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Foreword

The title of this book, Solved Problems for Transient Electrical Circuits, clearly
indicates that its contents deal with one of the fundamental themes of Electrical
Circuit Theory, as does that of “Three-Phase Circuits” and “Dependent Sources”, in
the context of Electrical Engineering. However, in my opinion, the importance of
transient circuit behaviour surpasses the limits of electrical engineering, since it also
constitutes a fundamental component of electronic engineering, mainly in its digital,
power, and telecommunications areas. The study of the circuits under a dynamic
regime enables the correct interpretation to be attained of certain types of electrical
behaviours that remain elusive, even to engineers, in a first reasoning. Examples
of such behaviours include the emergence of voltages far higher than those of the
generators themselves in circuits and in electrical networks, with destructive effects;
the untimely firing of differential switches in homes; and the sporadic performance
of protection during transformer commissioning.

Transients are also present in digital electronic circuits, since their binary nature
obliges transistors to work as ideal switches at high speeds, thereby generating a
transient period in each switching. The same is true of power electronics, where, for
performance reasons, semiconductors also work as switches by switching thousands
of amps into microsecond fractions. In these cases, the permanent regime of the
circuits becomes a continuous sequence of transient regimes.

Transient operation in electronic devices involves rapid variations in voltage and
current that can cause electromagnetic disturbances in the circuits. Electromagnetic
Compatibility regulatory requirements constitute one of the key points of elec-
tronic design and have emerged as a discipline in telecommunications and industrial
engineering studies.

The importance of the study of the dynamic regime of circuits, both electrical and
electronic, should be borne in mind for future professionals of these subjects.

The study of transients is addressed in this book by first stating the fundamental
theoretical concepts, which are subsequently consolidated with the help of solved
and annotated problems of increasing difficulty. Although, in professional practice,
complex circuits are often solved by simulation and not by mathematical tools such
as differential equations and the Laplace transform, the interpretation and valuation

vii



viii Foreword

of numerical results remains essential, and this is only possible if the necessary
theoretical knowledge is available.

The text is organised into three chapters: First-Order Transients, Second-Order
Transients, and the Laplace Transform. Each chapter begins with the corresponding
theory, supported by application examples, followed by a collection of resolved and
annotated problems. In all three parts, a suitable balance is struck between the theory
necessary to understand the concepts and their application through problem-solving.
The authors, as in all their publications, have managed to provide the reader with a
book containing figures and typography both in harmony and of the highest quality.

Finally, with the help of this book, the reader, as a student, is in possession of the
tools necessary to successfully master the subjects related to electrical circuits, and,
as a professional, can preserve this volume in order to extract the fundamentals of
its content.

Sevilla, Spain
June 2021

Vicente Simón Sempere



Preface

The text is intended for the first course on electric circuits. The focus is on the
transient response of linear circuits. The analysis of this type of circuits is generally
carried out in the second year of electrical engineering studies and related fields.

The book has been divided into three large chapters that progressively address the
study of the transient response of first-order and second-order circuits and, finally,
circuits of any order through the use of the Laplace transform.

Each block begins with a detailed study of the theoretical knowledge and the reso-
lution techniques necessary to obtain the transient response of the different types of
circuits. This is followed by a significant number of solved problems. The resolution
of each exercise has been carried out in detail and with the support of more than 300
figures. For a better understanding of the transitory phenomenon, the evolution of the
voltages and currents of the elements during the transient period has been graphically
represented in the cases considered relevant. The exercises have been ordered from
the most elementary to the most complex, which allows progressive learning.

In this book, only circuits with linear elements are considered where the origin of
the transient is caused by the opening or closing of switches. This model responds
to maneuvering operations in high and low voltage electrical networks. It is also the
model that is analysed when considering the main defects in this type of installations,
such as short circuits and insulation defects. Finally, the same model is obtained
in power electronics topics, where electronic devices (BJT, MosFet,…) have the
behaviour of switches that switch several times per second.

Although several circuits have been included that contain controlled sources,
which may lead to instability, the parameters have been selected to obtained stable
circuits in all cases. The analysis of unstable circuits is carried out initially with the
same techniques, but it leads to non-real results if the non-linearity of the elements
is not considered.

In the problems, voltages and currents of the elements have been the variables
under study. Power and energy can be easily obtained from them. However, it has

ix
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been preferred not to include them in the calculations to obtain a more fluent reading
of the text.

Sevilla, Spain
June 2021

Alfonso Bachiller Soler
Ramón Cano González

Miguel Angel González Cagigal
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Chapter 1
First Order Transients

Abstract This chapter covers the first order circuits, beginning with a theoretical
introductionof the concepts required to correctly address eachof the subsequent prob-
lems. A total of 31 fully solved problems with explanatory comments are included.

1.1 Introduction

In circuits with resistors as sole passive elements, voltages and currents respond
immediately to the changes in the sources of excitation. In such circuits, known as
static circuits, the voltage and current values of the involved elements are given by
a set of algebraic equations, meaning that each instant of time can be independently
analyzed. This is not the case in circuits containing energy storage elements, i.e.
inductors or capacitors, where the voltage is related to the current through a differ-
ential equation, resulting in a dynamic response of the circuit. In this type of circuits
(dynamic circuits), information on the past is necessary to determine the response at
any time.

In dynamic circuits excitedwith dc or ac sources, after a period of time has elapsed
(transient regime) the so-called steady-state regime is reached, where the response is
stabilized at a constant value (dc excitation) or a periodic wave (ac excitation). As an
illustrative example, the response of an RC circuit is represented in Figs. 1.1 and 1.2,
including respectively a dc voltage source and an ac voltage source. It can be seen
how, after the transient period, the steady-state regime is reached in both cases.

In general terms, the transition from a steady-state regime to a different one
involves a transient period. The origin of these transient processes can be related
to various actions, including opening and closing of switches, short circuits or any
other variation in the circuit topology or parameters.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Bachiller Soler et al., Solved Problems for Transient Electrical Circuits,
Lecture Notes in Electrical Engineering 809,
https://doi.org/10.1007/978-3-030-88144-3_1
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2 1 First Order Transients

Fig. 1.1 Connection of an RC circuit to a dc source

Fig. 1.2 Connection of an RC circuit to an ac source

1.2 First Order Circuits

First order circuits are defined as those where any voltage or current can be obtained
using a first order differential equation. Some examples of first order circuits are:

• Circuits with a single electrical energy storage element: inductor or capacitor,
Fig. 1.3.

Fig. 1.3 First order circuits with one energy storage element

• Circuits including multiple energy storage elements of the same type, which can
be combined into a single equivalent element, Figs. 1.4 and 1.5.

1.2.1 RC Circuits

First order circuits will be considered with one or more capacitors that can be com-
bined into a single equivalent one. The rest of the circuit, composed by electrical
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Fig. 1.4 Circuit with two capacitors connected in series and in parallel

Fig. 1.5 Circuit with two inductors connected in series and in parallel

sources and resistors, can be replaced by its Thévenin equivalent as shown in Fig. 1.6.
This way, the study of the RC series circuit excited by a voltage source encompasses
all the first order circuits whose storage element is a capacitor.

Fig. 1.6 RC circuit and its Thévenin equivalent

The differential equations that defines the behavior of the variables involved in
the circuit represented in Fig. 1.6 will be subsequently obtained.

Differential equation of capacitor voltage

Applying Kirchhoff’s voltage law:

uC(t) + uR(t) = ug(t) (1.1)

The resistor voltage can be substituted using Ohm’s law:

uC(t) + R · i(t) = ug(t) (1.2)

The capacitor defining equation is now considered
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i(t) = C
duC (t)

dt
(1.3)

and after rearranging terms, the final equation yields:

duC(t)

dt
+ 1

RC
uC(t) = ug(t)

RC
(1.4)

Differential equation of current

Differentiating Eq. (1.2) gives:

duC(t)

dt
+ R

di(t)

dt
= dug(t)

dt
(1.5)

The defining equation of the capacitor (1.3) is considered again,

i(t)

C
+ R

di(t)

dt
= dug(t)

dt
(1.6)

and rearranging terms:
di(t)

dt
+ 1

RC
i(t) = 1

R

dug(t)

dt
(1.7)

Differential equation of the resistor voltage

If Eq. (1.1) is differentiated, the following expression is obtained:

duC(t)

dt
+ duR(t)

dt
= dug(t)

dt
(1.8)

and the capacitor defining equation (1.3) is used, yielding:

i(t)

C
+ duR(t)

dt
= dug(t)

dt
(1.9)

Finally, applying Ohm’s law on the resistor and rearranging terms:

duR(t)

dt
+ 1

RC
uR(t) = dug(t)

dt
(1.10)

It can be verified from the differential equations obtained for each variable, (1.4),
(1.7) and (1.10), that all of them have the same coefficients and differ only in the
independent term.
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1.2.2 RL Circuits

First order circuits with one inductor or a group of them that can be combined into a
single equivalent are now considered. The rest of the circuit is exclusively made up
of electrical sources and resistors, without energy storage elements, so that it can be
replaced by its Norton equivalent, which consists of a current source in parallel with
a resistor, as shown in Fig. 1.7.

Fig. 1.7 RL circuit and its Norton equivalent

The differential equations that defines the behavior of the variables involved in
the parallel RL circuit represented in Fig. 1.7 will be subsequently obtained.

Inductor current equation

Applying Kirchhoff’s current law:

iL(t) + iR(t) = ig(t) (1.11)

The resistor current is substituted using Ohm’s law

iL(t) + u(t)

R
= ig(t) (1.12)

and considering the inductor defining equation

u(t) = L
diL(t)

dt
(1.13)

the final expression yields, after rearranging terms:

diL(t)

dt
+ R

L
iL(t) = R

L
ig(t) (1.14)

Circuit voltage equation

Differentiating Eq. (1.12) gives:

diL(t)

dt
+ 1

R

du(t)

dt
= dig(t)

dt
(1.15)
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Using the inductor defining equation (1.13)

u(t)

L
+ 1

R

du(t)

dt
= dig(t)

dt
(1.16)

and rearranging terms:
du(t)

dt
+ R

L
u(t) = R

dig(t)

dt
(1.17)

Equation of resistor current

Equation (1.11) is differentiated

diL(t)

dt
+ diR(t)

dt
= dig(t)

dt
(1.18)

and the inductor defining equation (1.13) is used as follows:

u(t)

L
+ diR(t)

dt
= dig(t)

dt
(1.19)

Finally, Ohm’s law is applied on the resistor and the terms are rearranged, result-
ing:

diR(t)

dt
+ R

L
iR(t) = dig(t)

dt
(1.20)

It can be noticed that the coefficients of the previous differential equations, (1.14),
(1.17) and (1.20), are the same in all cases, only differing in the independent terms.
This fact allows the derivation of a generic equation for all the variables.

1.2.3 Generic Differential Equation of a First Order Circuit

Figure1.8 shows the differential equations of all the variables involved in the RC
and RL circuits, as obtained in the previous sections.

According to Fig. 1.8, it is observed how all equations can be expressed in the
following generic form:

d f (t)

dt
+ 1

τ
f (t) = g(t) (1.21)

where f (t) denotes the considered voltage or current, g(t) is a function related to
the excitation source of the circuit and τ is known as the circuit time constant, whose
SI unit is the second, and depends on the parameter values for the passive elements
of the circuit. This constant is characteristic of each circuit and its value is given by:
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Fig. 1.8 Generic differential equations of RC and RL circuits

• RC circuit: τ=R · C
• RL circuit: τ=L/R

It should be remarked that, if there are several capacitors in the first order circuit
which can be grouped into one, the value of C represents the equivalent capacity.
Similarly, the value of L represents the coefficient of self-induction of the equivalent
inductor. Finally, R is the equivalent resistance of the passive circuit seen from the
L or C terminals. Therefore, the most general expressions for the constant τ are:

• RC circuit: τ=Req · Ceq

• RL circuit: τ=Leq/Req

1.3 Transient Response of First Order Circuits

As explained before, all the voltages and currents of the first order circuits are given
by the following constant-coefficient linear differential equation:

d f (t)

dt
+ 1

τ
f (t) = g(t) (1.22)

The solution of this equation is used to obtain the transient response of the different
variables of the circuit under study. Mathematically, the general solution of this type
of equations can be expressed as the sumof the solution of the homogeneous equation
plus a particular solution of the complete equation. In electrical circuits, the first term
is known as the natural response of the circuit, while the particular solution is known
as the forced or steady-state response. Therefore, the solution of the differential
equation (1.22) can be expressed as
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f (t) = fn(t) + f p(t) (1.23)

where fn(t) is the natural response of the circuit and f p(t) represents the forced or
steady-state response. The derivation of each term is described below.

1.3.1 Natural Response

The natural response corresponds, mathematically, to the solution of the homoge-
neous differential equation, that is, the independent term equal to zero

d f (t)

dt
+ 1

τ
f (t) = 0 (1.24)

whose solution for t ≥ 0 is:
fn(t) = K · e−t/τ (1.25)

It should be remarked that, as in the homogeneous Eq. (1.24) the term g(t) (related
to the excitation source) does not appear, the solution of this equation corresponds
to the circuit response if the excitation sources were canceled, hence it is called the
natural response of the circuit.

The natural response of a first order circuit has an exponential nature, being the
rate of decrease determined by the value of the time constant, τ . It can be observed in
Fig. 1.9 that, after a time period equal to the value of the time constant has elapsed,
the natural response has decreased from its initial value, K , to 0,368K , that is, it
has been reduced a 63,2%. Although mathematically the natural response never
disappears, in practice it can be considered that, after a time period equal to 5τ , the
natural response is negligible, since its value has been reduced to only 0,007K .

Fig. 1.9 Evolution of the natural response

Finally, it can be noticed from Fig. 1.10 that a higher value of the time constant
corresponds to a longer duration of the natural response, as expected.
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Fig. 1.10 Influence of the time constant on the natural response

1.3.2 Forced or Steady State Response

The forced response corresponds mathematically to a particular solution of the com-
plete differential equation. The nature of this particular solution is usually the same as
that of the independent term g(t), that is, the same type of response as the excitation
of the circuit. Since the natural response vanishes, the forced response is the only
one remaining in time, hence in electrical circuits it is also known as the steady-state
response.

Several methods can be used to obtain a particular solution of a constant-
coefficient differential equation, such as parameter variation or undetermined coef-
ficients, among others. However, in the particular case of electrical circuits under
dc or ac supply, specific techniques have been developed to obtain the permanent
regime. Therefore, the forced response will be obtained using these techniques.

1.3.3 Complete Response

Once the natural and the steady-state responses are known, the complete response
of the circuit under study will be:

f (t) = fn(t) + f p(t) = K · e−t/τ + f p(t) (1.26)

When the steady-state response, f p(t), and the time constant of the circuit, τ ,
have been obtained, the last step is the calculation of the constant K , in order to fully
characterize the response of the considered variable.

The value of this constant is obtained from the initial value of the variable ( f (0+)).
Thus, in t = 0+ it must be verified:

f (0+) = K + f p(0
+) (1.27)
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from where it can be derived

K = f (0+) − f p(0
+) (1.28)

yielding the final expression:

f (t) = f p(t) + [
f (0+) − f p(0

+)
] · e−t/τ (1.29)

This expression allows the calculation of the voltage or current of any element in
a first order circuit, where:

• f (t) is the considered voltage or current.
• f p(t) is the steady-state response of this variable.
• f p(0+) is the value in t = 0+ of the steady-state response.
• τ is the time constant of the circuit.
• f (0+) is the initial value of the mentioned voltage or current.

The calculation of f (0+) in first order circuitswill be described in the next section.

1.3.4 Initial Conditions

The transition from a steady-state regime to a different one is generally determined
by a transient period involving a redistribution of the energy stored in inductors and
capacitors. Additionally, a variation in the energy state of the electrical sources is also
produced. Since an instantaneous energy redistribution is not possible, the following
points must be verified in absence of impulse responses:

• The capacitor voltage cannot suffer discontinuities:

uC(0+) = uC(0−)

• The inductor current cannot suffer discontinuities:

iL(0
+) = iL(0

−)

With these premises, the initial value of any voltage or current, f (0+), can be
calculated by solving a circuit where:

1. The excitation sources, eg(t) and ig(t), are replaced by two sources of constant
value:

Eg = eg(0
+) ; Ig = ig(0

+)

2. In the case of an RC circuit, the capacitor is replaced by a constant voltage source,
whose value is given by:
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uC(0+) = uC(0−) = U0

3. InRL circuits, the corresponding inductor is replaced by a constant current source,
whose value is given by:

iL(0
+) = iL(0

−) = I0

Figures1.11 and 1.12 summarize the procedure for first order circuits with a
capacitor and an inductor, respectively.

Fig. 1.11 Derivation of the circuit at t = 0+. Circuit with capacitor

Fig. 1.12 Derivation of the circuit at t = 0+. Circuit with inductor

1.4 Generalization of the Transient Response

In the previous sections it was assumed that the transient period under analysis begins
at instant t = 0. However, the obtained results can be generalized for any time t = t0.
This fact will be applied to the analysis of several concatenated transient periods. For
time-invariant systems, if the transient period started at t = t0, the complete response
would be given by the following expression:

f (t) = f p(t) + [
f (t+0 ) − f p(t

+
0 )

]
e−(t−t0)/τ (1.30)
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As mentioned before, for the calculation of the initial conditions, and in the
absence of impulse responses, it must be verified that:

• The voltage capacitor cannot suffer discontinuities:

uC(t+0 ) = uC(t−0 ) (1.31)

• The current inductor cannot suffer discontinuities:

iL(t
+
0 ) = iL(t

−
0 ) (1.32)

With these premises, the initial value of any voltage or current, f (t+0 ), can be
calculated by solving a circuit where:

1. The excitation sources, eg(t) and ig(t), are replaced by two sources of constant
value:

Eg = eg(t
+
0 ) ; Ig = ig(t

+
0 )

2. In the case of an RC circuit, the capacitor is replaced by a constant voltage source,
whose value is given by:

uC(t+0 ) = uC(t−0 ) = Ut0

3. InRL circuits, the corresponding inductor is replaced by a constant current source,
whose value is given by:

iL(t
+
0 ) = iL(t

−
0 ) = It0

Figures1.13 and 1.14 summarize the described procedure to obtain the circuit at
t = t+0 , from which the initial value of any variable can be obtained at the considered
instant.

Fig. 1.13 Derivation of the circuit at t = t+0 . Circuit with capacitor


