sparsity

This book shows how to resolve the hardware problems through various design 
ranging from CPU, GPU, TPU to NPU. Novel hardware can be evolved from those 
designs for further performance and power improvement:

 ● Parallel architecture
 ● Streaming Graph Theory
 ● Convolution optimization
 ● In- memory computation
 ● Near- memory architecture
 ● Network sparsity
 ● 3D neural processing

Preface



Prefacexiv

Organization of the Book
Chapter 1 introduces neural network and discusses neural network develop-

ment history.
Chapter 2 reviews Convolutional Neural Network (CNN) model and describes 

each layer functions and examples.
Chapter  3 lists out several parallel architectures, Intel CPU, Nvidia GPU, 

Google TPU, and Microsoft NPU. It emphasizes hardware/software integration for 
performance improvement. Nvidia Deep Learning Accelerator (NVDLA) open- 
source project is chosen for FPGA hardware implementation.

Chapter  4 introduces a streaming graph for massive parallel computation 
through Blaize GSP and Graphcore IPU. They apply the Depth First Search (DFS) 
for task allocation and Bulk Synchronous Parallel Model (BSP) for parallel 
operations.

Chapter 5 shows how to optimize convolution with the University of California, 
Los Angeles (UCLA) Deep Convolutional Neural Network (DCNN) accelerator 
filter decomposition and Massachusetts Institute of Technology (MIT) Eyeriss 
accelerator Row Stationary dataflow.

Chapter 6 illustrates in- memory computation through Georgia Institute of 
Technologies Neurocube and Stanford Tetris accelerator using Hybrid Memory 
Cube (HMC) as well as University of Bologna Neurostream accelerator using 
Smart Memory Cubes (SMC).

Chapter  7 highlights near- memory architecture through the Institute of 
Computing Technology (ICT), Chinese Academy of Science, DaDianNao super-
computer and University of Toronto Cnvlutin accelerator. It also shows Cnvlutin 
how to avoid ineffectual zero operations.

Chapter 8 chooses Stanford Energy Efficient Inference Engine, Institute of 
Computing Technology (ICT), Chinese Academy of Science Cambricon- X, 
Massachusetts Institute of Technology (MIT) SCNN processor and Microsoft 
SeerNet accelerator to handle network sparsity.

Chapter  9 introduces an innovative 3D neural processing with a network 
bridge to overcome power and thermal challenges. It also solves the memory bot-
tleneck and handles the large neural network processing.

In English edition, several chapters are rewritten with more detailed descrip-
tions. New deep learning hardware architectures are also included. Exercises 
challenge the reader to solve the problems beyond the scope of this book. The 
instructional slides are available upon request.

We shall continue to explore different deep learning hardware architectures (i.e. 
Reinforcement Learning) and work on a in-memory computing architecture with 
new high-speed arithmetic approach. Compared with the Google Brain floating- 
point (BFP16) format, the new approach offers a wider dynamic range, higher 
performance, and less power dissipation. It will be included in a future revision.

Albert Chun Chen Liu
Oscar Ming Kin Law



xv

First, we would like to thank all who have supported the publication of the book. 
We are thankful to Iain Law and Enoch Law for the manuscript preparation and 
project development. We would like to thank Lincoln Lee and Amelia Leung for 
reviewing the content. We also thank Claire Chang, Charlene Jin, and Alex Liao 
for managing the book production and publication. In addition, we are grateful to 
the readers of the Chinese edition for their valuable feedback on improving the 
content of this book. Finally, we would like to thank our families for their support 
throughout the publication of this book.

Albert Chun Chen Liu
Oscar Ming Kin Law

Acknowledgments





xvii

1.1 High- tech revolution 2
1.2 Neural network development timeline 2
1.3 ImageNet challenge 3
1.4 Neural network model 5
1.5 Regression 6
1.6 Clustering 7
1.7 Neural network top 1 accuracy vs. computational complexity 9
1.8 Neural network top 1 accuracy density vs. model efficiency [14] 10
1.9 Neural network memory utilization and computational 

complexity [14] 11
2.1 Deep neural network AlexNet architecture [1] 14
2.2 Deep neural network AlexNet model parameters 15
2.3 Deep neural network AlexNet feature map evolution [3] 15
2.4 Convolution function 16
2.5 Nonlinear activation functions 18
2.6 Pooling functions 19
2.7 Dropout layer 20
2.8 Deep learning hardware issues [1] 21
3.1 Intel Xeon processor ES 2600 family Grantley platform ring 

architecture [3] 27
3.2 Intel Xeon processor scalable family Purley platform mesh 

architecture [3] 28
3.3 Two- socket configuration 28
3.4 Four- socket ring configuration 29
3.5 Four- socket crossbar configuration 29
3.6 Eight- socket configuration 30
3.7 Sub- NUMA cluster domains [3] 31
3.8 Cache hierarchy comparison 31
3.9 Intel multiple sockets parallel processing 32

Table of Figures



Table of Figuresxviii

3.10 Intel multiple socket training performance comparison [4] 32
3.11 Intel AVX- 512 16 bits FMA operations (VPMADDWD + VPADDD) 33
3.12 Intel AVX- 512 with VNNI 16 bits FMA operation (VPDPWSSD) 34
3.13 Intel low- precision convolution 35
3.14 Intel Xenon processor training throughput comparison [2] 38
3.15 Intel Xenon processor inference throughput comparison [2] 39
3.16 NVIDIA turing GPU architecture 40
3.17 NVIDIA GPU shared memory 41
3.18 Tensor core 4 × 4 × 4 matrix operation [9] 42
3.19 Turing tensor core performance [7] 42
3.20 Matrix D thread group indices 43
3.21 Matrix D 4 × 8 elements computation 43
3.22 Different size matrix multiplication 44
3.23 Simultaneous multithreading (SMT) 45
3.24 Multithreading schedule 46
3.25 GPU with HBM2 architecture 46
3.26 Eight GPUs NVLink2 configuration 47
3.27 Four GPUs NVLink2 configuration 48
3.28 Two GPUs NVLink2 configuration 48
3.29 Single GPU NVLink2 configuration 48
3.30 NVDLA core architecture 49
3.31 NVDLA small system model 51
3.32 NVDLA large system model 51
3.33 NVDLA software dataflow 52
3.34 Tensor processing unit architecture 54
3.35 Tensor processing unit floorplan 55
3.36 Multiply–Accumulate (MAC) systolic array 56
3.37 Systolic array matrix multiplication 56
3.38 Cost of different numerical format operation 57
3.39 TPU brain floating- point format 57
3.40 CPU, GPU, and TPU performance comparison [15] 58
3.41 Tensor Processing Unit (TPU) v1 59
3.42 Tensor Processing Unit (TPU) v2 59
3.43 Tensor Processing Unit (TPU) v3 59
3.44 Google TensorFlow subgraph optimization 61
3.45 Microsoft Brainwave configurable cloud architecture 62
3.46 Tour network topology 63
3.47 Microsoft Brainwave design flow 63
3.48 The Catapult fabric shell architecture 64
3.49 The Catapult fabric microarchitecture 65
3.50 Microsoft low- precision quantization [27] 66



Table of Figures xix

3.51 Matrix- vector multiplier overview 66
3.52 Tile engine architecture 67
3.53 Hierarchical decode and dispatch scheme 68
3.54 Sparse matrix- vector multiplier architecture 69
3.55 (a) Sparse Matrix; (b) CSR Format; and (c) CISR Format 70
4.1 Data streaming TCS model 74
4.2 Blaize depth- first scheduling approach 75
4.3 Blaize graph streaming processor architecture 76
4.4 Blaize GSP thread scheduling 76
4.5 Blaize GSP instruction scheduling 77
4.6 Streaming vs. sequential processing comparison 77
4.7 Blaize GSP convolution operation 78
4.8 Intelligence processing unit architecture [8] 80
4.9 Intelligence processing unit mixed- precision multiplication 81
4.10 Intelligence processing unit single- precision multiplication 81
4.11 Intelligence processing unit interconnect architecture [9] 81
4.12 Intelligence processing unit bulk synchronous parallel model 82
4.13 Intelligence processing unit bulk synchronous parallel 

execution trace [9] 82
4.14 Intelligence processing unit bulk synchronous parallel inter- chip 

execution [9] 83
5.1 Deep convolutional neural network hardware architecture 86
5.2 Convolution computation 87
5.3 Filter decomposition with zero padding 88
5.4 Filter decomposition approach 89
5.5 Data streaming architecture with the data flow 91
5.6 DCNN accelerator COL buffer architecture 91
5.7 Data streaming architecture with 1×1 convolution mode 92
5.8 Max pooling architecture 93
5.9 Convolution engine architecture 94
5.10 Accumulation (ACCU) buffer architecture 95
5.11 Neural network model compression 96
5.12 Eyeriss system architecture 97
5.13 2D convolution to 1D multiplication mapping 98
5.14 2D convolution to 1D multiplication – step #1 99
5.15 2D convolution to 1D multiplication – step #2 100
5.16 2D convolution to 1D multiplication – step #3 100
5.17 2D convolution to 1D multiplication – step #4 101
5.18 Output stationary 102
5.19 Output stationary index looping 102
5.20 Weight stationary 103



Table of Figuresxx

5.21 Weight stationary index looping 103
5.22 Input stationary 104
5.23 Input stationary index looping 104
5.24 Eyeriss Row Stationary (RS) dataflow 105
5.25 Filter reuse 106
5.26 Feature map reuse 107
5.27 Partial sum reuse 107
5.28 Eyeriss run- length compression 108
5.29 Eyeriss processing element architecture 109
5.30 Eyeriss global input network 109
5.31 Eyeriss processing element mapping (AlexNet CONV1) 110
5.32 Eyeriss processing element mapping (AlexNet CONV2) 111
5.33 Eyeriss processing element mapping (AlexNet CONV3) 111
5.34 Eyeriss processing element mapping (AlexNet CONV4/CONV5) 112
5.35 Eyeriss processing element operation (AlexNet CONV1) 112
5.36 Eyeriss processing element operation (AlexNet CONV2) 113
5.37 Eyeriss processing element (AlexNet CONV3) 113
5.38 Eyeriss processing element operation (AlexNet CONV4/CONV5) 114
5.39 Eyeriss architecture comparison 114
5.40 Eyeriss v2 system architecture 115
5.41 Network- on- Chip configurations 116
5.42 Mesh network configuration 117
5.43 Eyeriss v2 hierarchical mesh network examples 117
5.44 Eyeriss v2 input activation hierarchical mesh network 118
5.45 Weights hierarchical mesh network 119
5.46 Eyeriss v2 partial sum hierarchical mesh network 120
5.47 Eyeriss v1 neural network model performance [6] 120
5.48 Eyeriss v2 neural network model performance [6] 121
5.49 Compressed sparse column format 121
5.50 Eyeriss v2 PE architecture 122
5.51 Eyeriss v2 row stationary plus dataflow 123
5.52 Eyeriss architecture AlexNet throughput speedup [6] 124
5.53 Eyeriss architecture AlexNet energy efficiency [6] 124
5.54 Eyeriss architecture MobileNet throughput speedup [6] 124
5.55 Eyeriss architecture MobileNet energy efficiency [6] 125
6.1 Neurocube architecture 128
6.2 Neurocube organization 128
6.3 Neurocube 2D mesh network 129
6.4 Memory- centric neural computing flow 130
6.5 Programmable neurosequence generator architecture 131
6.6 Neurocube programmable neurosequence generator 131



Table of Figures xxi

6.7 Tetris system architecture 134
6.8 Tetris neural network engine 134
6.9 In- memory accumulation 135
6.10 Global buffer bypass 136
6.11 NN partitioning scheme comparison 137
6.12 Tetris performance and power comparison [7] 138
6.13 NeuroStream and NeuroCluster architecture 139
6.14 NeuroStream coprocessor architecture 140
6.15 NeuroStream 4D tiling 142
6.16 NeuroStream roofline plot [8] 142
7.1 DaDianNao system architecture 146
7.2 DaDianNao neural functional unit architecture 147
7.3 DaDianNao pipeline configuration 148
7.4 DaDianNao multi- node mapping 148
7.5 DaDianNao timing performance (Training) [1] 149
7.6 DaDianNao timing performance (Inference) [1] 149
7.7 DaDianNao power reduction (Training) [1] 150
7.8 DaDianNao power reduction (Inference) [1] 150
7.9 DaDianNao basic operation 152
7.10 Cnvlutin basic operation 153
7.11 DaDianNao architecture 153
7.12 Cnvlutin architecture 154
7.13 DaDianNao processing order 155
7.14 Cnvlutin processing order 156
7.15 Cnvlutin zero free neuron array format 157
7.16 Cnvlutin dispatch 157
7.17 Cnvlutin timing comparison [4] 158
7.18 Cnvlutin power comparison [4] 158
7.19 Cnvlutin2 ineffectual activation skipping 159
7.20 Cnvlutin2 ineffectual weight skipping 160
8.1 EIE leading nonzero detection network 164
8.2 EIE processing element architecture 165
8.3 Deep compression weight sharing and quantization 166
8.4 Matrix W, vector a and b are interleaved over four processing elements 168
8.5 Matrix W layout in compressed sparse column format 169
8.6 EIE timing performance comparison [1] 170
8.7 EIE energy efficient comparison [1] 170
8.8 Cambricon- X architecture 171
8.9 Cambricon- X processing element architecture 172
8.10 Cambricon- X sparse compression 172
8.11 Cambricon- X buffer controller architecture 173



Table of Figuresxxii

8.12 Cambricon- X index module architecture 173
8.13 Cambricon- X direct indexing architecture 174
8.14 Cambricon- X step indexing architecture 174
8.15 Cambricon- X timing performance comparison [4] 175
8.16 Cambricon- X energy efficiency comparison [4] 175
8.17 SCNN convolution 176
8.18 SCNN convolution nested loop 176
8.19 PT- IS- CP- dense dataflow 178
8.20 SCNN architecture 179
8.21 SCNN dataflow 179
8.22 SCNN weight compression 180
8.23 SCNN timing performance comparison [5] 181
8.24 SCNN energy efficiency comparison [5] 182
8.25 SeerNet architecture 183
8.26 SeerNet Q- ReLU and Q- max- pooling 184
8.27 SeerNet quantization 185
8.28 SeerNet sparsity- mask encoding 187
9.1 2.5D interposer architecture 192
9.2 3D stacked architecture 192
9.3 3D- IC PDN configuration (pyramid shape) 192
9.4 PDN – Conventional PDN Manthan geometry 194
9.5 Novel PDN X topology 194
9.6 3D network bridge 196
9.7 Neural network layer multiple nodes connection 197
9.8 3D network switch 197
9.9 3D network bridge segmentation 197
9.10 Multiple- channel bidirectional high- speed link 198
9.11 Power switch configuration 199
9.12 3D neural processing power gating approach 199
9.13 3D neural processing clock gating approach 200


