Advances in Intelligent Systems and Computing

Volume 1401

Series Editor
Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors
Nikhil R. Pal, Indian Statistical Institute, Kolkata, India
Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa Clara, Cuba
Emilio S. Corchado, University of Salamanca, Salamanca, Spain
Hani Hagras, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
László T. Kóczy, Department of Automation, Széchenyi István University, Gyor, Hungary
Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA
Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan
Jie Lu, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico
Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil
Ngoc Thanh Nguyen, Faculty of Computer Science and Management, Wroclaw University of Technology, Wroclaw, Poland
Jun Wang, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
The series “Advances in Intelligent Systems and Computing” contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within “Advances in Intelligent Systems and Computing” are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Indexed by DBLP, INSPEC, WTI Frankfurt eG, zbMATH, Japanese Science and Technology Agency (JST).

All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/11156
16th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2021)
Preface

This volume of *Advances in Intelligent and Soft Computing* contains accepted papers presented at the *16th International Conference on Soft Computing Models in Industrial and Environmental Applications* (SOCO 2021). This conference was held in the beautiful seaside city of Bilbao, Spain, in September 2021.

Soft computing represents a collection or set of computational techniques in machine learning, computer science, and some engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena.

After a through peer-reviewed process, the SOCO 2021 International Program Committee selected 78 papers which are published in these conference proceedings and represents an acceptance rate of 48%. In this relevant edition, a special emphasis was put on the organization of special sessions. Seven special sessions were organized related to relevant topics as: Applications of machine learning in computer vision; soft computing applied to autonomous robots and renewable energy systems; optimization, modeling and control by soft computing techniques; challenges and new approaches toward artificial intelligence deployments in real-world scenarios; time series forecasting in industrial and environmental applications; soft computing methods in manufacturing and management systems; and applied machine learning.

The selection of papers was extremely rigorous in order to maintain the high quality of the conference, and we would like to thank the members of the program committees for their hard work in the reviewing process. This is a crucial process to the creation of a high standard conference, and the SOCO conference would not exist without their help.

SOCO 2021 enjoyed outstanding keynote speeches by distinguished guest speakers: Prof. Javier del Ser, who is a principal researcher in data analytics and optimization at Tecnalia, Spain, and is a part-time lecturer at the University of the Basque Country, Spain; Prof. Concha Bielza, who is a full professor in the Department of Artificial Intelligent, Polytechnic University of Madrid, Spain; and Prof. Enrique Zuazua, who holds a chair in Applied Analysis at Friedrich Alexander University, Germany, and a chair of Computational Mathematics at University of Deusto, Spain.
SOCO 2021 has teamed up with “Neurocomputing” (Elsevier) and “Logic Journal of the IGPL” (Oxford University Press) for a suite of special issues including selected papers from SOCO 2021.

Particular thanks go as well to the conference main sponsors, Startup Ole, Department of Education and Universities of the Basque Government, Logistar Project of DeustoTech, and University of Deusto, who jointly contributed in an active and constructive manner to the success of this initiative.

We would like to thank all the special session organizers, contributing authors, as well as the members of the program committees and the local organizing committee for their hard and highly valuable work. Their work has helped to contribute to the success of the SOCO 2021 event.

September 2021

Hugo Sanjurjo González
Iker Pastor López
Pablo García Bringas
Héctor Quintián
Emilio Corchado
Organization

General Chair
Emilio Corchado University of Salamanca, Spain

Local Chair
Pablo García Bringas University of Deusto, Spain

Local Co-Chairs
Hugo Sanjurjo González University of Deusto, Spain
Iker Pastor López University of Deusto, Spain

International Advisory Committee
Ashraf Saad Armstrong Atlantic State University, USA
Amy Neustein Linguistic Technology Systems, USA
Ajith Abraham Machine Intelligence Research Labs-MIR Labs, Europe
Jon G. Hall The Open University, UK
Paulo Novais Universidade do Minho, Portugal
Amparo Alonso Betanzos President Spanish Association for Artificial Intelligence (AEPIA), Spain
Michael Gabbay Kings College London, UK
Aditya Ghose University of Wollongong, Australia
Saeid Nahavandi Deakin University, Australia
Henri Pierreval LIMOS UMR CNRS 6158 IFMA, France

Program Committee Chairs
Emilio Corchado University of Salamanca, Spain
Hugo Sanjurjo-González University of Deusto, Spain
Pablo García Bringas University of Deusto, Spain
Iker Pastor López University of Deusto, Spain
Héctor Quintián University of A Coruña, Spain

Program Committee

Agustina Bouchet University of Oviedo, Spain
Aitor Martínez University of Deusto, Spain
Akemi Galvez-Tomida University of Cantabria, Spain
Alberto Fraile García Startup OLÉ, Spain
Alberto Gallucci Suárez University of Oviedo, Spain
Alfredo Jimenez KEDGE Business School, Spain
Anca Drăghici Politehnica University of Timisoara, Romania
Andreea Vescan Babes-Bolyai University, Cluj-Napoca, Romania
Andres Fuster-Guillo University of Alicante, Spain
Andres Iglesias Prieto University of Cantabria, Spain
Angel Arroyo University of Burgos, Spain
Anna Bartkowiak University of Wrocław, Poland
Anna Kamińska-Chuchmała Wrocław University of Technology, Poland
Anton Koval Luleå University of Technology, Sweden
Antonio Bahamonde University of Oviedo at Gijón, Spain
Antonio Caamaño Rey Juan Carlos University, Spain
Antonio Sala Polytechnic University of Valencia, Spain
Arkadiusz Gola Lublin University of Technology, Poland
Álvaro Michelena Grandío University of A Coruña, Spain
Bartosz Krawczyk Virginia Commonwealth University, USA
Beatriz De La Iglesia University of East Anglia, UK
Bogdan Okreša Đurić University of Zagreb, Croatia
Borja Sanz Urquijo University of Deusto, Spain
Camelia-M. Pintea Technical University of Cluj-Napoca, Romania
Carlos Pereira Polytechnic Institute of Coimbra, Portugal
Carmen Benavides University of Oviedo, Spain
Damian Krenčzyk Silesian University of Technology, Poland
Daniel Honc University of Pardubice, Czechia
Daniel Urda University of Burgos, Spain
Daniela Perdukova Technical University of Kosice, Slovakia
David Alvarez Leon University of León, Spain
David Buján University of Deusto, Spain
David Griol University of Granada, Spain
David Zamora Arranz University of Deusto, Spain
Dragan Simić University of Novi Sad, Serbia
Eduardo Solteiro Pires UTAD University, Portugal
Eleni Mangina University College Dublin, Ireland
Eloy Irigoyen University of Basque Country, Spain
Luciano Alonso University of Cantabria, Spain
Luis Paulo Reis University of Porto, Portugal
Manuel Castejón-Limas University of Leon, Spain
Manuel Graña University of the Basque Country, Spain
Marcin Paprzycki Polish Academy of Sciences, Poland
Maria Fuente University of Valladolid, Spain
Maria Teresa Godinho Polytechnic Institute of Beja, Portugal
Matilde Santos Complutense University of Madrid, Spain
Mehmet Emin Aydin Wroclaw University of Technology, Poland
Michal Wozniak University of the Basque Country, Spain
Michele Roccotelli Politecnico di Bari, Italy
Nashwa El-Bendary Arab Academy for Science, Technology, and Maritime Transport, Egypt

Noelia Rico University of Oviedo, Spain
Oscar Castillo Tijuana Institute of Technology, Mexico
Ovidiu Cosma Technical University Cluj-Napoca, Romania
Pablo García Bringas University of Deusto, Spain
Panagiotis Kyratsis University of Western Macedonia, Greece
Pau Figuera Vinue University of Deusto, Spain
Paul Eric Dossou Catholic Institute of Engineering, France
Paulo Moura Oliveira UTAD University, Portugal
Pavel Skrabanek Brno University of Technology, Czechia
Petr Dolezel University of Pardubice, Czechia
Petrica Pop Technical University of Cluj-Napoca, Romania
Qing Tan Athabasca University, Canada
Reggie Davidrajuh University of Stavanger, Norway
Robert Burduk Wroclaw University of Science and Technology, Poland
Santiago Porras Alfonso University of Burgos, Spain
Sebastian Saniuk University of Zielona Gora, Poland
Stefano Pizzuti Energy New technologies ans sustainable Economic development Agency (ENEA), Italy
Valeriu Manuel Ionescu University of Pitesti, Romania
Vladimir Ilin University of Novi Sad, Serbia
Wei-Chiang Hong Jiangsu Normal University, China, Taiwan
Wilfried Elmenreich University of Klagenfurt, Austria
Wojciech Bozejko Wroclaw University of Science and Technology, Poland

Zita Vale GECAD - ISEP/IPP, Portugal
Special Sessions

Applications of Machine Learning in Computer Vision

Program Committee
Jorge Azorín-López (Organizer) University of Alicante, Spain
Jose García-Rodriguez (Organizer) University of Alicante, Spain
Alexandra Psarrou (Organizer) University of Westminster, UK
Andres Fuster-Guillo University of Alicante, Spain
David Tomas University of Alicante, Spain
Enrique Domínguez University of Malaga, Spain
Esteban José Palomo University of Malaga, Spain
Ezequiel López-Rubio University of Málaga, Spain
Francisco Gomez-Donoso University of Alicante, Spain
Jaime Salvador Ideas&Bits, Ecuador
John Alejandro Castro Vargas University of Alicante, Spain
Juan Miguel University of Málaga, Spain
Ortiz-De-Lazcano-Lobato
Karl Thurnhofer-Hemsi University of Málaga, Spain
Miguel A. Molina-Cabello University of Málaga, Spain
Miguel Cazorla University of Alicante, Spain
Rafael M. Luque-Baena University of Extremadura, Spain
Rafaela Benitez University of Malaga, Spain
Sergiu Oprea University of Alicante, Spain

Soft Computing Applied to Autonomous Robots and Renewable Energy Systems

Program Committee
Aitor Almeida (Organizer) University of Deusto, Spain
Fotis Dimeas (Organizer) Aristotle University of Thessaloniki, Greece
J. Enrique Sierra-García (Organizer) University of Burgos, Spain
Matilde Santos (Organizer) Complutense University of Madrid, Spain
Paweł Martynowicz (Organizer) AGH University of Science and Technology, Poland
Alberto Mozo Polytechnic University of Madrid, Spain
Eloy Irigoyen University of Basque Country, Spain
Fares Mzoughi University of Basque Country, Spain
Jose Luis Calvo-Rolle University of A Coruña, Spain
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jose Manuel Lopez-Guede</td>
<td>Basque Country University, Spain</td>
</tr>
<tr>
<td>Oscar J. Suarez</td>
<td>Autonomous University of Guadalajara, Mexico</td>
</tr>
<tr>
<td>Pedro Cabrera</td>
<td>University of Las Palmas de Gran Canaria, Spain</td>
</tr>
<tr>
<td>Stanislav Vakaruk</td>
<td>Polytechnic University of Madrid, Spain</td>
</tr>
</tbody>
</table>

Optimization, Modeling and Control by Soft Computing Techniques

Program Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed Al-Jumaily</td>
<td>Auckland University of Technology, New Zealand</td>
</tr>
<tr>
<td>(Organizer)</td>
<td></td>
</tr>
<tr>
<td>Eloy Irigoyen Gordo</td>
<td>University of the Basque Country, Spain</td>
</tr>
<tr>
<td>(Organizer)</td>
<td></td>
</tr>
<tr>
<td>José Luís Calvo-Rolle</td>
<td>University of A Coruña, Spain</td>
</tr>
<tr>
<td>(Organizer)</td>
<td></td>
</tr>
<tr>
<td>Matilde Santos (Organizer)</td>
<td>Complutense University of Madrid, Spain</td>
</tr>
<tr>
<td>Mikel Larrea-Sukia (Organizer)</td>
<td>University of the Basque Country, Spain</td>
</tr>
<tr>
<td>Agustin Jimenez</td>
<td>Polytechnic University of Madrid, Spain</td>
</tr>
<tr>
<td>Andres Pinon</td>
<td>University of A Coruña, Spain</td>
</tr>
<tr>
<td>Anna Burduk</td>
<td>Wroclaw University of Science and Technology, Poland</td>
</tr>
<tr>
<td>Anton Koval</td>
<td>Luleå University of Technology, Sweden</td>
</tr>
<tr>
<td>Antonio Javier Barragán</td>
<td>University of Huelva, Spain</td>
</tr>
<tr>
<td>Antonio Jesús Rivera Rivas</td>
<td>University of Jaen, Spain</td>
</tr>
<tr>
<td>Antonio Robles Alvarez</td>
<td>University of Oviedo, Spain</td>
</tr>
<tr>
<td>Antonio Sala</td>
<td>Polytechnic University of Valencia, Spain</td>
</tr>
<tr>
<td>Asier Salazar-Ramirez</td>
<td>University of Basque Country, Spain</td>
</tr>
<tr>
<td>Bruno Baruque</td>
<td>University of Burgos, Spain</td>
</tr>
<tr>
<td>Camelia-M. Pintea</td>
<td>Technical University of Cluj-Napoca, Romania</td>
</tr>
<tr>
<td>David Valencia Blanco</td>
<td>Tecnalia Research and Innovation, Spain</td>
</tr>
<tr>
<td>Davide Carneiro</td>
<td>Polytechnic Institute of Porto, Portugal</td>
</tr>
<tr>
<td>Emilio Jimenez</td>
<td>University of La Rioja, Spain</td>
</tr>
<tr>
<td>Enrique De La Cal Marin</td>
<td>University of Oviedo, Spain</td>
</tr>
<tr>
<td>Eukene Imatz-Ojanguren</td>
<td>Tecnalia Research and Innovation, Spain</td>
</tr>
<tr>
<td>Fabio Gómez-Estern</td>
<td>Loyola University Andalusia, Spain</td>
</tr>
<tr>
<td>Fábio Silva</td>
<td>University of Minho, Portugal</td>
</tr>
<tr>
<td>Fernando Artaza</td>
<td>University of Basque Country, Spain</td>
</tr>
<tr>
<td>Fernando Matia</td>
<td>Polytechnic University of Madrid, Spain</td>
</tr>
<tr>
<td>Gabriel Oliver</td>
<td>University of Balearic Islands, Spain</td>
</tr>
<tr>
<td>Gorka Miñano Durantez</td>
<td>University of Basque Country, Spain</td>
</tr>
<tr>
<td>Graciliano Marichal</td>
<td>University of La Laguna, Spain</td>
</tr>
<tr>
<td>Hilario López</td>
<td>University of Oviedo, Spain</td>
</tr>
</tbody>
</table>
Challenges and New Approaches Toward Artificial Intelligence Deployments in Real-World Scenarios

Program Committee

Carlos Ocampo-Martinez (Organizer) Polytechnic University of Catalonia, Spain
Carlos Toro (Organizer) Vicomtech, Spain
Filippo Mantovani (Organizer) Barcelona Supercomputing Center, Spain
Giuseppe Psaila (Organizer) University of Bergamo, Italy
Paolo Fosci (Organizer) Università di Bergamo, Italy
Sebastián Rios (Organizer) University of Chile, Chile
Carlos Ocampo-Martinez Polytechnic University of Catalonia, Spain
Javier De Lope Polytechnic University of Madrid, Spain
Jose Arenas University of Chile, Chile
Pablo Cleveland University of Chile, Chile
Pablo Lemus University of Chile, Chile
Ricardo Muñoz-Cancino University of Chile, Chile
Rodrigo Verschae Kyoto University, Japan
Sandra Cespedes University of Chile, Chile

Time Series Forecasting in Industrial and Environmental Applications (TSF)

Program Committee

Dieu Tien Bui (Organizer) University of South-Eastern Norway, Norway
Francisco Martínez Álvarez (Organizer) Pablo de Olavide University of Seville, Spain
Isabel Sofia Brito Sousa (Organizer) Polytechnic Institute of Beja, Portugal
José Francisco Torres Maldonado (Organizer) Pablo de Olavide University of Seville, Spain
Kristian Sabo (Organizer) University of Osijek, Croatia
Luís Domingues (Organizer) Polytechnic Institute of Beja, Portugal
Antonio Morales-Esteban University of Seville, Spain
Emmanuel Karlo Nyarko University of Osijek, Croatia
Guillermo Santamaria CONACYT-INEEL, Mexico
José-Lázaro Amaro-Mellado University of Seville, Spain
Laura Melgar-García Pablo de Olavide University of Seville, Spain
Manuel Jesús Jiménez Navarro Pablo de Olavide University of Seville, Spain
Maria Teresa Godinho Polytechnic Institute of Beja, Portugal
Marijana Hadzima-Nyarko Faculty of Civil Engineering, Osijek, Croatia
Soft Computing Methods in Manufacturing and Management Systems Applied Machine Learning

Program Committee

Anna Burduk (Organizer) Wroclaw University of Science and Technology, Poland
Bozena Skolud (Organizer) Silesian University of Technology, Poland
Damian Krenczyk (Organizer) Silesian University of Technology, Poland
Marek Placzek (Organizer) Silesian University of Technology, Poland
Mieczysław Wodecki (Organizer) Wroclaw University of Science and Technology, Poland
Wojciech Bożejko (Organizer) Wroclaw University of Science and Technology, Poland
Andre Batako Liverpool John Moores University, UK
Franjo Jovic University of Osijek, Croatia
Grzegorz Ćwikła Silesian University of Technology, Poland
Ivan Kuric University of Zilina, Slovakia
Karol Velisek Slovak University of Technology in Bratislava, Slovakia
Katarzyna Antosz Rzeszow University of Technology, Poland
Krzysztof Kalinowski Silesian University of Technology, Poland
Laszlo Dudas University of Miskolc, Hungary
Reggie Davidrajuh University of Stavanger, Norway
Sebastian Saniuk University of Zielona Gora, Poland

Applied Machine Learning

Program Committee

Antonio J. Tallón-Ballesteros (Organizer) University of Huelva, Spain
Ireneusz Czarnowski (Organizer) Gdynia Maritime University, Poland
Adam Slowik Koszalin University of Technology, Poland
Akash Punhani ABES Engineering College, India
Armando Mendes University of Azores, Portugal
David Glass University of Ulster, UK
Elsa Rodrigues Instituto Politécnico de Beja, Portugal
Jose Cascalho University of Azores, Portugal
Luís Cavique University Aberta, Portugal
Maria José Ginzo Villamayor University de Santiago de Compostela, Spain
Paulo Quaresma University of Evora, Portugal
SOCO 2021 Organizing Committee Chairs

Emilio Corchado University of Salamanca, Spain
Pablo García Bringas University of Deusto, Spain
Héctor Quintián University of A Coruña, Spain
Hugo Sanjurjo González University of Deusto, Spain

SOCO 2021 Organising Committee

David Buján Carballal University of Deusto, Spain
José Gaviria De la Puerta University of Deusto, Spain
Juan José Gude Prego University of Deusto, Spain
Iker Pastor López University of Deusto, Spain
Borja Sanz Urquijo University of Deusto, Spain
Alberto Tellaeche Iglesias University of Deusto, Spain
Hugo Sanjurjo González University of Deusto, Spain
Pablo García Bringas University of Deusto, Spain
Héctor Quintián University of A Coruña, Spain
Emilio Corchado University of Salamanca, Spain
Machine Learning

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Comparison of Techniques for Virtual Concept Drift Detection</td>
<td>3</td>
</tr>
<tr>
<td>Manuel L. González, Javier Sedano, Ángel M. García-Vico, and José R. Villar</td>
<td></td>
</tr>
<tr>
<td>Dimensional Reduction on an Intelligent Model for Efficiency Improvement of Switching Modes Detection</td>
<td>14</td>
</tr>
<tr>
<td>Luis-Alfonso Fernandez-Serantes, José-Luis Casteleiro-Roca, Hubert Berger, Dragan Simić, and José Luis Calvo-Rolle</td>
<td></td>
</tr>
<tr>
<td>Performance and Explainability of Reservoir Computing Models for Industrial Prognosis</td>
<td>24</td>
</tr>
<tr>
<td>Unai Armentia, Irantzu Barrio, and Javier Del Ser</td>
<td></td>
</tr>
<tr>
<td>A Data-Driven Approach for Components Useful Life Estimation in Wind Turbines</td>
<td>37</td>
</tr>
<tr>
<td>Alejandro Zornoza Martínez, Jesus Martínez-Gómez, and José A. Gámez</td>
<td></td>
</tr>
<tr>
<td>Towards Adaptive Gamification in Small Online Communities</td>
<td>48</td>
</tr>
<tr>
<td>Victor Sánchez-Anguix, Juan M. Alberola, and Vicente Julián</td>
<td></td>
</tr>
<tr>
<td>LSTM vs CNN in Real Ship Trajectory Classification</td>
<td>58</td>
</tr>
<tr>
<td>Juan Pedro Llerena, Jesús García, and José Manuel Molina</td>
<td></td>
</tr>
<tr>
<td>A Comparison of Learning Approaches to Dialogue Management in Conversational Systems</td>
<td>68</td>
</tr>
<tr>
<td>David Griol and Zoraida Callejas</td>
<td></td>
</tr>
<tr>
<td>Aspect-Based Sentiment Analysis in Drug Reviews Based on Hybrid Feature Learning</td>
<td>78</td>
</tr>
<tr>
<td>Asmaa Hashem Sweidan, Nashwa El-Bendary, and Haytham Al-Feel</td>
<td></td>
</tr>
</tbody>
</table>
Smart Cities and IOT

Low-Cost Deep Learning-Based Prototype for Automatic Identification of Traffic Signs in Vehicles ... 91
Enol García González, José R. Villar, and Enrique de la Cal

Visual Mining of Industrial Gas Turbines Sensor Data as an Industry 4.0 Application ... 101
Angel X. Astudillo Aguilar, Stefano Rosso, Karina Gibert, and Alfredo Vellido

Visually Monitoring the Performance of a Component-Based Robot . . . 112
Nuño Basurto, Carlos Cambra, and Álvaro Herrero

Optimizing Communication Data Streams in Edge Computing Systems Using Bayesian Algorithms .. 122
Nerea Gómez Larrakotxtea, Borja Sanz Urquijo, Iker Pastor López, Jon García Barruetabeña, and Pablo García Bringas

Temporal Data Analysis

Time Series Forecasting of Gold Prices with the Help of Its Decomposition and Multivariate Adaptive Regression Splines 135
Fernando Sánchez Lasheras, Paulino José García Nieto, Esperanza García-Gonzalo, Gregorio Fidalgo Valverde, and Alicja Krzemień

Time Series Analysis for the COMEX Gold Spot Price Forecasting by Using NARX DE/SVR and DE/GPR Techniques 145
Esperanza García-Gonzalo, Paulino José García Nieto, Gregorio Fidalgo Valverde, Pedro Riesgo Fernández, and Fernando Sánchez Lasheras

Data Mines in Real Estate Web Pages: Investigation of Changes in the Czech Real Estate Market Based on Elasticity and on Modified Price Volume Indicator .. 155
Alena Pozdilková and Jaroslav Marek

Soft Computing Applications

The Weak Supervision Approach for Question Answering over Text Using Triplets Recovering with QA-Based Rankers 167
Dmitriy Alexandrov, Nikolay Butakov, and Timur Sokhin

VR-Photosense: A Virtual Reality Photic Stimulation Interface for the Study of Photosensitivity .. 178
Sofía Martín, Víctor Álvarez, Beatriz García-López, Victor M. González, and Jose R. Villar
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guidance of Unmanned Surface Vehicle Fleet Using Genetic Algorithm-Based Approach</td>
<td>187</td>
</tr>
<tr>
<td>Miroslav Dvorak, Petr Dolezel, Dominik Stursa, and Mohamed Chouai</td>
<td></td>
</tr>
<tr>
<td>Toward Reusing the Numerical Association Rule Mining Models</td>
<td>198</td>
</tr>
<tr>
<td>Iztok Fister Jr., Andres Iglesias, Akemi Galvez, and Iztok Fister</td>
<td></td>
</tr>
<tr>
<td>Powering Soft Querying in J-CO-QL with JavaScript Functions</td>
<td>207</td>
</tr>
<tr>
<td>Paolo Fosci and Giuseppe Psaila</td>
<td></td>
</tr>
<tr>
<td>Image Reconstruction of Colored Bitmap Fractal Images Through Bat Algorithm and Color-Based Image Clustering</td>
<td>222</td>
</tr>
<tr>
<td>Akemi Gálvez, Iztok Fister, Iztok Fister Jr., and Andrés Iglesias</td>
<td></td>
</tr>
<tr>
<td>Intraday Energy Resource Scheduling for Load Aggregators</td>
<td>233</td>
</tr>
<tr>
<td>Considering Local Market</td>
<td></td>
</tr>
<tr>
<td>Jos Almeida, Joo Soares, Bruno Canizes, Ivn Razo-Zapata, and Zita Vale</td>
<td></td>
</tr>
<tr>
<td>Energy Predictions for System on a Chip Solutions</td>
<td>243</td>
</tr>
<tr>
<td>Luis Gomes and Zita Vale</td>
<td></td>
</tr>
<tr>
<td>Texture Descriptors for Automatic Classification of Surface Defects of the Hot-Rolled Steel Strip</td>
<td>251</td>
</tr>
<tr>
<td>Virginia Riego del Castillo, Lidia Sánchez-González, and Alexis Gutiérrez-Fernández</td>
<td></td>
</tr>
<tr>
<td>PhrasIS: Phrase Inference and Similarity Benchmark</td>
<td>261</td>
</tr>
<tr>
<td>I. Lopez-Gazpio, J. Gaviria de la Puerta, P. García, H. Sanjurjo-González, B. Sanz, M. Maritxalar, and E. Agirre</td>
<td></td>
</tr>
<tr>
<td>A Scalable and Flexible Open Source Big Data Architecture for Small and Medium-Sized Enterprises</td>
<td>273</td>
</tr>
<tr>
<td>Luis Íñiguez and Mikel Galar</td>
<td></td>
</tr>
<tr>
<td>Codebook-Based Near-Duplicate Video Detection</td>
<td>283</td>
</tr>
<tr>
<td>Guillermo Hernández, Angélica González Arrieta, Paulo Novais, and Sara Rodríguez</td>
<td></td>
</tr>
<tr>
<td>Automatic Individual Tree Detection from Combination of Aerial Imagery, LiDAR and Environment Context</td>
<td>294</td>
</tr>
<tr>
<td>Daniel Amigo, David Sánchez Pedroche, Jesús García, and José M. Molina</td>
<td></td>
</tr>
<tr>
<td>A First Prototype of an Emotional Smart Speaker</td>
<td>304</td>
</tr>
<tr>
<td>Enrique de la Cal, Alberto Gallucci, Jose Ramón Villar, Kaori Yoshida, and Mario Koeppen</td>
<td></td>
</tr>
<tr>
<td>A New Information Infrastructure Approach for End-To-End Supply Chain Management</td>
<td>314</td>
</tr>
<tr>
<td>Dragan Simić, José Luis Calvo-Rolle, José R. Villar, Vladimir Ilin, Svetislav D. Simić, and Svetlana Simić</td>
<td></td>
</tr>
</tbody>
</table>
Estimating Context Aware Human-Object Interaction Using Deep Learning-Based Object Recognition Architectures 429
Iván San Martín Fernández, Sergiu Oprea, John Alejandro Castro-Vargas, Pablo Martinez-Gonzalez, and Jose García-Rodriguez

Interaction Estimation in Egocentric Videos via Simultaneous Hand-Object Recognition .. 439
Manuel Benavent-Lledó, Sergiu Oprea, John Alejandro Castro-Vargas, Pablo Martinez-Gonzalez, and Jose García-Rodriguez

Special Session - Soft Computing Applied to Autonomous Robots and Renewable Energy Systems

Evolutive Tuning Optimization of a PID Controller for Autonomous Path-Following Robot ... 451
Mikel Rico Abajo, J. Enrique Sierra-García, and Matilde Santos

Intelligent Hybrid Controllers for the Blade Angle of Floating Wind Turbines ... 461
Carlos L. Serrano-Barreto, Jesús Enrique Sierra-García, and Matilde Santos

Generation of Restricted Zones for AGVs Routes by Clustering Algorithms ... 471
Marcos Millán, J. Enrique Sierra-García, and Matilde Santos

Iterative Obstacle Avoidance Algorithm for Mobile Robots 480
J. Enrique Sierra-García, Marcos Millán, and Matilde Santos

Special Session - Optimization, Modeling and Control by Soft Computing Techniques (OMCS)

Descent of a Suborbital Rocket: A Simulation Case Study Using CFD, Parametric Models and Neural Networks 491
Pablo Díez-Arrizabalaga, César Hernández-Hernández, and Matilde Santos

Critical Node Detection for Maximization of Connected Components: An Extremal Optimization Approach 502
Noémi Gaskó, Tamás Képes, Mihai Suciu, and Rodica Ioana Lung

Optimal Node Distribution in Wireless Sensor Networks Considering Sensor Selection .. 512
Javier Díez-González, Rubén Álvarez, Paula Verde, Rubén Ferrero-Guillén, Alberto Martínez-Gutiérrez, and Hilde Perez
Special Session - Challenges and New Approaches Towards Artificial Intelligence Deployments in Real-World Scenarios

Machine Learning Based Soft Sensing Tool for the Prediction of Leaf Wetness Duration in Precision Agriculture 525
Maria Arostegi, Diana Manjarres, Sonia Bilbao, and Javier Del Ser

Temperature-Effect Compensation for Leak Detectors by Using Machine Learning Techniques ... 536
Juan Luis Ferrando Chacón, Ander García Gangoiti, Xabier Oregui Biain, Andoni Bilbao, Eneko Fernandez, and Zelmar Etxegoien

An Online Feature Selection Methodology for Ball-Bearing Harmonic Frequencies Based on HMMs ... 546
Carlos Puerto-Santana, Pedro Larrañaga, Javier Diaz-Rozo, and Concha Bielza

A Novel Methodology for the Characterization of Cutting Conditions in Turning Processes Using Machine Learning Models and Acoustic Emission Signals .. 556
Telmo Fernández de Barrena, Juan Luis Ferrando, Ander García, Pedro Jose Arrazola, Jose Manuel Abete, and Diego Herrero

Non-intrusive Load Monitoring Based on Event Detection and Unsupervised Learning for Airport Baggage Handling Systems . 567
Miguel Angel Bermeo-Ayerbe, David Antonio Cruz-Rangel, Javier Diaz-Rozo, and Carlos Ocampo-Martinez

Mutagenic Prediction for Chemical Compound Discovery with Partitioned Graph Convolution Network 578
Hyung-Jun Moon, Seok-Jun Bu, and Sung-Bae Cho

Multivariate Adaptive Downsampling Algorithm for Industry 4.0 Data Visualization ... 588
Javier Franco, Ander Garcia, and Amaia Gil

Anomaly Detection for Health Monitoring of Heavy Equipment Using Hierarchical Prediction with Correlative Feature Learning 598
Gye-bong Jang and Sung-Bae Cho

Discrete-Event-Simulation Based on Machine Learning Predictive Agents ... 609
Javier Andión, Juan C. Dueñas, and Félix Cuadrado

Enhancing Short-Term Velocity Forecasting Models by Using ML Models and Traffic Patterns Information 620
Cristián Lira, Bastián Véjar, Fernando Ordóñez, and Sebastián A. Ríos
Special Session - Time Series Forecasting in Industrial and Environmental Applications (TSF)

Automated Data-Driven Approach for Gap Filling in the Time Series Using Evolutionary Learning ... 633
Mikhail Sarafanov, Nikolay O. Nikitin, and Anna V. Kalyuzhnaya

Forecasting a Fashion Collection with the Optimization of Costs of Overestimation and Underestimation of Demand 643
Mariusz Czekała, Jacek Jagodziński, Jakub Przybylski, Dawid Zaraza, and Karol Ziółkowski

Feature Selection on Spatio-Temporal Data for Solar Irradiance Forecasting ... 654
Manuel Carranza-García, Pedro Lara-Benítez, José María Luna-Romera, and José C. Riquelme

Electricity Generation Forecasting in Concentrating Solar-Thermal Power Plants with Ensemble Learning 665
A. Melara, J. F. Torres, A. Troncoso, and F. Martínez-Álvarez

An Extensive Comparative Between Univariate and Multivariate Deep Learning Models in Day-Ahead Electricity Price Forecasting . . . 675
Belén Vega-Márquez, Javier Solís-García, Isabel A. Nepomuceno-Chamorro, and Cristina Rubio-Escudero

Forecasting Electricity Consumption Data from Paraguay Using a Machine Learning Approach .. 685
José A. Gallardo, Miguel García-Torres, Francisco Gómez-Vela, Félix Morales, Federico Divina, David Becerra-Alonso, Gustavo Velázquez, Federico Daumas-Ladouce, José Luis Vázquez Nóguera, Carlos Sauer Ayala, Diego P. Pinto-Roa, Pedro E. Gardel-Sotomayor, and Julio C. Mello Román

Hybrid Orbit Propagator Based on Neural Networks. Multivariate Time Series Forecasting Approach ... 695
Hans Carrillo, Edna Segura, Rosario López, Iván Pérez, and Juan Félix San-Juan

Study Case of Household Electricity Consumption Patterns in London by Clustering Methodology ... 706
José María Luna-Romera, Manuel Carranza-García, David Gutiérrez-Avilés, and José C. Riquelme-Santos

HLNet: A Novel Hierarchical Deep Neural Network for Time Series Forecasting ... 717
Earthquake Prediction in California Using Feature Selection Techniques ... 728
Joaquin Roiz-Pagador, Andres Chacon-Maldonado, Roberto Ruiz, and Gualberto Asencio-Cortes

Medium-Term Electricity Consumption Forecasting in Algeria Based on Clustering, Deep Learning and Bayesian Optimization Methods .. 739
D. Hadjout, J. F. Torres, A. Sebaa, and F. Martínez-Álvarez

Special Session - Soft Computing Methods in Manufacturing and Management Systems

Efficient Tabu Search Algorithm for the Cyclic Inspection Problem .. 751
Wojciech Bożejko, Radosław Grymin, Jarosław Pempera, and Mieczysław Wodecki

Parallel Block-Based Simulated Annealing for the Single Machine Total Weighted Tardiness Scheduling Problem ... 758
Wojciech Bożejko, Jarosław Pempera, Mariusz Uchoński, and Mieczysław Wodecki

The Improvement of Machining Process Scheduling with the Use of Heuristic Algorithms ... 766
Anna Burduk, Łukasz Łampika, Dagmara Łapczyńska, and Kamil Musiał

Sequencing for Improving Mixed-Model Assembly Line Supply Using Heuristic Algorithms ... 777
Karol Dziki and Damian Krenczyk

Job Shop Scheduling with Transport by Automated Guided Vehicles ... 789
Czesław Smutnicki and Jarosław Pempera

Special Session - Applied Machine Learning

Supervised Machine Learning Techniques in the Bitcoin Transactions. A Case of Ransomware Classification ... 803
José A. Blanco and Antonio J. Tallón-Ballesteros

Analysis of the Tourism Industry in Ecuador by Means of Soft Computing Techniques 811
Anita Herrera, Ángel Arroyo, Alfredo Jiménez, and Álvaro Herrero

Attribute Subset Selection for Image Recognition. Random Forest Under Assessment 821
Antonio J. Tallón-Ballesteros, Luís Correia, and Rocio Leal-Díaz

Author Index ... 829
Machine Learning
A Comparison of Techniques for Virtual Concept Drift Detection

Manuel L. González1(✉), Javier Sedano1, Ángel M. García-Vico2, and José R. Villar3

1 Instituto Tecnológico de Castilla y León, Burgos, Spain \\ \{manuel.gonzalez,javier.sedano\}@itcl.es
2 Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain \\ agvico@decsai.ugr.es
3 University of Oviedo, Oviedo, Spain \\ villarjose@uniovi.es
\url{http://www.itcl.es}

Abstract. Concept Drift is one of the main problems presents in data stream processing for Data Mining and Machine Learning. This study focuses on Virtual Concept Drift. A common approach includes i) the detection of the drift with a specialized algorithm, and ii) the adaptation of the model to the current scenario. This work studies how well-known pre-processing methods affect abrupt Virtual Concept Drift detection in data streams. The proposed pre-processing techniques are: i) deleting the trend and ii) transforming the data stream from time to spectral domain. Moreover, three Virtual Concept Drift detection methods are compared over three publicly available data sets. According to the results, a slight improvement in the detection of Virtual Concept Drift is achieved when the trend is deleted. In contrast, no detection of Virtual Concept Drift is reported on the spectral domain.

Keywords: Data stream mining · Concept Drift detection · Pre-processing methods

1 Introduction

Nowadays, the exponential increase of IoT devices and sensors is generating a continuous information flow. This continuous flow of data is commonly known as a data stream [1]. The general characteristics of data streams imply a challenge for Data Mining and Machine Learning [2]. The main constraints imposed by data stream mining are the processing time, system memory and the adaptability
of the algorithms. In this context of adaptability, algorithms have to deal with the constantly evolving nature of data. This phenomenon is known as Concept Drift (CD) [3] and leads to a decrease in model performance over time for any given task [4–6]. Conceptually, CD happens when the joint probability distribution, \(p(X, y) \), for the same pair of input and output data streams, \(X \) and \(y \), changes in time: \(p_t(X, y) \neq p_{t+1}(X, y) \) [7].

Based on its source, CD can be classified into two different types [8]. i) Real Concept Drift (RCD), where the change over time is in the relationships between input and output data, represented by the evolution of conditional probability distributions \(p_t(y|X) \neq p_{t+1}(y|X) \). ii) Virtual Concept Drift (VCD), where the change over time is in the distributions of the input data, \(p_t(X) \neq p_{t+1}(X) \). Another dimension of CD is the type and velocity of the changes over time. Four classes of CD can be distinguished in this regard [8]: abrupt, gradual, incremental and recurring.

Two common approaches are developed to deal with CD. In one of them, the model is continuously updated by the new incoming data. Whereas in the other, the CD is firstly detected, with a specialized algorithm, and then the model has adapted consequently. In this study, is considered the second approach, mainly in CD detection.

Algorithms specialized in CD detection can be divided into two categories, depending on the CD source. i) RCD detection methods, which are mainly focused on the model’s accuracy change [5,6,13,14]. ii) VCD detection methods (VCD-DMs), focused on the change in input data stream statistical properties [11,12,17]. There is a vast amount of research papers about CD detection [2,4,8–10]. Depending on the CD type and velocity of change over time, some detection methods show better performance than others [2].

The majority of studies in the literature are focused on RCD detection because these algorithms directly measure the decrease in model accuracy. VCD-DMs become interesting since the real output variable \(y \) is, in many cases, unknown -thus RCD is not possible-. Some descriptive Data Mining techniques with this problematic are clustering and association rules. Furthermore, the study and detection of VCD allow measuring changes in the input data distributions over time, favouring the model to be updated and tuned early on. Therefore, interest in VCD is justified.

In Data Mining methodology, it is common to apply a pre-processing method (PPR-M) to the input data stream before any processing algorithm [15]. These techniques aim to remove noise or unwanted properties from the data, to add information from other sources or to adapt the input data stream for the processing algorithms.

This study focuses on the detection of abrupt VCD on data streams. This research aims to compare some of the most known techniques for VCD detection, together with different PPR-Ms. This study tries to answer the following questions:

1. How does the VCD-DMs vary if the trend is filtered by a PPR-M?
2. How does the VCD-DMs work in the spectral domain?
3. Which are the differences among VCD-DMs when using the same PPR-M?
4. How is the performance of the VCD-DMs techniques affected by the nature of the sliding window?

The rest of the paper is organized as follow: the next section describes the PPR-Ms and VCD-DMs techniques to be studied in the comparison. The data sets and experimental setup are detailed in Sect. 3. Section 4 depicts the obtained results and discusses the answers to the questions previously formulated. Finally, the study ends with the conclusions and future work.

2 A Description of the Technologies

As shown in Fig. 1, the most common approach in data stream mining to extract knowledge from drifting data is described below.

1. The arriving data is buffered creating chunks of data of a pre-defined length.
2. PPR-M is applied to the data chunk.
3. When selected, a CD detection method is performed; if CD is detected, then the model is adapted in consequence.
4. Run the adapted model to obtain some knowledge from evolving data.

![Fig. 1. Scheme of a system adapted to Concept Drift](image)

This section outlines the PPR-Ms that are considered in this study, as well as the VCD-DMs to be compared.

2.1 Pre-processing Alternatives

Let $X(t)$ be the input data stream. Up to four different standard and well-known PPR-Ms are used in this study, which are listed below.

1. **Identity (ID):** $X(t) \rightarrow X(t)$, in essence, it does not transform the original data stream.
2. **Calculate Local Derivative (LDV):** $X(t) \rightarrow \frac{(X(t) - X(t - 1))}{\Delta t}$, where Δt is the local increment in time defined as $\Delta t = t_i - t_{i-1}$.
3. **Subtract Simple Moving Average (S-SMA):** $X(t) \rightarrow X(t) - SMA(X(t))$, where SMA stands for Simple Moving Average.
4. **Calculate Spectral Distribution (SDT):** \(X(t) \rightarrow \tilde{X}(f)\), Discrete Fourier Transform (DFT) \([16]\) will be used to transform data stream from time-domain \(-X(t)-\) to frequency-domain \(-\tilde{X}(f)-\).

The first method has been proposed to have a comparison baseline. The second and third ones aim to remove the trend from the data stream. It is worth noticing that the latter transformation normalizes seasonal components of the data stream by changing to the spectral domain. For a comprehensive study on PPR-Ms for CD see \([15]\).

2.2 Virtual Concept Drift Detection Methods

The majority of the VCD-DMs proposed in the literature are based on the comparison of the statistical properties between different portions of the data stream. These portions are called windows of data. A window of data \(W\) on input data stream \(X(t)\) is considered a time-ordered subset of consecutive elements \(x \in X(t)\) that acts as a buffer. These windows can have fixed or variable length and their elements may vary over time. Depending on the number of windows and their properties, different VCD-DMs have been developed \([2,9]\). According to the results in \([2]\), two-windows-based VCD-DMs show better performance for abrupt VCD detection than other alternatives. Therefore, the proposed methods in this study belong to this category. These methods are: Adaptive sliding window algorithm (ADWIN) \([17]\), Kolmogorov-Smirnoff Test (KS-Test) \([19]\) and Fourier Inspired Windows for Concept Drift detection (FIWCD) \([21]\).

Let \(W_t\) be a window of data at time \(t\) on \(X(t)\). Let \(W_t^O\) and \(W_t^R\) be two subwindows of data on \(X(t)\). Their lengths are \(n^O\) and \(n^R\), respectively, and \(W_t^R\) is the most recent of the two. We denote \(W_t = W_t^O \cup W_t^R\) with length \(n\), where \(n\) accomplishes Eq. 1, which means, there could be an overlap between the two subwindows. The lengths of \(W_t^O\) and \(W_t^R\) may vary according to the current VCD-DM, but Eq. 1 must be always satisfied.

\[
n \leq n^O + n^R
\]

In these conditions, it is considered that VCD has happened whenever remarkable differences are found among the descriptive statistics calculated for each subwindow \([17]\). The chosen methods follow two different strategies to detect the existence of a remarkable difference: to set some specific bound base on confidence level \(\alpha\), like ADWIN or KS-Test, or to set a similarity threshold \(\lambda\) like FIWCD.

It should be noted that no underlying model is needed for these detection methods, so it can be applied to any system that computes data streams. In the following sections, the proposed methods are going to be explained. It should be highlighted that the notation is slightly different from that of the original papers to unify it.