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Free Vibration Study of Laminated
Composite Shell with Varying Cut-Outs

Soumen Roy, Sandipan Nath Thakur, C. Ajeesh, and Chaitali Ray

1 Introduction

The fiber-reinforced layered composite shell structures are very common in recent
engineering applications, e.g., spacecraft, aircraft, submarine, wind turbine blade,
defence industry, etc., due to their specific stiffness, lightweight, and other advanta-
geous properties. Shell structures have advantages over plates due to their curvature
effect in carrying loads and moments. Cut-outs are the integral parts of most lami-
nated shell structures, although the provisions of cut-outs are unavoidable in most
of the engineering structures. The presence of a cut-out makes a structure weak due
to the occurrence of stress concentration near the opening. These cut-out structures
often initiate failure at comparatively lower stress and sometimes due to resonance.
Therefore, the effect of cut-out on the dynamic behavior of laminated shells is to be
dealt with carefully.

AnHSDTwas developed byReddy and Liu [1] for the bending and vibration anal-
ysis of laminated shells with simply supported boundary conditions. Chakraborty
et al. [2] presented the vibration behavior of laminated shells with cut-outs using
the 8-node isoparametric finite element formulations. Hota and Chakravorty [3]
analyzed free vibration characteristics of a conoidal stiffened shell structure with
cut-outs using eight-noded curved shell elements. Nanda and Bandyopadhyay [4]
presented the nonlinear analysis of undamped vibration of laminated shells with cut-
outs using finite element model considering an 8-noded isoparametric element. The
solution of semi-analytical analysis for free vibration behavior of laminated shells
with cut-out for different geometric configurations was presented by Poore et al.

S. Roy · S. N. Thakur
University Institute of Technology, The University of Burdwan, Burdwan, West Bengal, India

C. Ajeesh · C. Ray (B)
Indian Institute of Engineering Science and Technology, Shibpur, West Bengal, India
e-mail: chaitali@civil.iiests.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
D. K. Maiti et al. (eds.), Recent Advances in Computational and Experimental
Mechanics, Vol II, Lecture Notes in Mechanical Engineering,
https://doi.org/10.1007/978-981-16-6490-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6490-8_1&domain=pdf
mailto:chaitali@civil.iiests.ac.in
https://doi.org/10.1007/978-981-16-6490-8_1


2 S. Roy et al.

[5]. Malekzadeh et al. [6] performed free vibration of homogenous and functionally
graded (FG) cylindrical shell panels with cut-out with thermal effect using the 3-D
Chebyshev–Ritz method. Hu et al. [7] studied the vibration characteristics of lami-
nated composite shell panels with circular cut-outs at the center and subjected them
to axial compressive force using ABAQUS software. Biswas and Ray [8] inves-
tigated the free vibration behavior of glass fiber reinforced laminates and hybrid
laminates experimentally and numerically. Mandal et al. [9] carried out fundamental
natural frequencies of laminated skew plates with cut-outs and without cut-outs.
Using third-order shear deformation theory, Chaubey and Kumar [10] studied free
vibration behavior of spherical, cylindrical, saddle, elliptical and hyper shells with
cut-outs. Mandal et al. [11] also investigated the dynamic behavior of laminated
shells with and without cut-outs numerically and experimentally.

In the present work, vibration analysis of six-layered glass fiber laminated
composite shell (GFRP) with cut-out has been presented using ANSYS software.
The effectiveness of the present model has been verified by validating the solutions
with experimental results obtained from Mandal et al. [11] and theoretical results
obtained from Chakravorty et al. [2]. Also, a convergence study is carried out to
decide the actual mesh size for obtaining a consistent value of natural frequency by
comparing with the result taken from Reddy and Liu [1]. Several new results have
been obtained using HSDT to check the effect of curvature, thickness ratio, lamina-
tion scheme, and boundary condition on the natural frequency with varying cut-out
percentages of the shell.

2 Finite Element Formulation

A laminated composite cylindrical shellwith cut-outs has beenmodeled and analyzed
using ANSYS software. Triangular element SHELL281 with 6 DOFs per node (u,
v, w, θ x, θ y, θ z) is used for the present formulation. Modeling is done by specifying
the thickness, material, orientation with a number of integration points through the
thickness of the laminates.

Element stiffness matrix [Ke] and the element mass matrix [Me] for an element
is expressed as

[Ke] =
¨

[B]T [D][B]dsdr =
∫ 1

−1

∫ 1

−1
[B]T [D][B]|J|dξdη

[Me] =
¨

[N]T [ρ][N]dsdr =
∫ 1

−1

∫ 1

−1
[N]T

[
I
]
[N]|J|dξdη

where [ρ] is the inertia matrix and |J| is the determinate of the Jacobian matrix.
Applying the equation of motion for undamped structure, the natural frequencies

can be calculated, which is,
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ω2[M]{φ} = [K]{φ}

where {φ} represent the mode shapes and ω is the natural frequency and the non-
dimensional form of the frequency can be expressed as

ω =
(

ωa2

h

)√
ρ

E2

The free vibration equation is analyzed and modeled using ANSYS 16.0 software
package.

3 Results and Discussions

Aconvergence study is performed to decide the actual mesh size (n× n) for obtaining
a consistent value of the natural frequency of laminated composite shell using
ANSYS 16.0 software. A simply supported anti-symmetric cross-ply (0°/90°) lami-
nated composite shell is chosen for this study. The radius to lateral dimension ratio
(R/a) is considered as 5 and thickness to lateral dimension ratio (h/a) is taken as 0.1.
The results in terms of the non-dimensional fundamental frequency are presented
in Table 1 and it may be observed from Table 1 that the numerical value of non-
dimensional fundamental frequency converges approximately at n = 16. Thus, a
mesh division of 16 × 16 is considered for the subsequent comparison studies and
parametric studies of laminated composite shells.

Example 1. Free vibration study of laminated shells with cut-outs is carried out
in the present study. Six layers of bidirectional symmetric cross-ply glass fabrics
of average thickness 0.5 mm each layer is used for the laminates. The composite
laminated cylindrical shells of projected plan area 250 × 250 mm and radius of
curvature 145 mm have been analyzed. Two straight edges of the shell model are
simply supported (only θy is free) and the other two curved edges are kept free. The
fundamental natural frequencies with varying cut-out sizes are determined using the
SHELL281 element available in ANSYS. The numerical results of modal analysis
obtained from the ANSYS software package have been compared with the exper-
imental results in Table 2 and the comparison shows good agreement with each
other.

Table 1 Convergence study
of non-dimensional frequency
parameter (ω) of simply
supported cross ply (0°/90°)
cylindrical shells (R/a = 5,
h/a = 0.1)

Mesh size Present formulation Reddy and Liu [1]

12 × 12 8.88 8.9

14 × 14 8.88 8.9

16 × 16 8.89 8.9

18 × 18 8.89 8.9

20 × 20 8.89 8.9
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Table 2 Fundamental natural frequencies of a glass fiber laminated shell having straight edges
simply supported (only θy is free) and curved edges free with varying cut-out sizes

Cut-out (%)
(X-direction)

Cut-out (%)
(Y-direction)

Fundamental natural
frequency

Deviation percentage
(ANSYS-experiment)/experiment

Experimental
frequency [11]
(Hz)

Frequency
using
ANSYS
(Hz)

0.2a 0.2b 271.58 280.98 3.46

0.4a 0.4b 255.34 267.14 4.62

0.2a 0.4b 272.29 279.54 2.66

Table 3 Non-dimensional fundamental frequency ωa2/h
√

(ρ/E2) for a cross-ply (0°/90°)4
laminated cylindrical shell (h/Rx = 1/300, Rx = R, a = b, a/h = 100)

Cut-out (%)
(Y-direction)

Cut-out (%)
(Y-direction)

Fundamental natural frequency Deviation percentage
(ANSYS-theory)/theory
(%)

Frequency using
ANSYS (Hz)

Chakravorty
et al. [2]

0.1a 0.1b 27.138 27.042 0.355

0.3a 0.3b 28.161 27.913 0.888

0.5a 0.5b 29.858 29.472 1.309

Example 2. A laminated cylindrical shell having a thickness ratio, a/h = 100,
with a cut-out at the center with simply supported boundary condition has been
investigated here. The material properties are taken as E1 = 25E2, G12 = G13 =
0.5E2,G23 = 0.2E2, γ 12 = 0.25 (Chakravorty et al. [2]). The vibration results in terms
of fundamental frequencies calculated using the present model are shown in Table 3.
The results show good agreement with those results published by Chakravorty et al.
[2]. Furthermore, we can observe that the fundamental frequency increases with the
increase of cut-out size due to the reduction of mass.

4 Parametric Study

Several parametric studies have been presented in this section to check the effect
of curvature, thickness ratio, lamination scheme, and boundary condition on non-
dimensional frequency with varying cut-out percentage of the shell. The material
properties used for the entire parametric study presented in Tables 4, 5, 6 and 7
are as follows: E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, γ 12 = 0.25 and the
cut-out percentage varies from 0 to 0.6. The effects of curvature, thickness ratio,
and boundary condition have been studied for the symmetric lamination scheme
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Table 4 Effect of curvature on the non-dimensional frequency of cross-ply symmetric lamination
schemes (0°/90°)2 s and (a/b = 1 and a/h = 100) shells with varying cut-out percentages

R/a Cut-out ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

0.5 0 10.044 21.312 22.067 36.36 40.812

0.2 10.018 21.5 22.09 36.088 39.657

0.4 9.9147 21.963 23.191 31.034 38.633

0.6 10.222 16.542 20.213 21.949 38.223

1 0 30.27 53.564 54.794 56.517 84.129

0.2 29.546 49.237 55.767 56.522 82.501

0.4 28.024 35.168 48.349 56.613 61.356

0.6 32.567 33.35 48.564 53.629 55.385

1.5 0 32.7 45.342 56.927 58.764 72.227

0.2 31.706 43.152 57.94 58.666 70.707

0.4 29.953 35.792 47.628 57.649 58.966

0.6 34.954 35.918 52.322 55.936 57.399

2 0 33.42 41.83 55.293 57.075 62.605

0.2 32.469 40.395 56.526 57.167 60.851

0.4 30.963 36.059 47.178 52.483 57.559

0.6 35.63 36.7 53.352 56.273 56.51

(0°/90°)2 s. Figure 1 shows a schematic view of the shell with a cut-out at the center
and coordinate system (Fig. 2, 3, 4 and 5). Figures 6, 7, 8, 9 and 10 show the mode
shapes with square and rectangular cut-outs.

4.1 Curvature Effect

The curvature effect on the fundamental frequencies of cylindrical laminated shells is
studied with simply supported boundary conditions (straight edges simply supported
and curved edges are free) with (a/b = 1, a/h = 100) and presented in Table 4 as
well as Fig. 2. The value of R/a is varied from 0.5 to 2. For cylindrical laminated
shells with R/a= 1, 1.5, and 2, the value of non-dimensional frequency initially starts
decreasing with an increase in the cut-out percentage and gets reversed after reaching
the cut-out percent of 0.4. The cylindrical shells with R/a = 0.5 have no significant
change in the non-dimensional frequency as the cut-out percent increases. It can be
observed that for the same cut-out percentage, the non-dimensional frequency value
increases with an increase value of R/a. The increase is generally due to the reduction
of curvature of the shell which will result in the increase of vibration of the shell.
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Table 5 Effect of a/h on the non-dimensional natural frequency of cross-ply symmetric lamination
schemes (0°/90°)2 s and (a/b = 1, and R/a = 0.5) shells with varying cut-out percentage

a/h ratio Cut-out ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

a/h = 5 0 74.184 106.2 133.44 134.32 182.73

0.2 74.032 109 131.9 136.38 183.63

0.4 75.363 112.74 113.53 138.51 180.47

0.6 82.974 93.407 115.19 125.21 140.22

a/h = 10 0 61.777 96.704 115.26 121.33 169.66

0.2 61.461 98.597 116.07 119.63 171.59

0.4 61.393 99.16 102.28 119.7 165.11

0.6 66.221 78.021 103.93 105.24 126.46

a/h = 25 0 35.39 66.971 73.028 93.501 128.09

0.2 35.136 67.608 72.973 92.016 123.33

0.4 34.395 69.268 70.701 75.876 119.32

0.6 36.015 47.346 64.017 69.621 91.272

a/h = 50 0 19.4 39.86 41.938 64.284 76.41

0.2 19.301 40.17 41.876 63.533 73.804

0.4 18.933 41.049 43.774 49.366 71.679

0.6 19.581 28.501 37.183 40.919 63.532

a/h = 100 0 10.044 21.312 22.067 36.36 40.812

0.2 10.018 21.5 22.09 36.088 39.657

0.4 9.9147 21.963 23.191 31.034 38.633

0.6 10.222 16.542 20.213 21.949 38.223

4.2 Effect of Thickness Ratio

The effect of the a/h ratio on natural frequency is observed for the cylindrical shell
(a/b = 1, R/a = 0.5) and shown in Table 5 as well as in Fig. 3. The support condition
used for the study is straight edges simply supported and curved edges are free. The
results are obtained with different a/h ratios and different cut-out percentages. The
a/h ratio varies from 5 to 100, and it can be observed that the value of the non-
dimensional frequency increases with a decrease in a/h value. This is because of the
phenomenon that as a/h ratio increases the thickness of the panel decreases and the
frequency value decreases for a thin structural element. It is observed from Fig. 2,
that with the increase of cut-out percent above 0.4 the non-dimensional fundamental
natural frequency is subjected to a significant increase for a/h ratio 5 and 10 of the
cylindrical shells when compared with the a/h ratios (25, 50, and 100).
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Table 6 The effect of lamination schemes on the non-dimensional natural frequency on cylindrical
shells (a/b = 1, a/h = 100 and R/a = 0.5) with varying cut-out percentages

Lamination
schemes

Cut-out
ratio

Orientations Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Symmetric 0.2 0°/90°/90°/0° 8.8157 19.582 19.837 33.312 35.61

30°/−30°/−30°/30° 7.3722 16.54 17.733 29.209 30.166

45°/−45°/−45°/45° 8.01 16.973 18.244 28.93 31.729

0.4 0°/90°/90°/0° 8.8808 20.204 20.931 29.572 34.975

30°/−30°/−30°/30° 7.4081 17.153 18.062 26.433 29.35

45°/−45°/−45°/45° 7.8077 17.311 18.398 25.197 30.115

0.6 0°/90°/90°/0° 9.1409 15.788 18.477 20.121 35.861

30°/−30°/−30°/30° 7.4861 14.946 15.985 17.965 29.57

45°/−45°/−45°/45° 7.7429 14.208 15.782 17.752 28.738

Anti-symmetric 0.2 0°/90°/0°/90° 9.8106 20.711 21.447 34.418 38.361

30°/−30°/30°/−30° 8.3396 18.855 20.03 33.253 33.733

45°/−45°/45°/−45° 9.0472 19.632 19.784 32.485 35.13

0.4 0°/90°/0°/90° 9.6242 21.082 22.417 29.1 37.375

30°/−30°/30°/−30° 8.3446 19.493 20.418 29.81 33.04

45°/−45°/45°/−45° 8.7424 19.792 20.203 28.01 33.823

0.6 0°/90°/0°/90° 9.9546 15.624 19.533 21.156 36.271

30°/−30°/30°/−30° 8.4417 16.78 18.015 20.308 33.432

45°/−45°/45°/−45° 8.771 15.64 17.682 19.471 32.596

4.3 Effect of Lamination Scheme

The lamination scheme effects on the non-dimensional frequency are observed
for cylindrical shells (a/b = 1, a/h = 100, R/a = 0.5) with support condi-
tion straight edges simply supported and curved edges are free used for the
study are shown in Table 6 as well as Fig. 4. The lamination schemes used are
symmetric [(0°/90°/90°/0°), (30°/−30°/−30°/30°) and (45°/−45°/−45°/45°)] and
anti-symmetric [(0°/90°/0°/90°), (30°/−30°/30°/−30°) and (45°/−45°/45°/−45°)],
respectively. It can be seen that the anti-symmetric laminates are having
higher frequencies when compared with symmetric laminates. It also shows
that the (0°/90°/0°/90°) laminate have higher non-dimensional frequencies when
comparedwith the other schemes. For cylindrical angle-ply [(45°/−45°/−45°/−45°),
(45°/−45°/45°/−45°)] shells, the non-dimensional natural frequency decreases with
increase in cut-out size, whereas it is reverse trends for cross-ply [(0°/90°/90°/0°),
(0°/90°/90°/0°)] schemes of cylindrical shells. The increase is less significant for
the angle-ply ply [(30°/−30°/−30°/30°), (30°/−30°/30°/−30°)] symmetric and
anti-symmetric laminated shells.



8 S. Roy et al.

Table 7 Effect of support conditions on the non-dimensional frequency of cross-ply symmetric
lamination schemes (0°/90°)2 s and (a/b = 1, a/h = 100, and R/a = 2) shells with varying cut-out
percentages

Boundary condition Cut-out ratio Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

CCCC 0 49.038 63.601 76.24 79.695 97.278

0.2 46.568 66.249 68.497 77.701 79.789

0.4 41.031 48.867 61.935 76.923 78.055

0.6 54.466 56.268 76.041 79.356 89.854

SSSS 0 48.093 63.235 73.782 78.827 97.004

0.2 45.741 65.639 66.514 77.007 79.658

0.4 40.559 48.82 59.725 75.93 77.153

0.6 54.236 56.035 72.683 77.888 83.438

CFCF 0 33.438 41.843 55.309 57.089 62.612

0.2 32.485 40.409 56.543 57.181 60.856

0.4 30.98 36.076 47.191 52.492 57.574

0.6 35.649 36.72 53.391 56.315 56.527

SFSF 0 33.42 41.83 55.293 57.075 62.605

0.2 32.469 40.395 56.526 57.167 60.851

0.4 30.963 36.059 47.178 52.483 57.559

0.6 35.63 36.7 53.352 56.273 56.51

Fig. 1 Schematic view of
the shell along with the
cutout and coordinate system

4.4 Effect of Support Conditions

The effect of support conditions on the non-dimensional frequencies of cylindrical
shells are studied for cross-ply lamination with (a/b = 1, a/h = 100, and R/a =
2) and with varying boundary conditions and different cut-out sizes are shown in
Table 7 as well as Fig. 5. The support conditions used for the study are CCCC,
SSSS, CFCF, and SFSF, respectively. The non-dimensional frequency of the CCCC
composite laminated composite shell is highest for its highest stiffness, and SFSF
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Fig. 3 Effect of a/h on the non-dimensional frequency of cross-ply symmetric lamination schemes
(0°/90°)2 s and (a/b = 1, and R/a = 0.5) shells with varying cut-out percentage

is the lowest. The CFCF and SFSF boundary conditions have almost the same non-
dimensional frequency with varying cut-out percentages. It can be noticed that the
fundamental natural frequency starts decreasing for all the boundary conditions until
the percentage of cut-out reaches 0.4 and then starts increasing. This is due to the
effect of mass and stiffness reduction due to cut-outs. For the cut-out percentage of
0.6, the value of natural frequency is highest.
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4.5 Mode Shapes

The first three mode shapes of the laminated shell with varying cutouts are obtained
by using ANSYS software. Mode shapes with square cutouts (with 0.2, 0.4, and 0.6
cut-out ratios) are shown in Figs. 6, 7 and 8 and rectangular cut-outs are shown in
Figs. 9 and 10. Through those figures of mode shapes, the vibration behavior of the
laminated shell with cut-out can be more instinctively reflected.
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(a) First mode (b) Second Mode                            (c) Third Mode

Fig. 6 Theoretical mode shape for bidirectional cylindrical shell having straight edges simply
supported and curved edges free with 0.2 cut-out ratio

(a) First mode (b) Second Mode                         (c) Third Mode

Fig. 7 Theoretical mode shape for bidirectional cylindrical shell having straight edges simply
supported and curved edges free with 0.4 cut-out ratio

5 Conclusions

The free vibration analysis of laminated composite shells with varying cut-outs is
investigated in the present study. The bi-directional cross-ply symmetric glass fiber
shells are taken for analysis. The numerical study has been performed using the
finite element based software package ANSYS 16.0 using a triangular element with
six DOFs per node. The comparison of numerical results with the literature shows
very good agreement. A parametric study that includes the effects of the thickness
ratio, curvature ratio, lamination schemes, and various support conditions on the non-
dimensional natural frequency of cylindrical laminated shells with varying cut-out
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(a) First mode (b) Second Mode                  (c) Third Mode

Fig. 8 Theoretical mode shape for bidirectional cylindrical shell having straight edges simply
supported and curved edges free with 0.6 cut-out ratio

(a) First mode (b) Second Mode                        (c) Third Mode

Fig. 9 Theoretical mode shape for bidirectional cylindrical shell having straight edges simply
supported and curved edges free with 0.2a × 0.4b cut-out ratio

percentages at the center is examined and can be treated as benchmark results for
further research works.
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(a) First mode (b) Second Mode                      (c) Third Mode

Fig. 10 Theoretical mode shape for bidirectional cylindrical shell having straight edges simply
supported and curved edges free with 0.4a × 0.6b cut-out ratio
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Numerical Study on Concrete-Filled
Steel Tubes with Diagonal Binding Ribs
and Longitudinal Stiffeners

Aiswarya M. Heman and K. G. Roshni

1 Introduction

Concrete-filled steel tubular (CFST) columns have high strength, superior seismic
performance, and reasonable construction cost [4]. These are widely used as one of
the main structural elements for resisting both vertical and lateral loads in high-rise
buildings and bridges [5]. It consists of an outer thin steel tube and inner infilled
concrete. If thin steel tubes are adopted, welding and construction will be easy.
Also, steel plates tend to be slenderer when adopting high-strength steel. But the
materials cannot be fully used. And the ductility is poor when high-strength concrete
is used due to local buckling and also the increase in the deformation of the steel
tube by the concreting is not negligible. Stiffened CFST have continuous strong
confinement from the ribs or stiffeners to both concrete and steel tubes. This can
relax the width-to-thickness ratio limit [6] and thus can facilitate the use of thin-
walled and high-strength steel and concrete. Openings can act as shear connectors
and can avoid the disengagement at interfaces between the concrete and the steel tube.
It helps while pouring concrete. The ribs with square openings had larger strength
but worse ductility than those with circular openings. Square and rectangular CFST
columns [7] have easy beam-to-column connections hence lead to less construction
cost. It helps to make flexible building layouts hence facilitate decoration, the layout
of architectural space, and fireproof plates. Only a few numerical studies are available
related to diagonal rib stiffened CFST columns. So, this paper presents the numerical
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study on the effect of ribs and stiffeners on axial load carrying capacity of nineteen
various CFST column models and the seismic performance of three unstiffened
square CFST columns and two octagonal CFST columns by nonlinear static analysis
using ANSYS Workbench 16.2.

2 Numerical Study of Stiffened and Unstiffened CFST
Columns Under Axial Load

2.1 General

The model of diagonal binding rib stiffened CFST column was validated with refer-
ence to the paper, “Improved composite effect of square concrete-filled steel tubes
with diagonal binding ribs,” [3].

A square column with 300 mm side and 900 mm height having 2 mm thick outer
steel tube and ribs that are placed diagonally across the cross section. There are
60 mm diameter holes in the ribs at 225 mm center to center spacing. A 40 mm
size meshing was provided. A multilinear isotropic hardening model was used. The
bottom surface of the column was restrained against all degrees of freedom. The top
of the column was free and axial load was applied with displacement control along
the Y-axis. Due to the symmetry of geometry and loading, only one fourth of the
model was established for efficiency. The axial load taken by the column is plotted
against the strain and the failure mode (see Fig. 1).

By comparing experimental results and finite element analysis results by means
of ultimate load-carrying capacity of the composite column and by means of strain,
percentage variation of 1.92 and 3.03% was found. Thus, the model was validated.

The CFST column models used for further analysis are: unstiffened square
columns, stiffened square columns with diagonal binding ribs, stiffened square
columns with longitudinal stiffeners [8], and unstiffened octagonal columns. Here,
a total of nineteen models are used. Here, on the naming of the models, U stands for
unstiffened, R stands for rib stiffened, L stands for longitudinally stiffened, S stands
for square-shaped cross section, O stands for octagonal-shaped cross section, the first
digit indicates the thickness of steel tube, the second digit indicates the thickness of
rib or stiffener, H, H1, and H2 indicates hollow opening with particular diameter and
spacing between holes, W and W1 indicate square opening with particular spacing
between the openings.

The width of stiffener or rib equals 141.42 mm and its height equals 900 mm. 2,
3, and 6 mm thick steel tubes and stiffeners or diagonal ribs were used. Square or
circular openings with different spacing were provided on ribs.

A non-linear static analysis on the stiffened and unstiffened CFST columns was
done by using the same method used for validation. The concrete, steel tube, and
stiffeners or ribs were modeled by SOLID 186. The contact between steel tube and
concrete, steel tube and ribs, ribs and concrete were modeled by CONTA 174. The
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Fig. 1 a Load-strain graph from the experimental study [3], b load-strain graph from numerical
analysis c failure mode on steel tube and d failure mode on concrete

connection between steel tube and ribs, between steel tube and concrete, between ribs
and concrete was provided by using bonded, frictional and frictional, respectively
with a frictional coefficient value of 0.2. A nonlinear isotropic hardening model was
used. The material properties were as shown in Table 1. The ultimate axial load taken
by the columns is plotted against the strain (see Fig. 2) and ultimate load values of
different models are as shown in Table 2.

Table 1 Material properties

Type Yield strength (MPa) Ultimate strength
(MPa)

Modulus of
elasticity (GPa)

Poisson’s ratio

2 mm steel 170 300 200 0.3

3 mm steel 350 490 195 0.3

6 mm steel 320 480 190 0.3

Concrete 60 – 39 0.15
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Fig. 2 Load-strain graph of CFST columns under axial load


