Qi Liu · Xiaodong Liu · Bo Chen · Yiming Zhang · Jiansheng Peng *Editors* 

# Proceedings of the 11th International Conference on Computer Engineering and Networks



# **Lecture Notes in Electrical Engineering**

# Volume 808

### Series Editors

Leopoldo Angrisani, Department of Electrical and Information Technologies Engineering, University of Napoli Federico II, Naples, Italy

Marco Arteaga, Departament de Control y Robótica, Universidad Nacional Autónoma de México, Coyoacán,

Bijaya Ketan Panigrahi, Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India Samarjit Chakraborty, Fakultät für Elektrotechnik und Informationstechnik, TU München, Munich, Germany Jiming Chen, Zhejiang University, Hangzhou, Zhejiang, China

Shanben Chen, Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China

Tan Kay Chen, Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore

Rüdiger Dillmann, Humanoids and Intelligent Systems Laboratory, Karlsruhe Institute for Technology, Karlsruhe, Germany

Haibin Duan, Beijing University of Aeronautics and Astronautics, Beijing, China

Gianluigi Ferrari, Università di Parma, Parma, Italy

Manuel Ferre, Centre for Automation and Robotics CAR (UPM-CSIC), Universidad Politécnica de Madrid, Madrid, Spain

Sandra Hirche, Department of Electrical Engineering and Information Science, Technische Universität München, Munich, Germany

Faryar Jabbari, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA

Limin Jia, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Alaa Khamis, German University in Egypt El Tagamoa El Khames, New Cairo City, Egypt

Torsten Kroeger, Stanford University, Stanford, CA, USA

Yong Li, Hunan University, Changsha, Hunan, China

Qilian Liang, Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX, USA Ferran Martín, Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona, Bellaterra,

Barcelona, Spain

Tan Cher Ming, College of Engineering, Nanyang Technological University, Singapore, Singapore

Wolfgang Minker, Institute of Information Technology, University of Ulm, Ulm, Germany

Pradeep Misra, Department of Electrical Engineering, Wright State University, Dayton, OH, USA

Sebastian Möller, Quality and Usability Laboratory, TU Berlin, Berlin, Germany

Subhas Mukhopadhyay, School of Engineering & Advanced Technology, Massey University,

Palmerston North, Manawatu-Wanganui, New Zealand

Cun-Zheng Ning, Electrical Engineering, Arizona State University, Tempe, AZ, USA

Toyoaki Nishida, Graduate School of Informatics, Kyoto University, Kyoto, Japan

Federica Pascucci, Dipartimento di Ingegneria, Università degli Studi "Roma Tre", Rome, Italy

Yong Qin, State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China

Gan Woon Seng, School of Electrical & Electronic Engineering, Nanyang Technological University,

Singapore, Singapore

Joachim Speidel, Institute of Telecommunications, Universität Stuttgart, Stuttgart, Germany

Germano Veiga, Campus da FEUP, INESC Porto, Porto, Portugal

Haitao Wu, Academy of Opto-electronics, Chinese Academy of Sciences, Beijing, China

Walter Zamboni, DIEM - Università degli studi di Salerno, Fisciano, Salerno, Italy

Junjie James Zhang, Charlotte, NC, USA

The book series Lecture Notes in Electrical Engineering (LNEE) publishes the latest developments in Electrical Engineering - quickly, informally and in high quality. While original research reported in proceedings and monographs has traditionally formed the core of LNEE, we also encourage authors to submit books devoted to supporting student education and professional training in the various fields and applications areas of electrical engineering. The series cover classical and emerging topics concerning:

- Communication Engineering, Information Theory and Networks
- Electronics Engineering and Microelectronics
- Signal, Image and Speech Processing
- Wireless and Mobile Communication
- · Circuits and Systems
- Energy Systems, Power Electronics and Electrical Machines
- Electro-optical Engineering
- Instrumentation Engineering
- Avionics Engineering
- Control Systems
- Internet-of-Things and Cybersecurity
- · Biomedical Devices, MEMS and NEMS

For general information about this book series, comments or suggestions, please contact leontina. dicecco@springer.com.

To submit a proposal or request further information, please contact the Publishing Editor in your country:

### China

Jasmine Dou, Editor (jasmine.dou@springer.com)

### India, Japan, Rest of Asia

Swati Meherishi, Editorial Director (Swati.Meherishi@springer.com)

# Southeast Asia, Australia, New Zealand

Ramesh Nath Premnath, Editor (ramesh.premnath@springernature.com)

### USA. Canada:

Michael Luby, Senior Editor (michael.luby@springer.com)

## All other Countries:

Leontina Di Cecco, Senior Editor (leontina.dicecco@springer.com)

\*\* This series is indexed by EI Compendex and Scopus databases. \*\*

More information about this series at http://www.springer.com/series/7818

Qi Liu · Xiaodong Liu · Bo Chen · Yiming Zhang · Jiansheng Peng Editors

Proceedings of the 11th International Conference on Computer Engineering and Networks



Editors
Qi Liu
School of Computer and Software
Nanjing University of Information Science
and Technology
Nanjing, Jiangsu, China

Bo Chen State Key Laboratory of Radar Signal Processing Xidian University Xi'an, Shaanxi, China

Jiansheng Peng Hechi Universtiy Hechi, Guangxi, China Xiaodong Liu School of Computing Edinburgh Napier University Edinburgh, UK

Yiming Zhang School of Civil Engineering and Transportation Hebei University of Technology Tianjin, Tianjin, China

ISSN 1876-1100 ISSN 1876-1119 (electronic) Lecture Notes in Electrical Engineering ISBN 978-981-16-6553-0 ISBN 978-981-16-6554-7 (eBook) https://doi.org/10.1007/978-981-16-6554-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022, corrected publication 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

# **Preface**

This conference proceeding is a collection of the papers accepted by the CENet 2021—the 11th International Conference on Computer Engineering and Networks held on October 21–25, 2021, in Hechi, China.

This proceeding contains the five parts: Part I Internet of Things and Smart Systems (5 papers); Part II Artificial Intelligence and Applications (41 papers); Part III Medical Engineering and Information Systems (23 papers); Part IV Security and Communication Networks (26 papers); and Part V Communication system detection, analysis, and application (87 papers).

Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows, graduate students, and undergraduates who need to build a knowledge base of the most current advances and state of practice in the topics covered by this conference proceedings. This will enable them to produce, maintain, and manage systems with high levels of trustworthiness and complexity.

Thanks to the authors for their prestigious work and dedication as well as the reviewers for ensuring the selection of the high-quality papers; their efforts made the proceedings possible.

# Contents

| IOTS Internet of Things and Smart Systems                                                                                                                                           |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| A Double Incentive Trading Mechanism for IoT and Blockchain Based Electricity Trading in Local Energy Market Bingyang Han, Yanan Zhang, Qinghai Ou, Jigao Song, and Xuanzhong Wang  | 3  |
| A Survey on Task Offloading in Edge Computing for Smart Grid                                                                                                                        | 13 |
| Data Fusion of Power IoT Based on GOWA Operator and D-S Evidence Theory.  Huiping Meng, Jizhao Lu, Fangfang Dang, Yue Liu, Yang Yang, and Binnan Zhao                               | 21 |
| Edge Task Offloading Method for Power Internet of Things Based on Multi-round Combined Auction  Yi Ge, Ying Wang, and Yufan Cheng                                                   | 31 |
| VEC-MOTAG: Vehicular Edge Computing Based Moving Target Defense System                                                                                                              | 42 |
| AIA Artificial Intelligence and Applications                                                                                                                                        |    |
| Short-Term Wind Power Forecasting Based on the Deep Learning Approach Optimized by the Improved T-distributed Stochastic Neighbor Embedding Xing Deng, Feipeng Da, and Haijian Shao | 53 |

viii Contents

| Adaptive Image Steganographic Analysis System Based on Deep Convolutional Neural Network                                                      | 66  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| RETRACTED CHAPTER: An Efficient Channel Attention CNN for Facial Expression Recognition  Xingwei Wang, Ziqin Guo, Haiqiang Duan, and Wei Chen | 75  |
| Handwritten Digit Recognition Application Based on Fully Connected Neural Network Qintian Zhang, Shenao Xu, and Zhiwei Xu                     | 83  |
| Detection System of Truck Blind Area Based on YOLOv3  Yang Zhang, Xia Zhu, Yang Bu, Wenjing Ding, and Yilin Lu                                | 90  |
| <b>Driver Fatigue Detection Algorithm Based on SMO Algorithm</b> Xia Zhu                                                                      | 101 |
| Image Mosaic Technology Based on Harris Corner Feature                                                                                        | 111 |
| Image Semantic Segmentation Based on Joint Normalization Jiexin Zheng, Taiwei Qiu, Lihong Chen, and Shengyang Liang                           | 121 |
| DeepINN: Identifying Influential Nodes Based on Deep Learning Method                                                                          | 128 |
| Lightweight Semantic Segmentation Convolutional Neural Network  Based on SKNet                                                                | 138 |
| The Research on Image Detection and Extraction Method Based on Yin and Yang Discrete Points                                                   | 146 |
| Research on Short-Term Power Load Prediction Based on Deep Learning                                                                           | 153 |
| Image Repair Methods Based on Deep Residual Networks  Hongwei Deng, Ziyu Lin, Jinxia Li, Ming Yao, Taozhi Wang, and Hongkang Luo              | 160 |
| Real-Time Traffic Sign Detection Based on Improved YOLO V3                                                                                    | 167 |
| Design of Ground Station for Fire Fighting Robot                                                                                              | 173 |

Contents ix

| Baby Expression Recognition System Design and Implementation Based on Deep Learning                                  | 182 |
|----------------------------------------------------------------------------------------------------------------------|-----|
| Xuanying Zhu, Yaqi Sun, Qingyun Liu, Jin Xiang, and Mugang Lin                                                       |     |
| Handwriting Imitation with Generative Adversarial Networks                                                           | 189 |
| Epidemic Real-Time Monitor Based on Spark Streaming Real-Time Computing Algorithm                                    | 196 |
| Jiaxin Yang, Yaqi Sun, Xiaoman Lian, and Xiaoyang He                                                                 |     |
| Design and Implementation of Fruit and Vegetable Vending Machine Based on Deep Vision                                | 203 |
| Design and Implementation of License Plate Recognition System                                                        |     |
| Based on Android                                                                                                     | 211 |
| Pseudo-block Diagonally Dominant Matrix Based on Bipartite Non-singular Block Eigenvalues                            | 220 |
| Research on Assistant Application of Artificial Intelligence Robot Coach in University Sports Courses                | 229 |
| Research on the Construction of English Teachers' Classroom Teaching Ability System Based on Artificial Intelligence | 238 |
| Changes and Challenges: Application of Artificial Intelligence Technology in College English Teaching                | 249 |
| A Median Filtering Forensics CNN Approach Based on Local Binary Pattern Tao Zhu, Haiyan Gu, and Zenan Chen           | 258 |
| Application of Cluster Analysis in Bitcoin Deanonymization                                                           | 267 |
| Optimization of Prime Decision Algorithm in RSA Algorithm Zhenghui Chang and Pengfei Gong                            | 277 |
| Corner Point Recognition and Point Cloud Correction Based on Graham-Scan Algorithm                                   | 284 |
|                                                                                                                      |     |

x Contents

| Multiband Based Joint Sparse Representation for Motor Imagery Classification Xu Yin and Ming Meng                                                                                            | 293 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Policy Gradient Reinforcement Learning Method for Backward Motion Control of Tractor-Trailer Mobile Robot                                                                                    | 303 |
| Conditional Distribution Adaptation Toward Zero-Training Motor Imagery Brain-Computer Interfaces Xianghong Zhao, Weiming Cai, and Cong Liu                                                   | 312 |
| Internal Quality Classification of Apples Based on Near Infrared Spectroscopy and Evidence Theory Xue Li, Liyao Ma, Shuhui Bi, and Tao Shen                                                  | 321 |
| Multi-modal Speech Emotion Recognition Based on TCN and Attention                                                                                                                            | 331 |
| Edge Perception Strategy Based on Data Fusion and Recurrent Neural Network  Yize Tang, Xinjia Wang, Junxiao Shi, Yushuai Duan, and Qinghang Zhang                                            | 339 |
| DQN-Based Edge Computing Node Deployment Algorithm in Power Distribution Internet of Things                                                                                                  | 349 |
| Research on Power-Stealing Behaviors of Large Users Based on Naive Bayes and K-means Algorithm Liming Chen, Xuzhu Dong, Baoren Chen, Xiaoping Qiu, Zhengrong Wu, Zhiwen Liu, and Qunying Lei | 358 |
| Interference Control Mechanism Based on Deep Reinforcement Learning in Narrow Bandwidth Wireless Network Environment Hao Li, Jianli Guo, Xu Li, Xiujuan Shi, and Peng Yu                     | 368 |
| RLbRR: A Reliable Routing Algorithm Based on Reinforcement Learning for Self-organizing Network Liyuan Zhang, Lanlan Rui, Yang Yang, Yuejia Dou, and Min Lei                                 | 378 |
| A Computation Task Immigration Mechanism for Internet of Things Based on Deep Reinforcement Learning                                                                                         | 387 |
| Action Recognition Model Based on Feature Interaction                                                                                                                                        | 397 |

Contents xi

| Semantic Segmentation of 3-D SAR Point Clouds by Graph Method Based on PointNet                                                                                           | 408 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Zerui Yu and Kefei Liao                                                                                                                                                   |     |
| MEIS Medical Engineering and Information Systems                                                                                                                          |     |
| Study on Monitoring and Early Warning Technology of Tick-Borne Zoonosis in Western Liaoning Province                                                                      | 421 |
| Research on Energy Cost of Human Body Exercise at Different Running Speed                                                                                                 | 430 |
| Accurate Localization of Fixed Orthodontic Treatment Based on Machine Vision                                                                                              | 437 |
| Speech Stuttering Detection and Removal Using Deep Neural Networks  Shaswat Rajput, Ruban Nersisson, Alex Noel Joseph Raj, A. Mary Mekala, Olga Frolova, and Elena Lyakso | 443 |
| Design of Epidemic Tracing System Based on Blockchain Technology and Domestic Cipher Algorithm                                                                            | 452 |
| Optimization of Gene Translation Using SD Complementary Sequences and Double Codons Dingfa Liang, Zhumian Huang, Liufeng Zheng, and Yuannong Ye                           | 461 |
| Integrated Helicobacter Pylori Genome Database and Its Analysis Liufeng Zheng, Mujuan Guo, Dingfa Liang, and Yuannong Ye                                                  | 471 |
| The Algorithms of Predicting Bacterial Essential Genes and NcRNAs by Machine Learning                                                                                     | 487 |
| Pneumonia Recognition Based on Deep Learning                                                                                                                              | 494 |
| A Hierarchical Machine Learning Frame Work to Classify Breast Tissue for Identification of Cancer  J. Anitha Ruth, Vijayalakshmi G. V. Mahesh, R. Uma, and P. Ramkumar    | 504 |
| An Improved Method for Removing the Artifacts of Electrooculography Huimin Zhao, Chao Chen, Abdelkader Nasreddine Belkacem, Jiaxin Zhang, Lin Lu, and Penghai Li          | 516 |

xii Contents

| R-Vine Copula Mutual Information for Intermuscular Coupling Analysis Yating Wu, Qingshan She, Hongan Wang, Yuliang Ma, Mingxu Sun, and Tao Shen                                                                                       | 526 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| A New Feature Selection Method for Driving Fatigue Detection Using EEG Signals                                                                                                                                                        | 535 |
| A New Strategy for Mental Fatigue Detection Based on Deep Learning and Respiratory Signal.  Jie Wang, Jilong Shi, Yanting Xu, Hongyang Zhong, Gang Li, Jinghong Tian, Wanxiu Xu, Zhao Gao, Yonghua Jiang, Weidong Jiao, and Chao Tang | 543 |
| The Analysis and AI Prospect Based on the Clinical Screening Results of Chronic Diseases  Lingfeng Xiao, Yanli Chen, Yingxin Xing, Lining Mou, Lihua Zhang, Wenjuan Li, Shuangbo Xie, and Mingxu Sun                                  | 553 |
| Spatio-Temporal Evolution of Chinese Pharmaceutical Manufacturing Industry Based on Spatial Measurement Algorithms Fang Xia, Yanyin Cui, Jinping Liu, and Shuo Zhang                                                                  | 563 |
| Evaluating the Spatial Aggregation and Influencing Factors of Chinese Medicine Human Resources in China:  A Spatial Econometric Approach  Fang Xia, Jinping Liu, Yanyin Cui, and Hongjuan Wen                                         | 576 |
| Spatial Distribution of Human Resources Allocation Level of Chinese Traditional Medicine Jinping Liu, Fang Xia, Yanyin Cui, Ziying Xu, and Hongjuan Wen                                                                               | 587 |
| The Improvement Path of E-health Literacy of Undergraduates in Jilin Province Based on the Structural Equation Model                                                                                                                  | 595 |
| Comprehensive Evaluation of Innovation Efficiency of Jilin Province Pharmaceutical Manufacturing Industry Based on Radar Map Feature Vector Algorithm Wanying Li, Yufang He, Yanyin Cui, Zining Zhang, Fang Xia, and Ziying Xu        | 604 |
| Research on Gene Coexpression Network Based on RNA-Seq Data<br>Xiaoqian Wu and Xinghui Song                                                                                                                                           | 616 |

| Information Sharing of Medical Resources for Emergency Rescue Based on Blockchain Zhipeng Gao, Heng Fu, Yijing Lin, Huangqi Li, Ze Chai, Haisheng Guo, Dezheng Wang, Yinghan Zhang, Lanlan Rui, and Yang Yang | 624         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| A Remote Health Diagnosis Method Based on Full Voting XGBoost Algorithm Yuting Li, Yang Yang, Peng Yu, Ying Yao, and Yong Yan                                                                                 | 634         |
| SCN Security and Communication Networks                                                                                                                                                                       |             |
| Threat Intelligence Sharing Model and Profit Distribution Based on Blockchain and Smart Contracts.  Huiyang Shi, Wenjie Wang, Ling Liu, Yue Lin, Peng Liu, Weiqiang Xie, He Wang, and Yuqing Zhang            | 645         |
| Research on Android Malicious URL Detection Based on Machine Learning                                                                                                                                         | 655         |
| Research on Security Trust Model of P2P Network Based on Improved Search Algorithm                                                                                                                            | 662         |
| Design and Implementation of Security Vulnerability Sharing Platform Based on Web Crawler Zhiqiang Wang, Ziyi Wang, Zhuoyue Wang, Zhirui Zhang, and Tao Yang                                                  | 678         |
| Design Principle and Method of Lightweight Block Cipher Diffusion Layer                                                                                                                                       | 688         |
| Research on Application of Data Encryption in Computer Network Security Lanlan Yin, Feng Mo, Qiming Wu, and Yin Long                                                                                          | 69 <b>7</b> |
| Practical Provably Secure Encryption Scheme Based on Hashed Bilinear Pairing Menglin Xiao, Yun Song, and Ningning Wang                                                                                        | 705         |
| A New Image Encryption Strategy Based on Arnold Transformation and Logistic Map                                                                                                                               | 712         |
| Time-Aware Missing Traffic Flow Prediction for Sensors with Privacy-Preservation Lianyong Qi, Fan Wang, Xiaolong Xu, Wanchun Dou, Xuyun Zhang, Mohammad R. Khosravi, and Xiaokang Zhou                        | 721         |

xiv Contents

| A Proposal of Digital Image Steganography and Forensics Based on the Structure of File Storage                                                                             | 731 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Research on MySQL Database Recovery and Forensics Based on Binlog                                                                                                          | 741 |
| An Early Warning Model of Cybercrime Based on User Profile                                                                                                                 | 751 |
| Anonymous Authentication Technology Review in Vehicle Networking Environment Haoyan Zhang, Guangjun Liang, Jiacheng He, and Mingtao Ji                                     | 758 |
| Research on Detection of Chinese Microblog Public Opinion Analysis System Jianfeng Tang and Xiang Xu                                                                       | 766 |
| An Authentication Method Combining Blockchain and Subject-Sensitive Hashing for the Data Sharing of Remote Sensing Image                                                   | 774 |
| Smart Grid Data Security Sharing Mechanism Based on Alliance Blockchain Zhijian Si, Dahai Xiao, Chao Yang, Xiaolei Tian, Zhenjiang Lei, and Xiaoning Ma                    | 784 |
| A Non-intrusive Anomaly Detection Method for Distribution Integration Terminal Dongxiao Jiang, Youqing Xu, Chenggang Li, Jiarui Wang, and Yu Wang                          | 793 |
| Integrated Energy Virtual Network Service Fault Diagnosis Algorithm Under Disaster Event Environment Libo Cui, Chunwei Guan, Jing Zhao, Yanru Wang, Hui Liu, and Wenjie Ma | 803 |
| Research on the Endogenous Security Technology of Polymorphic Smart Network  Huiping Meng, Qinghai Ou, Yi Jing, Jigao Song, Chenbin Qiao, and Jie Zhang                    | 813 |
| FEFuzzer: Hybrid Files Fuzzing Tool Tengfei Tu, Wei Zhang, Lu Rao, Zhao Li, and Jiani Lu                                                                                   | 823 |
| Research on Data Analysis and Electronic Forensics Algorithm of Telecom Fraud Activity                                                                                     | 834 |

Contents xv

| Adversarial Unsupervised Domain Adaptation for Traffic Anomaly  Detection in Convergence Network                                                                                       | 847 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| and Zhipeng Gao                                                                                                                                                                        |     |
| Encrypted Traffic Identification Method Based on Multi-scale Spatiotemporal Feature Fusion Model with Attention Mechanism Yonghua Huo, Hongwu Ge, Libin Jiao, Bowen Gao, and Yang Yang | 857 |
| Power Terminal Data Security and Efficient Management Mechanism Based on Master-Slave Blockchain                                                                                       | 867 |
| Data Security Sharing Mechanism of Power Equipment Based                                                                                                                               | 075 |
| on Federated Learning                                                                                                                                                                  | 875 |
| Design of Log Analysis System Based on Deep Learning for Operation System Anomaly Detection Jiaao Yu, Yanbin Jiao, Qing Guo, Chong Liang, Lanlan Rui, and Xingyu Chen                  | 884 |
| CSDA Communication System Detection, Analysis and Application                                                                                                                          |     |
| Research on Visual Dynamic Tracking Control of SCARA Robot Chunyu Zhu, Zhibin Tian, Yue Zhu, and Zhongcheng Shi                                                                        | 895 |
| Silicon Electro-optic Modulator for Photonic Ring Network On-Chip Based on Dual ITO Layer Directional Coupler Liang Zhixun, Yi Yunfei, Lin Fang, and Fan Yuanyuan                      | 903 |
| CNTK Communication Optimization Based on Parameter Server Xinghui Song and Zhanwen Dai                                                                                                 | 909 |
| Research About the Influence of Digital Social Media on Learning Ability Based on "Segmentation-Outsourcing-Integration" Method Yang Sun                                               | 920 |
| Cross-Network User Matching Based on Association Strength Qiuyan Jiang, Daofu Gong, and Fenlin Liu                                                                                     | 927 |
| Implementation of Error Control Coding in Flight Test Instrument Tenghuan Ding, Ming Liu, and Qingdong Xu                                                                              | 937 |
| Research on Airborne Power Conversion Based on Phase-Shifting Full-Bridge Shaoshi Wu and Xueya Liu                                                                                     | 942 |

xvi Contents

| on Collinear Perspective Model                                                                                       |
|----------------------------------------------------------------------------------------------------------------------|
| A Novel Negative Sequence Current Control System for Electrified Railway                                             |
| Research on Simulation Models of Blue Force Naval Surface Warships Group Anti-submarine Combat                       |
| The Study of Short Term Wind Power Prediction Based on MV-LSTM                                                       |
| Intelligent Fault Section Location for Distribution Network with DG Based on Hierarchical Zoning                     |
| <b>Fault Analysis Based on FMECA Megawatt Wind Turbine</b>                                                           |
| Research and Improvement of Image Transmission Integrated Remote Controller for Tracked Robot in Special Environment |
| Routing Algorithm for Wireless Sensor Network Based on GA-LEACH                                                      |
| An Overview on Developments and Researches of Axial Flux Wind  Machines                                              |
| Research on Communication and Control Method of Towing Cable Inspection Robot in Urban Underground Pipe Network      |
| The Study for the Effects of Distributed Generation on Power System 1036<br>Boxiong Li and Shaoping Huang            |
| Doubly Fed Wind Power Generation System Based on Sliding Mode Variable Structure                                     |
| Research on Temperature Monitoring and Warning System for Power Cable Joints                                         |

Contents xvii

| Design of a High Accuracy Color Block Sorting Robot Based on TCS3200 Color Sensor                                     |
|-----------------------------------------------------------------------------------------------------------------------|
| Design of Warehouse Cooperative Robot System Based on ZigBee 1073 Linlin Liu, Wenyan Li, Ting Xia, and Zhenwu Wan     |
| Design and Development of Intelligent Reading and Writing Posture Reminder                                            |
| <b>Design and Implementation of Intelligent Mechanical Arm</b>                                                        |
| An Improved EZW Algorithm for Image Compression                                                                       |
| Construction of University Comprehensive Budget Management<br>Information System Based on Big Data and Cloud Platform |
| Discussion on the Integrated Design of Electrical Internet of Things  System for Inspection Robots                    |
| <b>Evaluation System of Physical Education Students' Exercise Score</b> 1125<br>Hongtao Pan                           |
| Mathematical Calculation of Inclusion Domain Complex Matrix of Block Eigenvalues Under Two Part                       |
| Research on Educational Informatization Platform Based on Cloud Computing                                             |
| Invulnerability Optimization of Communication Network Based on Analog Attack Strategy                                 |
| Analysis of Open Water Performance of Integrated Motor Propeller 1160<br>Zhiguang Guan, Chao Wang, and Qiuhua Miao    |
| A Grain-Level Microstructure Model for Simulating of Crack  Evolution Based on the CZM Method                         |
| Analysis of Underwater Robot Structure Based on Fluent                                                                |

xviii Contents

| Adaptive Structure Design of Pipe Cleaning Robot for Household  Fresh Air System                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------|
| Zhang Hongli and Guan Zhiguang                                                                                                    |
| Simulation Analysis of Hydraulic Balance Circuit Based on AMESim Software                                                         |
| Design of Rubber Ring Automatic Assembly Device for Drawer Roller                                                                 |
| Design of Remote Operated Vehicle Based on STM32                                                                                  |
| <b>Design of Underwater Robot Control System Based on STM32F407</b> 1216 Zhang Dongsheng, Wu Hao, Guan zhiguang, and Zhao lingyan |
| <b>Design on Small-Scale Remotely Operated Vehicle</b>                                                                            |
| Output Feedback Stabilizing Control Design for a Class of Single-Link Robot Systems                                               |
| Multi-layer Uneven Clustering for Wireless Sensor Networks                                                                        |
| A Cluster Heads Selection Algorithm of Wireless Sensor Network  Based on Cluster Notes Number                                     |
| <b>Design of Aircraft Vibration Measuring System</b>                                                                              |
| Assembly Sequence Planning Algorithm in Collaborative  Environment Based on Web                                                   |
| Design of Airborne Thermocouple Temperature  Measurement System                                                                   |
| Effect of Online Interaction on College Student Satisfaction in Online Courses: A Chained Mediation Model                         |
| Research on Networked Airborne Testing System Architecture Based on DDS                                                           |

Contents xix

| Wireless Sensing Based Gesture Recognition with Edge Computing in Twin Network                            |
|-----------------------------------------------------------------------------------------------------------|
| Xuanzhong Wang, Yanfang Fu, Bingyang Han, Qinghai Ou, and Jigao Song                                      |
| Probe Selection Algorithm of Power Communication Network in Sparse Network Environment                    |
| Design and Implementation of a Charging Station Transaction System  Based on Blockchain                   |
| Power Communication Multi-service Carrying Method Based on Wi-Fi6 Resource Scheduling                     |
| Containerized Scheduling Method Based on Kubernetes and YARN in Big Data Scenarios                        |
| A Distributed Software-Defined Content Delivery Network Architecture Based on Blockchain                  |
| Carrier Network Fault Diagnosis Algorithm Based on Network and Business Relationship                      |
| Carrier Network Fault Diagnosis Algorithm Based on Dynamic Bayes Theory                                   |
| Carrier Network Fault Diagnosis Algorithm Based on Service Characteristics                                |
| Link Packet Loss Rate Inference Algorithm Based on Network Characteristics in Carrier Network             |
| Carrier Network Link Loss Rate Reasoning Algorithm Based on Network Resources and Service Characteristics |

xx Contents

| Inference Algorithm of Link Loss Rate Based on Network Resource Characteristics in Dynamic Carrier Network                           |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Research on Application Method of NB-IOT in Power Consumption Information Collection System                                          |
| Virtual Network Resource Allocation Algorithm Based on Reliability and Distribution Strategy Under Network Slicing                   |
| Virtual Network Resource Allocation Algorithm Based on Active  Detection in Network Slicing                                          |
| A Phase Gradient Metasurface Antenna Working at 5G Band for Electric Power Communication Network                                     |
| Investigation of Directional Wide-Beam Radial Line Slot Antenna<br>for Smart Grid Fault Detector                                     |
| Supply Chain Credit Evaluation Mechanism Integrating Federated Learning and Blockchain                                               |
| Research on Edge-Side Domain Name Caching Algorithm Based on Group Access                                                            |
| <b>Blockchain-Oriented Query Capability Optimization</b>                                                                             |
| Resource-Aware Reliability Assurance of Service Function Chain 1500<br>Shaojun Zhang, Yutong Ji, Yufan Cheng, Ying Wang, and Peng Yu |
| Research on Network Operation Capability and Benefit Evaluation  Method for 5G-Enabled Grid                                          |
| Research on 5G End-to-End Simulation Test Technology for Electric Power Business in Smart Grid                                       |

Contents xxi

| Research on 5G Multipath Concurrent Transmission System and End to End Delay Measurement                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| <b>5G NR Test Technology Progresses and Challenges</b>                                                                                      |
| Design of a Distributed Ledger-Based Reward Architecture for Collaborative Tasks                                                            |
| Unbalanced Data Oversampling Method for Traffic  Multi-classification in Convergence Network                                                |
| Design and Simulation of Resource Demand Forecasting Algorithm in Vehicular Edge Network                                                    |
| Resource Scheduling Algorithms for Burst Network Flow in Edge Computing                                                                     |
| Multi-machines and Multi-tasks Scheduling for UAV Power Inspection in Smart Grid                                                            |
| <b>5G Green Communications: Multigroup Multicasting Transmission with SWIPT in C-RAN</b>                                                    |
| Optimal Computation Resource Allocation Scheme for LEO Satellite Networks                                                                   |
| <b>3D-SAR Imaging with Improved Frequency Diverse Array Antenna</b> 1605<br>Qiaoying Yu, Kefei Liao, Shan Ouyang, Ningbo Xie, and Jifa Shen |
| Primary Node Selection Algorithm of PBFT Based on Anomaly Detection and Reputation Model                                                    |
| OAI-Based CU Implementation and Test with Emulators in 5G CU/DU Split Architecture                                                          |

xxii Contents

| FD-ISAR Translational Compensation Algorithm Based on Observation Subset                                       |
|----------------------------------------------------------------------------------------------------------------|
| How Asymmetrical Dependency Affects the Robustness in Smart Grid                                               |
| A Dynamic Task Assignment Strategy for Emitter Reconnaissance and Positioning through Use of UAV Swarms        |
| Mobile Edge Computing for LEO Satellite: A Computation Offloading Strategy Based Improved Ant Colony Algorithm |
| Retraction Note to: An Efficient Channel Attention CNN for Facial Expression Recognition                       |
| <b>Author Index</b>                                                                                            |

# IOTS Internet of Things and Smart Systems



# A Double Incentive Trading Mechanism for IoT and Blockchain Based Electricity Trading in Local Energy Market

Bingyang Han<sup>(⊠)</sup>, Yanan Zhang, Qinghai Ou, Jigao Song, and Xuanzhong Wang

Beijing Fibrlink Communications Co., Ltd., Beijing 100071, China hanbingyang@sgitg.sgcc.com.cn

**Abstract.** In local energy market, double auction is the most frequently used trading mechanism in blockchain based electricity power trading. In the general form of double auction, the transaction orders and prices only depend on the sellers bid and buyers offer prices, regardless of the energy production efficiency of producers and electricity consumption efficiency of consumers. As a consequence, the competitiveness of renewable energy is undermined and the amount of wasted electricity is increased. With the rapid development of IoT technologies and smart grid, it becomes much easier to obtain information and status of producers and consumers. Therefore, we consider combining IoT technologies with blockchain and proposing a double incentive trading mechanism which considers the external costs of producers and the efficiency of consumers in blockchain based electricity power trading. More specifically, we put forward a metric called priority value (PV) which quantifies the external costs or the efficiency of the consumers to optimize the electricity transactions. The case study shows that our method provides more trading preference for producers and consumers which produce/consume electricity more efficiently and environmentally friendly compared with the traditional trading method. The results also indicate that our method will incent the consumption of renewable energy and stimulate electricity producers to improve the utilization efficiency of fossil fuels, which helps to reduce carbon emissions, and coal consumption, and will also encourage users to improve electricity consumption behavior and save electricity.

**Keywords:** Blockchain  $\cdot$  Decentralization  $\cdot$  Local energy market  $\cdot$  Double auction  $\cdot$  IoT technologies  $\cdot$  Smart meter

# 1 Introduction

Local energy market is comprised of numerous electricity producers and residential consumers in a local community to trade electricity. The general centralized electricity trade mechanism depending on a third party is inappropriate for local electricity market due to risk of information disclosure and additional transaction cost. However, blockchain can assure producers and consumers trade automatically, fairly, securely and cost effectively in local electricity market.

<sup>©</sup> The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

Q. Liu et al. (Eds.): Proceedings of the 11th International Conference on Computer Engineering and Networks, LNEE 808, pp. 3–12, 2022. https://doi.org/10.1007/978-981-16-6554-7\_1

Recently, blockchain has received widespread attention in local energy market, and literatures focus on researches in this area. Esther proposed a blockchain-based decentralized local energy market transaction model and mechanism [1]. A blockchain-based carbon emission trading mechanism is proposed in [2]. Claudia validates the feasibility of blockchain based distributed demand side management [3]. In [4–6] demand side management modes base on blockchain in microgrids have been proposed.

Existing literatures have also introduced the pilot application projects of blockchain in local energy market. The most representative two applications are Brooklyn Microgrid [7] in the United States and Quartierstrom [8] in Switzerland, both of them established blockchain based trading platform successfully.

At present, blockchain-based local energy transactions mainly use double auction [4], which only relies on the price order of producers bid prices and consumers offer prices to make a deal. This method does not take into account consumer's energy consumption efficiency, external cost of electricity generation, and electricity production efficiency. In fact, the efficiency of electricity consumption varies among different consumers. Consumers who are aware of saving energy tend to use electricity in a more efficient way than others, and they should be awarded during transaction procedures. In addition, there are many forms of producers in local energy market, such as thermal power plants, photovoltaic power stations, wind power stations etc., which have different electricity generation efficiency and external costs. For example, thermal power plants emit greenhouse gases, harmful gases, dust and other pollutants when burning fossil fuels to generate electricity, which not only pollutes the environment but also brings harm to people's health. Consequently, all human beings have to spend more efforts to control pollution and treat disease, while such external costs are not included in power production cost.

Nowadays, with the widespread deployment of IoT devices and the rapid development of smart grid, it becomes much easier than before to obtain data of producers and consumers mentioned above. So, why not adopting IoT technologies to blockchain-based local energy transactions, which seemingly will solve the above problems? In this situation, we consider combining IoT technologies with blockchain and proposing a transaction method that considers the priority values of both producers and consumers in blockchain-based decentralized power transactions. By considering consumption efficiency, producers' external costs and production efficiency, our method allows renewable energy generators and high efficiency producers get higher priority to sell electricity, and consumers with high consumption efficiency to buy electricity with higher priority, which directly promote the consumption of clean energy and incent consumers to take measures to save energy.

# 2 Blockchain-Based Local Energy Market

As shown in Fig. 1, local energy market is composed of electricity generators and consumers in a community [1]. Among them, generators use various forms of energy to generate and sell electricity, such as thermal power plants, hydropower plants, photovoltaic power stations, and residents who use photovoltaic roof or wind turbines to generate electricity. Consumers purchase and consume electricity for producing and living, such as residential users, factories, shopping malls, etc. Producers and consumers trade electricity in local energy market as they need.

In a blockchain-based local energy market, all producers/consumers need to deploy a computing device that runs a blockchain virtual environment as a blockchain node. Each node has a complete backup of the blockchain, so they have equal status in the network, forming a P2P (Peer to Peer) network. Transactions are conducted automatically through smart contracts running on the blockchain. All nodes broadcast the results obtained by smart contract to other nodes. The nodes verify and finally reach an agreement about the data through a consensus mechanism, then encapsulate the transaction data into a new block and store it into blockchain. The characteristics of blockchain, i.e., decentralization, temper proof, and traceability, assure transactions to be secure and transparent.

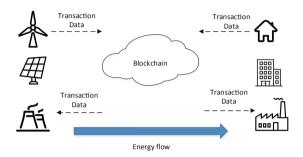



Fig. 1. An illustration of blockchain-based local energy market.

# 3 Methodology

## 3.1 System Architecture

We consider the local energy market is consisted of n generators and m consumers forming a P2P network based on blockchain, and transactions are automatically executed by smart contracts running on blockchain. The network architecture is shown in Fig. 2.

As shown in Fig. 3, each generator and consumer include a computing device, a smart meter, and a set of IoT terminals besides its own power generation or consumption equipment. The computing device is embedded with blockchain virtual machine to become a blockchain node, and smart contracts run on the blockchain virtual machine. The whole transaction process is automatically executed through smart contracts. An interface which send and receive data of smart meters and IoT terminals to blockchain also runs in the computing device. Quotation information is provided by the generators and consumers themselves. Based on the history data of electricity production or consumption information, the smart meter predicts the amount of electricity to be generated or consumed in the next trading period, and sends the data to blockchain through the interface. The IoT terminal collects the amount of generation electricity W kw·h per unit time and the fuel W kg to be consumed per unit time to produce W kw·h electricity, and the information is sent to blockchain through the interface.

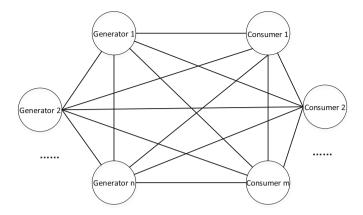



Fig. 2. An illustration of local energy market P2P network based on blockchain.

For a consumer, when a transaction finished, the amount of purchased electricity will be written into the consumer's smart meter, and the remaining amount electricity recorded in the smart meter will add the purchased electricity. When a consumer consumes 1 kw·h electricity, smart meter minus 1 from the remaining amount of electricity. The IoT terminals send operation data of electrical devices to blockchain, such as operating time t, consumption efficiency  $\eta$ , and power of electrical devices P.

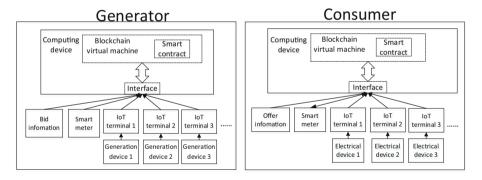



Fig. 3. The structure of a generator and a consumer

# 3.2 Transaction Mechanism

**Transaction Priority Value.** In this paper we propose a new transaction mechanism based on blockchain, taking three factors into account, that is, the electricity consumption efficiency of consumers, the external cost of generators, and the power generation efficiency of generators. We obtain a priority value (PV) of the transaction by combining these three factors with bid and offer prices.

For a generator, its PV equals

$$PV_{\varrho} = p_{\varrho} + C_{\varrho} \times \eta_{\varrho} \tag{1}$$

$$\eta_g = \frac{\sum_i C_i / \sum_i W_i}{\eta_s} \tag{2}$$

Where  $p_g$  is the bid price of the generator,  $C_e$  is the external cost. For renewable energy  $C_e$  equals 0, and for fossil fuel energy, it is provided by statistical academies or associations.  $\eta_g$  is the production efficiency of the generator,  $W_i$  is the amount of electricity generated by the i-th power generation equipment per unit time,  $C_i$  is the fuel consumed by the i-th power generation equipment to generate  $W_i$  per unit time, and  $\eta_s$  is the average fuel consumption for this kind of power plant.

For a consumer, its PV equals

$$PV_c = p_c \times \frac{\eta_c}{\eta_{c \max}} \tag{3}$$

$$\eta_c = \frac{\sum_{i} \eta_i P_i t_i}{\sum_{i} P_i t_i} \tag{4}$$

Among them,  $p_c$  is the consumer's offer price, and  $\eta_c$  is the average electricity consumption efficiency of the consumer.  $\eta_{c \text{ max}}$  is the highest efficiency value among m consumers.  $\eta_i$ ,  $P_i$ , and  $t_i$  are the electricity efficiency, power, and operation time of the i-th electrical equipment of the consumer.

**Transaction Procedure.** Transactions start regularly every fixed time period. Smart meters of generators/consumers predict electricity production/consumption data in the next period and send them to blockchain. Generators and consumers send bid prices and offer prices to blockchain through an interface. The IoT terminals collect the data of generation equipment and electrical devices, i.e., W kw-h electricity to be produced per unit time, C kg fuels to be consumed per unit time to generate W kw-h electricity, electrical devices operating time t, consumption efficiency  $\eta$ , and the power of consumption devices P.

During the transaction process, smart contract automatically calculates the PV, sorts the generators by PV ascendingly and consumers descendingly, and match them in pairs to make transactions according to the sequence order. The deal price is the average of the bid price and offer price of the matched pairs.

The transaction process consists of four phases: Data collection, PV calculation, auction and settlement. Transaction process is shown in Fig. 4.

Data Collection. First, all nodes broadcast the message that transactions will begin and wait for a period of time. During this period, blockchain collects data from generators and consumers, i.e., the amount of electricity to be produced by generators, bid price  $p_g$ , average electricity production W, average fuel consumption C, consumer electricity demand, offer price  $p_c$ , operation time t, electrical efficiency  $\eta$ , devices power P.

*PV Calculation.* Smart contract calculates PV of generators and consumers respectively according to Eqs. (1)–(4).

*Auction.* Based on smart contract, Generators are sorted by PV ascendingly, and consumers are sorted descendingly, and they are matched in order to make a transaction. The transaction price is the average of the quotations of the matching parties.

Settlement. Consumers pay money to generators automatically, the consumer's smart meters record the amount of purchased electricity, and generators produce electricity according to transaction data. Then transaction results are recorded in blockchain via consensus mechanism. Finally, the transaction in this period ends and next transaction will begin.

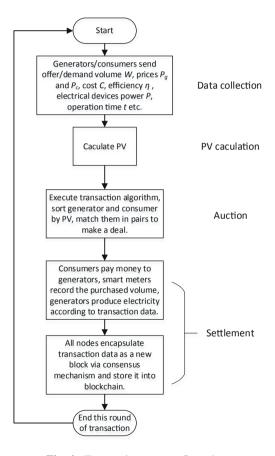



Fig. 4. Transaction process flow chart

The algorithm implementation process of the auction phase is shown in Fig. 5.

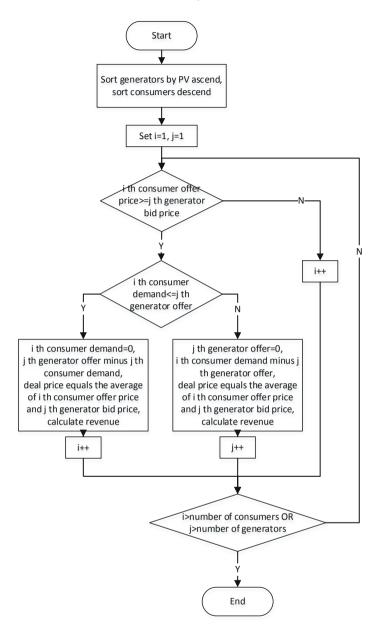



Fig. 5. Process for transaction algorithm