Signals and Communication Technology

Cristian Monea Nicu Bizon

Signal Processing and Analysis Techniques for Nuclear Quadrupole Resonance Spectroscopy

Signals and Communication Technology

Series Editors

Emre Celebi, Department of Computer Science, University of Central Arkansas, Conway, AR, USA

Jingdong Chen, Northwestern Polytechnical University, Xi'an, China

E. S. Gopi, Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India

Amy Neustein, Linguistic Technology Systems, Fort Lee, NJ, USA

H. Vincent Poor, Department of Electrical Engineering, Princeton University, Princeton, NJ, USA

This series is devoted to fundamentals and applications of modern methods of signal processing and cutting-edge communication technologies. The main topics are information and signal theory, acoustical signal processing, image processing and multimedia systems, mobile and wireless communications, and computer and communication networks. Volumes in the series address researchers in academia and industrial R&D departments. The series is application-oriented. The level of presentation of each individual volume, however, depends on the subject and can range from practical to scientific.

Indexing: All books in "Signals and Communication Technology" are indexed by Scopus and zbMATH

For general information about this book series, comments or suggestions, please contact Mary James at mary.james@springer.com or Ramesh Nath Premnath at ramesh.premnath@springer.com.

More information about this series at http://www.springer.com/series/4748

Cristian Monea · Nicu Bizon

Signal Processing and Analysis Techniques for Nuclear Quadrupole Resonance Spectroscopy

Cristian Monea Research and Development Department Mira Technologies Group Voluntari, Romania

Doctoral School of Electronics, Telecommunications and Information Technology Politehnica University of Bucharest Bucharest, Romania Nicu Bizon Faculty of Electronics, Communications and Computer Science University of Pitesti Pitesti, Arges, Romania

Doctoral School of Electronics, Telecommunications and Information Technology Politehnica University of Bucharest Bucharest, Romania

ISSN 1860-4862 ISSN 1860-4870 (electronic) Signals and Communication Technology ISBN 978-3-030-87860-3 ISBN 978-3-030-87861-0 (eBook) https://doi.org/10.1007/978-3-030-87861-0

@ The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Foreword

This book brings new literature reviews on nuclear quadrupole resonance (NQR) techniques, appropriate signal processing techniques proposed for NQR spectrometers and implemented NQR spectrometers developed to date.

The signals obtained from NQR spectroscopy are simulated to propose an NQR signal model to be used on the comparative analysis (based on a new set of performance indicators proposed here) of the main signal processing methods that have been developed in the literature.

So, this book proposes a new approach to detecting the NQR signal by using artificial intelligence methods (such as deep learning techniques and other proposed advanced techniques). As a result of this study, the best performing solutions are selected, adapted for NQR detection and implemented in a customized NQR spectrometer and, finally, the NQR-based equipment was evaluated in real conditions.

The data set was acquired under different operating conditions and was analysed to evaluate the performance of the custom-designed NQR spectrometer.

It is worth mentioning that the implementation of the detection system is detailed in this book from both a hardware and a software point of view, and the initial deep learning technique proposed is further improved in the penultimate chapter by using transfer learning and autoencoders to allow its use in other spectrometers and at different noise levels.

Thus, the content of this book is interdisciplinary, involving knowledge of physics, electrical and electronics engineering, signal processing, signal analysis and artificial intelligence (machine learning, deep learning, etc.) and optimization.

Therefore, the content of this book is addressed to researchers studying the resonance of nuclear quadrupoles and its applications, and NQR equipment manufacturers and readers in the multidisciplinary fields mentioned above, who want to understand the NQR spectrometer and the techniques used in its design.

So, both researchers (physicists, engineers and computer scientists) and engineers working for manufacturers of security or laboratory equipment based on the NQR technique, as well as master's and doctoral students studying and researching NQR detection techniques, will all be interested to read this book because it proposes (i) a new and performant NQR signal detection techniques based on improved deep learning methods and (ii) a detailed description regarding the hardware and software implementation of an NQR detection equipment that implements the above-mentioned solutions.

In conclusion, it is noteworthy that the content of the chapters is presented gradually and theoretically in detail as necessary to understand the problems and effective techniques for implementing the NQR, being highly recommended for study in education and research.

Baku, Azerbaijan April 2021 Arif M. Hashimov

Preface

In recent years, global terrorism and organized crime, especially in the field of drug trafficking, have increased enormously, with more than 10,000 incidents per year reported in the global terrorism database since 2017. For example, in 2017, over 140 tons of cocaine and 5 tons of heroin were confiscated in the European Union, and the number of confiscations has increased every year. In this context, a number of prohibited substance control systems have been developed and installed worldwide (at airports, customs, post offices and border checkpoints) to combat illegal activity and ensure the safety of citizens.

Therefore, this book addresses the issue of improving the detection of prohibited substances using the nuclear quadrupole resonance (NQR) technique and takes into account the advanced signal processing techniques recently proposed in the literature, including by the authors of this book.

NQR is a confirmed analysis technique and recognized as a solution that meets the performance standards imposed for security checkpoints. In short, the NQR technique is based on scanning the object (package and luggage) which may contain a substance of interest. An electromagnetic pulse train (called the excitation sequence) is used for scanning, and the response is received at the end of the excitation sequence. The NQR technique has the advantage of a high specificity relative to a substance of interest, but it is also worth mentioning that it is very difficult to detect the response (the weak signal emitted by the substance).

This book analyses and proposes new signal processing and analysis methods for the detection of dangerous or contraband substances (such as explosives, narcotics or toxic substances). Also, the hardware solutions implemented in a custom NQR spectrometer (detector) are described, and the performances obtained are compared with similar ones reported in the literature.

The identification of prohibited substances by nuclear quadrupole resonance depends on the physical principle used and deployment location of the NQR equipment, because the received signal has a low signal-to-noise ratio and is susceptible to radio interference in the same frequency band. In addition, the spectral lines are dependent on the substance's temperature.

Because the detection time is critical and the number of false-positive and falsenegative alarms must be minimized, the main signal processing challenges are related to the ability to detect the response signal using a limited number of acquisitions, to perform real-time analysis of the response signal's characteristics in order to cancel radio frequency noise and compensate the temperature dependence of spectral lines, with the ultimate goal of maximizing the detection accuracy.

In the last decade, numerous laboratory NQR detection systems have been proposed and implemented for identifying prohibited substances, with detection probabilities of up to 90%. However, the detection performance decreases greatly in the operational environment due to the causes mentioned above. So, new hardware and software solutions are needed to increase the performance of NQR detection. Therefore, the purpose of this book is to present some hardware and software solutions to improve the performance of the NQR technique for detecting prohibited substances.

This book is structured in ten chapters, and Chap. 1 introduces the topic of nuclear quadrupole resonance detection of prohibited substances.

Chapter 2 briefly presents the methods and equipment for the acquisition and analysis of signals for detection of prohibited substances.

Chapter 3 continues the analysis started in Chap. 2, focusing on nuclear quadrupole resonance spectroscopy and presenting its physical principle, specific signal acquisition methods, and laboratory and commercial NQR equipment.

Chapter 4 presents in detail the specific pre-processing, post-processing and signal analysis techniques proposed for nuclear quadrupole resonance detection.

Chapter 5 presents the test signals that will be used in the following chapter to study the performance of the algorithms proposed in the literature for NQR signal processing and analysis.

The study of the performance of the NQR algorithms is presented in Chap. 6 in order to define a reference regarding the obtained performance. It considers specific performance indicators and a multi-criteria classification algorithm based on an objective function to improve the probability of detection.

The experimental results of the acquisition of nuclear quadrupole resonance signals are presented and analysed in Chap. 7 in order to identify new and improved NQR detection techniques.

Thus, Chap. 8 presents new signal analysis algorithms based on machine learning and demonstrates their improved performance in detecting substances using the NQR technique compared to those presented in the previous chapter.

Chapter 9 describes techniques for enhancing the performance of the machine learning algorithm proposed in the previous chapter that are based on transfer learning and noise reduction using autoencoders.

The last chapter presents the implementation of an NQR equipment used for signal acquisition, processing and analysis. The hardware and software implementations are detailed, and the system's performance in different operating conditions is evaluated.

Summarizing, the salient features of the book would be the following:

- Presenting a detailed literature review of the methods and equipment for signal acquisition and analysis for the detection of prohibited substances,
- Presenting the principle of nuclear quadrupole resonance spectroscopy,

Preface

- Providing a detailed literature review of the signal processing and analysis techniques applied in nuclear quadrupole resonance detection, with a new classification,
- Performing a modeling of the signals used in nuclear quadrupole resonance spectroscopy, with the proposal of a new signal model,
- Performing a comparative study of the signal processing and analysis algorithms, in order to verify and create its own reference for the performance indicators, that will be of help for comparing the newly developed solutions,
- Performing an analysis of the signals acquired from nuclear quadrupole resonance experiments with the aim of aiding the development of new detection solutions,
- Proposing new signal analysis algorithms based on artificial intelligence/deep learning in order to improve the detection of substances by NQR technique,
- Proposing new features for the classification of NQR signals using artificial intelligence/deep learning algorithms,
- Proposing new artificial intelligence/deep learning techniques for enhancing the performance of signal analysis algorithms,
- Detailing the hardware and software implementations of an NQR signal processing and analysis system,
- Helpful for researchers and practitioners in the areas of electrical engineering, signal processing and analysis, applied spectroscopy, as well as for security or laboratory equipment manufacturers.

In conclusion, electrical engineering students and specialists are eligible and guided to use the book effectively in their current activities.

Pitesti, Romania April 2021 Cristian Monea Nicu Bizon

Contents

1	Intro	oduction	1			
	1.1	Context of This Work	2			
	1.2	Purpose of This Work	4			
	1.3	Structure of This Work	5			
	Refe	rences	6			
2	Met	hods and Equipment for Signal Acquisition and Analysis				
		he Detection of Prohibited Substances	7			
	2.1	Signal Detection and Estimation Theory	7			
	2.2	Techniques for Detecting Prohibited Substances	11			
		2.2.1 Trace Detection Techniques	12			
		2.2.2 Bulk Detection Techniques	14			
	2.3	Conclusions	15			
	Refe	rences	15			
3	Nuclear Quadrupole Resonance Spectroscopy					
	3.1	The Principle of Nuclear Quadrupole Resonance	17			
	3.2	Signal Acquisition Methods Applied in Nuclear				
		Quadrupole Resonance Spectroscopy	22			
	3.3	Equipment Used in Nuclear Quadrupole Resonance				
		Spectroscopy	27			
	3.4	Conclusions	28			
	App	endix	28			
		NQR Data for Different Substances	28			
	Refe	rences	29			
4	Signal Processing and Analysis Techniques Applied in Nuclear					
	Quadrupole Resonance					
	4.1	Classification of the Signal Processing Techniques	33			
	4.2	Pre-Processing Techniques	37			
		4.2.1 Signal Averaging	37			
		4.2.2 Quadrature Detection	38			
	4.3	Post-Processing and Analysis Techniques	40			

		4.3.1 Single Channel Detection Techniques 4
		4.3.2 Multi-channel Detection Techniques 4
	4.4	Future Research Directions 4
	4.5	Conclusions 4
	Appe	endix 4
		Signal Processing and Analysis Techniques Classification 4 Signal Post-Processing and Analysis Techniques
		Development Timeline 5
		Development of the Post-Processing Techniques
		Distribution of the Post-Processing Techniques According
		to the Type of Detection [1]
	Refe	rences
5	Mod	aling of Signala Used in Nuclear Quadrunale Desenance
3		leling of Signals Used in Nuclear Quadrupole Resonance stroscopy
	5.1	Free Induction Decay Models
	5.1 5.2	Echo Train Models
	5.2 5.3	Proposal of a New Echo Model
	5.5 5.4	Noise Models
	5.5	Conclusions
		rences
6	Stud	y of the NQR Signal Processing and Analysis Algorithms
	6.1	Description of the Algorithms Chosen for the Analysis
	6.2	Proposal of a Multi-criteria Detection Algorithm
	6.3	Comparative Analysis of the Signal Processing and Signal
		Analysis Algorithms 7
		6.3.1 Analysis Procedure and Performance Indicators 7
		6.3.2 Implementation of Comparative Analysis
		6.3.3 Comparative Analysis Results
	6.4	Conclusions 9
	Appe	endix 9
		Quadrature Detection 9
	Refe	rences 9
7	Anal	lysis of Nuclear Quadrupole Resonance Response Signals 9
	7.1	Description of the Analyzed Signals
	7.2	Defining the Signal Features
	7.3	Statistical Analysis of Data
	7.4	Conclusions
	Appe	endix
	TT	Signal Acquisitions in Different Scanning Scenarios
		Statistical Analysis of the Data Set
	Refe	rences

Contents

8	Deve	lopment o	f Signal Analysis Algorithms for NQR Detection	109
	8.1	Selection	of the Investigated Algorithms	109
	8.2	Impleme	ntation of the Signal Analysis Algorithms	114
	8.3	Training	and Evaluation of the Signal Analysis Algorithms	122
	8.4	Optimiza	tion of the Proposed Algorithm	125
	8.5	Conclusi	ons	131
	Appe	ndix		132
		Source C	ode of the Functions Used to Generate the Deep	
			Models	132
		<u> </u>	Curves for the Developed Algorithms	138
			Model Optimization Results	139
	Refer	ences		140
9	Solut	ions to Im	prove NQR Detection	143
	9.1		zation of the Optimized Algorithm Using Transfer	
				143
	9.2	Noise Re	duction Using Autoencoders	146
	9.3	Conclusi	ons	151
	Appe	ndix		151
			Code of the Functions Used to Generate	
		the Auto	encoder Models	151
	Refer	ences		152
10	Impl	ementatio	n of a Signal Pre-processing, Processing	
			ystem for Nuclear Quadrupole Resonance	153
	10.1		e Implementation of the Detection System	153
	10.2	Software	Implementation of the Detection System	154
		10.2.1	Embedded System Firmware	156
		10.2.2	Embedded System Interface	157
		10.2.3	Spincore Module Interface	158
			Database Interface	158
		10.2.5	Interface with External Applications	160
		10.2.6	Application Core	161
			Graphical User Interface	162
			Implementation of the Detection Application	164
	10.3		on of the Detection System	166
			Evaluation of the Radio Frequency Switch	166
			Detection Limits	167
			Ferrite Core Improvement	168
			Evaluation of the Signal-to-Noise Ratio	169
	10.4		ons	173
	Pofer	ences		174

Abbreviations

ACC	Accuracy
AE	Autoencoder
AI	Artificial Intelligence
ALE	Adaptive Line Enhancement/Adaptive Line Enhancer
ALS	Alternating Least Squares
AML	Approximate Maximum Likelihood
ANC	Adaptive Noise Cancellation/Adaptive Noise Canceller
APES	Amplitude and Phase Estimator
API	Application Program Interface
AR	Autoregressive
ARMA	Autoregressive Moving Average
AU	Arbitrary Unit
AUC	Area Under Curve
BICETAML	Beamforming-based Interference Cancellation Echo Train
	Approximate Maximum Likelihood
CAPA	Capon Amplitude and Phase Estimator Average
CAPES	Capon Amplitude and Phase Estimator
CMA-ES	Covariance Matrix Adaptation Evolution Strategy
CNN	Convolutional Neural Network
CNN-LSTM	Convolutional Neural Network Long Short-Term Memory
cNQR	Classical NQR
ConvAE	Convolutional Autoencoder
ConvLSTM	Convolutional Long Short-Term Memory
CPMG	Carr-Purcell-Meiboom-Gill
CS	Clonal Selection
c-SEAQUER	Conventional-Subspace-based EvaluAtion of Quadrupole reso-
	nance signals Exploiting Robust methods
CTLMS	Continuous Time Least Mean Squares
CUDA	Compute Unified Device Architecture
CW	Continuous Wave
DB	Database
DBN	Deep Belief Network

DCRCB-GLRTDoubly Constrained Robust Capon Beamformer-Generalized Likelihood Ratio TestDEPICDual-channel Estimation of Phase and amplitude for Interfer- ence CancellationDFTDiscrete Fourier TransformDLDeep LearningDLLDynamic-Link LibraryDMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutaneDNNDeep Neural Network
DEPICDual-channel Estimation of Phase and amplitude for Interfer- ence CancellationDFTDiscrete Fourier TransformDLDeep LearningDLLDynamic-Link LibraryDMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutane
ence CancellationDFTDiscrete Fourier TransformDLDeep LearningDLLDynamic-Link LibraryDMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutane
DFTDiscrete Fourier TransformDLDeep LearningDLLDynamic-Link LibraryDMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutane
DLDeep LearningDLLDynamic-Link LibraryDMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutane
DLLDynamic-Link LibraryDMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutane
DMADemodulated ApproachDMNB2,3-Dimethyl-2,3-dinitrobutane
DMNB 2,3-Dimethyl-2,3-dinitrobutane
DNN Deen Neural Network
DNN Deep Neural Network
DNN-AE Deep Neural Network Autoencoder
EC Ensemble of Classifiers
EFG Electric Field Gradient
EGDN Ethylene Glycol Dinitrate
EI Expected Improvement
EPIC Estimation of Phase and amplitude for Interference Cancella-
tion
ESPIRE Exploiting Spatial diversity and Polymorphism In Robust
Estimation (of NQR signals)
ESPRIT Estimation of Signal Parameters via Rotational Invariance
Technique
ET Echo Train/Extra Trees
ETAML Echo Train Approximate Maximum Likelihood
ETCAPA Echo Train Capon APES Average
ET-ESPRIT Echo Train-Estimation of Signal Parameters via Rotational
Invariance Technique FDR False Discovery Rate
FETAML Frequency-selective Echo Train Approximate Maximum Like- lihood
FFT Fast Fourier Transform
FHETAML Frequency-selective Robust Echo Train Approximate
Maximum Likelihood
FICAML Fourier analysis-based Interference Cancellation Approximate
Maximum Likelihood
FID Free Induction Decay
FLSETAML Frequency-selective Least Squares Echo Train Approximate
Maximum Likelihood
FN False Negative
FNR False-Negative Rate
FODETAML Frequency-selective Offset-Dependent Echo Train Approxi-
mate Maximum Likelihood
FOR False Omission Rate
FP False Positive
FPGAField-Programmable Gate Array

FPR	False-Positive Rate
FRETAML	Frequency-selective Robust Echo Train Approximate
	Maximum Likelihood
FSAML	Frequency-Selective Approximate Maximum Likelihood
FSMC	Frequency-Selective Multichannel detector
FT-NQR	Fourier Transform NQR
GA	Genetic Algorithm
GBT	Gradient Boosted Trees
GDDR	Graphics Double Data Rate
GP	Gaussian Process
GPIO	General-Purpose Input/Output
HETAML	Hybrid Robust Echo Train Approximate Maximum Likelihood
HMTD	Hexamethylene Triperoxide Diamine
HMX	High Melting Explosive/Her Majesty's Explosive/High-
	velocity Military Explosive/High-Molecular-weight RDX
I2C	Inter-Integrated Circuit
ICAML	Interference Cancellation Approximate Maximum Likelihood
ICETAML	Interference Cancellation Echo Train Approximate Maximum
	Likelihood
ICFETAML	Interference Cancellation Frequency-selective Echo Train
	Approximate Maximum Likelihood
IDE	Integrated Development Environment
ILSVRC	ImageNet Large-Scale Visual Recognition Challenge
IMS	Ion Mobility Spectrometry
ISR	Interference-to-Signal Ratio
JSON	JavaScript Object Notation
k-NN	k-Nearest Neighbour
LMS	Least Mean Squares
LNA	Low-Noise Amplifier
LS	Least Squares
LSETAML	Least Squares Echo Train Approximate Maximum Likelihood
LS-FRETAML	Least Squares-Frequency-selective Robust Echo Train Approx-
	imate Maximum Likelihood
LSTM	Long Short-Term Memory
M3L	Model-Mismatched Maximum Likelihood
MDMA	3,4-Methylenedioxymethamphetamine (Ecstasy)
MFD	Multi-criteria Fourier-based Decision algorithm
ML	Machine Learning
MLH	Maximum Likelihood
MSWF	Multi-Stage Wiener Filter
MUSIC	Multiple Signal Classification Spectral Estimation
NG	Nitroglycerin
NLS	Nonlinear Least Squares
NMOS	Negative-channel MOS
NMR	Nuclear Magnetic Resonance

	•	٠	•
XV	1	1	1
	-	-	

NN	Neural Network
NORRDIQ	Noise and RFI Removal for Detection In QR applications
NPAPS	Non-Phase-Alternated Pulse Sequence
NPV	Negative Predictive Value
NQR	Nuclear Quadrupole Resonance
NS	Negative Scan
ODETAML	Offset-Dependent Echo Train Approximate Maximum Likeli-
	hood
PAPS	Phase-Alternated Pulse Sequence
PASLSE	Phase-Alternated Spin-Locked Spin Echo
PCC	Pearson Correlation Coefficient
PETN	Pentaerythritol Tetranitrate
PIN	PIN diode
PNP	PNP bipolar transistor
PostPA	Post-Processing and Analysis
PPV	Positive Predictive Value
PS	Positive Scan
PSL	Pulsed Spin Locking
QCPMG	Quadrupolar Carr–Purcell–Meiboom–Gill
RAM	Random Access Memory
RCB	Robust Capon Beamformer
RCDAML	Robust Correlation Domain Approximate Maximum Likeli-
	hood
RDX	Hexogen
ReLU	Rectified Linear Unit
REMIQS	Robust Estimation of MultIple polymorph QR Signals
ResNet-34	Residual neural Network-34
RESPEQ	Robust Evaluation using Subspace-based methods of Polymor-
τ.	phic nuclEar Quadrupole signals
RETAML	Robust Echo Train Approximate Maximum Likelihood
REWEAL	Robust Evaluation With conic subspace constraints of Estima-
	tion of Approximate maximum Likelihood
RF	Radiofrequency/Random Forest
RFI	Radio Frequency Interference
RLS	Recursive Least Squares
RMS	Root Mean Square
RNN	Recurrent Neural Network
ROC	Receiver Operating Characteristic
RTDAML	Robust Time Domain Approximate Maximum Likelihood
RX	Reception
SA	Simulated Annealing
SAMP	Spectral Average to Maximum Peak
SCB	Standard Capon Beamformer
SE	Spin Echo
5L	Spin Leno

SEAQUER	Subspace-based EvaluAtion of Quadrupole resonance signals
SF	Exploiting Robust methods Spectrometer Frequency
SLMP	Spin-Locked Multi-Pulse
SLMF	•
	Spin-Locked Spin Echo Seguential Model Based Ontimization
SMBO SMF	Sequential Model-Based Optimization
	Spectral Maximum Frequency
sNQR SNR	Stochastic NQR
SOI	Signal-to-Noise Ratio
~ ~ ~	Signal Of Interest
SORC	Strong Off-Resonance Comb
SPA SPI	Signal Processing and Analysis
	Serial Peripheral Interface
SQUID	Superconducting Quantum Interference Device
SRAR	Spectral Regions Average Ratio
SRO	Super-Regenerative Oscillator
SSD	Solid-State Drive
SSFP	Steady-State Free Precession
SVM	Support Vector Machine
SW	Spectral Width
TATP	Triacetone Triperoxide
THC	Tetrahydrocannabinol
TN	True Negative
TNR	True-Negative Rate
TNT	Trinitrotoluene
TP	True Positive
TPE	Tree Parzen Estimator
TPR	True-Positive Rate
TX	Transmission
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
VGG-16	Visual Geometry Group-16
WICAML	Wavelets-based Interference Cancellation Approximate
WDE	Maximum Likelihood
WPF	Windows Presentation Foundation
WURST-QCPMG	Wideband Uniform Rate Smooth Truncation-Quadrupolar
VAMI	Carr–Purcell–Meiboom–Gill
XAML	Extensible Application Markup Language

Chapter 1 Introduction

The last decades have seen an unprecedented increase in global terrorism and organized crime, especially in the area of drug trafficking. The global terrorism database indicates over 10,000 incidents in 2017 alone [1], and recent events include the bombings from Sri Lanka, 21 April 2019, Kabul, 19 August 2019 or Beirut, August 4, 2020. In 2017, more than 140 tons of cocaine and 5 tons of heroin were reported to be seized in the European Union [2]. Figures 1.1 and 1.2 illustrate the evolution of heroin trafficking and terrorism at European and global level. In this context, a number of prohibited substance control systems have been developed and installed in airports, customs, post offices and border checkpoints to combat illegal activity and increase the safety of citizens.

The detection techniques applied range from trace detection, based on ion mobility spectrometry, chemiluminescence, colorimetric tests or mass spectrometry, to the detection of masses of substances, based on imaging techniques (X-rays, millimeter waves, computed tomography or terahertz waves) and nuclear techniques (thermal/fast neutrons, nuclear magnetic resonance or quadrupolar nuclear resonance). Also, there are various methods of signal processing and analysis, depending on the detection technique applied. They include statistical algorithms for signal detection and estimation, spectral processing, adaptive filtering, dedicated image processing algorithms or advanced signal analysis and recognition techniques based on machine learning (ML).

Nuclear Quadrupole Resonance (NQR) has been acknowledged as a technique for scanning prohibited substances that can meet the high requirements of security checkpoints. It has also been applied in landmine detection and its use is justified by the fact that there are currently over 100 million active landmines worldwide, killing or injuring, on average, 5,000 people annually [4].