Pro Jakarta Persistence
in Jakarta EE 10

An In-Depth Guide to Persistence
in Enterprise Java Development

Fourth Edition

Lukas Jungmann
Mike Keith

Merrick Schincariol
Massimo Nardone

Apress:

Pro Jakarta Persistence
In Jakarta EE 10

An In-Depth Guide to Persistence
in Enterprise Java Development

Fourth Edition

Lukas Jungmann
Mike Keith

Merrick Schincariol
Massimo Nardone

Apress’

Pro Jakarta Persistence in Jakarta EE 10: An In-Depth Guide to Persistence in
Enterprise Java Development

Lukas Jungmann Mike Keith

Prague, Czech Republic Ottawa, ON, Canada

Merrick Schincariol Massimo Nardone

Almonte, ON, Canada HELSINKI, Finland

ISBN-13 (pbk): 978-1-4842-7442-2 ISBN-13 (electronic): 978-1-4842-7443-9

https://doi.org/10.1007/978-1-4842-7443-9

Copyright © 2022 by Lukas Jungmann, Mike Keith, Merrick Schincariol,
Massimo Nardone

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Steve Harvey on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484274422. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7443-9

To Bdra, Tobidas, Sofie and Mikulds.
I love you.

—Lukas

Table of Contents

About the AUtROrS........ccusmmismmmssnmmsasmssanmsnssssssasssass s sansssassssnsssansssansssansnas xvii
About the Technical REVIEWETccussusssassssassssnsssasssssssssssssssssssssssnssssnsssassssasssansssans XXi
AcknNoWIedgmentsccccuusemmmmmssssnnmmsssssnnssssssnssssssssnsnssssssnnnssssssnnnssssssnnnsssssnnnnssssnnns Xxiii
Chapter 1: Introduction..........ccccminismmnmnnssssnnmmmssssnmmssssssmmsssssssesssssnne s s 1
Relational DAt@DasESccevererrenerrnnerinesrse s sr e s 2
Object-Relational MapPing........cccveerrererrierierienessersese s s sesse e ssssessesessesessessessessssessessesasssssessessens 3
The Impedance MiSMALCHcccevivriririer e s 4

Java SupPOrt fOr PErSISTENCEcvevuivercerere et sresr e se e ae e e e naennens 11
Proprietary SOIUTIONS........covirririere s serere s e sa e e sae s e e sae e e e s nne s 11
UDBC ..ttt R E A e e e 13
ENterprise JAVABRANS.........cucvvverererirserere e sesse e se s e s sse s s e e saesae e saesae s s e s saesn e e s e nne s 13

B LT = 0] (=T O 15

Why Another STANard?cccveevievrrririerererrerere s s ssesse e s e sseseessssesaesaens 15
The Jakarta PersiStENCE APco e 17
History of the SPeCifiCationccvvvrerrinc e 17
OVEBIVIBW.....cucereseeseecseses e e se e s se s e e e s e e ne e s R e n e e nrnne e s 22
SUIMIMAIY.....eeeeeeece s r e e e s s e s ae e e e e e e e e s Re e s e e e se e e e nse e e re e nen e e nnnnees 25
Chapter 2: Getting Started.........cccusmmmmnnnmmmmmnnsesnmmmsssnmssss————————————— 27
ENLILY OVEIVIBW ...ttt 27
PerSiStabilitycccueeerriierriesrrese s ————————— 28

[0 12T 1 OSSO 28
TranSACHONANILYcovveeereerese s nan e 29

(€T 11111 TSSO 29

TABLE OF CONTENTS

Entity Metadata. ... s 30
ANNOTALIONS ... 30
XIVIL. oot E e e e R nan 32
Configuration DY EXCEPLION.cccivvrieriererieserseres s sere s e e s e ssessesassessessessssessessesaesassensesaens 32

Creating an ENTitY........ccccvvvierienenrerere s sererseses e ssesse s sessessessesas e s e saesaesesensesaesassesnesaeseessnnenaesaes 33

ENtity MANAQETot e e e e e e e e s 36
Obtaining an Entity ManNager ..o s e s ssesessessesnens 38
Persisting an Entity........cccovorcnininncrn e 39
FiNding an ENtity.......cccocvieniinsri st 40
Removing an ENtity........cccoviivniiinn e e 41
Updating an ENtity ..o e 42
L LT T (o 1T 43
QUETIES .uvuvreucusssreseasssssesss s e s bbb s b d et 44

Putting [t All TOGETNET ..o e e 45

(a1 o 1T N L o S 48
e ES Y (T4 T o P 48
PersiSteNCe ArCRIVEcovceeeeer e 50

SUMIMAIY....cttieeteeserse s e e R e R e e e e e Re e s R e sen e e e Re e e se e nen e nrnrnnnns 50

Chapter 3: Enterprise Applications..........ccccnnmmmmmmmnnnnnmmmmmsssssssnnmmmssssssssssssesnes 31

Application Component MOEISccccveverrrierierrserserere s s s s s e s e ssessessssessessessesessessens 52
SESSION BRANS.......cecueerererreeesese s se e e a s a s ne e p e s 54
Stateless SESSION BEANScccccvrrriienisirerssesse s sessans 55
Stateful SESSION BEANS..........cccccererereneere e 59
Singleton SESSION BEANS ... e e 63
B3] (-] TSR 65
Dependency Management and CD............ccovoenennenernsssse e 67
DePendenCy LOOKUP ...c.ccceririrrirere s sese ettt s b s st s st 67
Dependency INJECLIONccoverererrrererese s 70
Declaring DEPendENCIES.cccourererrserrrererese s s s nrens 72

TABLE OF CONTENTS

CDI and Contextual INJECTIONccvcerereeierierere s sere e s e s sa e sesae e e e e nne s 75
CDI BEANScvvriueueesesessssssssesesessssess s s sesss s s s e s se s s sesa s ss e sas s s s e snnssssas 75
Injection and RESOIULION ... e e s 76
SCOPES ANA CONTEXLS ...veveererereertrrerereste s s ssesrese s e s e s saese s e s e s s e se s e saesaese e e saesaesre e enenaesans 77
Qualified INJECTION......covve e e 78
Producer Methods and Fields...........ccocovrnncnnennsss e sessssssas 79
Using Producer Methods with Jakarta Persistence RESOUICES........c.ccvvererevrerserserseressenseraens 80

Transaction ManageMENT...........cceeeicrrrrererrrre e s s s e e s s e e e nesaeeanens 82
TranSaction REVIBW ..ot 82
Enterprise TranSactions iN JavVa.........ccccucvverininiinne s ssessss s sessesssssnessennens 83

Putting [t All TOQETNET ..o e 93
Defining the COMPONENL ... s 93
Defining the User INTEIfaCe.........cccvvvcrciincsrcre e 95
PaCKAGING IEUD eeorereircccese i s r s s s s b e s 96

SUMIMAIY ..ttt e e e e e e AR e e e e e e R e A e e e e e Re R e e e e e Re e R e e e e e e nRe e 96

Chapter 4: Object-Relational Mapping.......ccccussseemmmssssnsnmsssssnnsssssssnnnssssssnsnssssssnnnsssss 99

Persistence ANNOTALIONSccoveeicrernesres e 100

Accessing ENtity STALeccvvviere s 101
FIEIA ACCESS....c.ceiriiiciisi s p e 102
PrOPEITY ACCESS....cueiiriirrererir et r e e b e s s e e b s b e e e e e nesaenaean 103
IMIXEA ACCESS.....cucrerrrriseseisesessssssse e e e s b se b e e bR 103

MappPiNg t0 @ TADIE.........ccveereresr e s e r e e nae 106

MapPiNg SIMPIE TYPES ...uvverrerrrrererereses s e sere e ssessssessesaesessessessessssessessesassessessessesssssnsensens 107
COIUMN MAPPINGS...euerrerrerrererrerereserserersessesersessessessssessessessssessessessessssessesaesssssssessessessssesseses 109
[74 =1 (¢ 11 oSO 110
I 0T 0 (=T 112
ENUMEIAted TYPES ...civeriereeririr e s et s e s n e s a e s s s a e s e e a e 113
LT 10Tt LI Y TS 115
TranSieNt STALE ..o —————————————— 116

vii

TABLE OF CONTENTS

Mapping the Primary KeY ... s ses s s s s s sessssssessesessssssesaensnnns 117
Overriding the Primary Key COIUMNcococvvrierenerserere s seressessesessessesaesessessessesssssssessees 118
Primary KEY TYPES ...cccevcierieririersie st s s s s e s s s a e s s s st s s s s sn e snesae s 118
Identifier GENEratioNn...........cccoviiiencnerr s 119

RelatioNSRIPSovere e e e a e e 126
RelationShip CONCEPLS......civirrrererererserere s s s e e s saesas e sse s s e e s saesasne s e saesaesassesaesaes 126
MaPPINGS OVEIVIBWcvueruereeerersersesesserersessssessessesssssssessesasssssessessesssssssessssssssesessesasssssensesses 130
Single-Valued ASSOCIALIONScovverreriererrerersereresessere s s sse s ses e ssesaessssessessesssssssessees 131
Collection-Valued ASSOCIALIONS..........ccvurrrreermsererensssse s sesssssssas 138
Lazy RelationShips. ..o s 146

Embedded ODJECLSccccvcereriirrere s e e s 147

£ 10T 1117 152

Chapter 5: Collection Mappingcccccurussssnnmmsssssnnnmsssssnsssssssssssssssssnnssssssnnnssssssnnnnss 155

Relationships and Element COllECTIONS.........cccerricmrnsernesinese s s sens 155

Using Different COllECLION TYPES ...cccevvererreriererinsirresersesessessessesessessessessssessessesssssssessessesssnsssesaens 159
SetS Or COIIBCTIONS......c.ceererrcce s 160
L T 160
11 0L SO SPRN 165
D0 0 (=T O 183
LR T N 185

3T E T (L 186

£ 11134 7 187

Chapter 6: Entity Manager.......ccccuseemmmmssssssnmmsssssnnsssssssssssssssssssssssssnssssssssnssssssnnnnss 189

PersiStENCE CONTEXLScoeccrerererereresc e 189

ENtity MANAGEIScovrreeriecreresese e e s s s s e s nesssnenns 190
Container-Managed Entity Managersccoverrenmrenmsnsmsssesesssesessessssssessssesessssssssssssenes 190
Application-Managed Entity Managersc.ccovrererenernsesessesesesessssesesesessesessssesessssessenens 196

Transaction Man@gemENt...........cccueerenernsesrnesessse s sr s e nnenens 199
Jakarta Transactions Transaction Management ..o 200
Resource-Local TranSaClioNS..........cuveerveerrnsesesesesnse s s e sennes 216
Transaction Rollback and Entity State..........couevrienninnnsnssesnese e 219

viil

TABLE OF CONTENTS

Choosing an Entity ManAQETcccevvverrrreriernnerseresessssesessessssesessesssssssessessessssessessesssssssessesses 222
Entity Manager OPerations..........cucoicrninnennnsers st 222
Persisting an Entity........cccovcrciiniinsncn e 223
T T o LT = 1 R 225
Removing an ENtity......ccooeiiiiriece e s e s 226
Cascading OPEratioNS.........ccuvvereererrerreressssersere e s s s sa s se s sae e s e saesaese s e ssesaesasnssnesaeses 228
Clearing the Persistence CONEXLccvvvvvrierererinrere s sere e s se e e sne s 232
Synchronization with the Database ... ——— 233
Detachment and MErging.........ccoverererernsmresseserese s s sessssesse e sessesenns 236
D23 2T 1 T 1 TS 236
Merging Detached ENtItiesccoeeerreererererese s 239
Working with Detached Entities ..o 244
£ 7 o S 264
Chapter 7: USING QUEIIES .uuveursssassssssnssssanssssanssssanssssansssssnnssssnsssssnsssssnnssssnnssssnnssssns 267
Jakarta Persistence QUEry LANQUAGEc.ccovrerrererreresrersessessssessesessessssessessesssssssessessesssssssessenes 268
GELtiNG STAMEM ..o ————————— 269
FItEring RESUIS.....ccuccirererrerir et s e nnes 270
Projecting RESUILS......cccceririiririre st s e e 270
JOiNS BEtween ENtIitiesS ... s 270
AQOregate QUETIBS ...ciivirieriererrerersere s ses e s s e se s s b e e s b e s e s b s b e e s e ae e e e s e aennen 271
QUETY Par@mMETerS.....cccerueviirireresiesessere s ses s see e sae s se s s st e e s e sae st e e s sne s 272
DEfiNiNG QUETIES ..vvueruereriererersssirsere e ses e sse s s e s e s saess s e ssesaese s e s saesa e e s e saesaese s e saesaesassensesnees 272
Dynamic QUEry Definition........cccevierririerienensersese s s s e e e s saesessesnesaes 273
Named Query DEfiNItioNcccvvevienninierierrrre e s sae e e eaes 276
Dynamic Named QUETIESccuvverererirrereresessesessessssessessesaesessessessessssessesasssessssessesasssssessesses 278
Parameter TYPESciceeveeririirsie st sses e s s s sa e s s s e b b s e e na e e ae e e et e n e ae e e an 280
EXECULING QUETIES ...eeueveciecrtr ettt st et e e et se e e 283
Working with QUEry RESUIS ... 285
Stream QUErY RESUIES........ccvierircrir sttt et e 286
(00T g = To 1 o OO 291

ix

TABLE OF CONTENTS

Queries and Uncommitted Changescuvernvernenininennsesine s ses e sseses 294
QUETY TIMEOULS......ceeriririeeererisis et se st b e et ne s 297
Bulk Update and DEIELe ... e 298
Using Bulk Update and Delete..........cccvevvirineninnnnne s s s se s ssssessesne s 299
Bulk Delete and RelationShips..........ccvcevereriirierne s se s e e s e s see s ssesseens 302
00T T 11RO 303
QUETY BESE PraCliCesS......ccocrurrrrrueerereresssesesess s s se s ss s e sesss s s s sessnsessas 305
T T B 0T g 305
REPOIT QUEKIES....ciueieirerie ettt s s bbb e e s a e e nns 306
VENAOr HINES ... s s 307
StAteIESS BEANS.......coceeeeeecrercreree e e 307
Bulk Update and Delete........cocvrnncnicirsncn st 308
Provider DIiffErBNCEScocoerrererererere s 308

£ 111 T S 309
Chapter 8: Query LangUAgEeccuusssumsssanssssansssssnssssansssssnsssssnsssssnsssssnnssssnnssssnnssssns 311
Introducing Jakarta Persistence QL.........ccccoeverrrnernnnsene s sessese s sesse s e sessessessessssessesaens 311
L 011110 0 O 313
Example Data MOdEL............ccovrieneiiiin s 314

e 11101 A o] o) o L] 315

R Te] T 00T - 318
SELECT CIAUSE.vrvrerererereseseseseessesessssssssssssssssssssssssssssssssssssasas 320
FROM CIAUSEc.covvrieeceresesssssssese e ssss e se s sa s e s sesssnsssss e 324
WHERE CIAUSEcocueuirirnrnrsiresssssesesesesessessssssssssssssssssssssssssssanas 335
Inheritance and POIYMOIPRISIM........ccvceriniirire e s sn e sne s 343
SCAIAr EXPIESSIONS ...vevereerersersesesseressessssessessesssssssessessesssssssessessssssssssessesssssssessesssssssensessens 346
ORDER BY ClAUSEcucueuiuirsrersinssssssesssesesesesesesesssesssssssssssssssanas 352
AQOregate QUEKIEScccevererrirerine s e e bbb s bbb 353
Aggregate FUNCHIONS ... e e s s 355
GROUP BY ClAUSEcucueuerirersrsrnssssssesesesesesesesessasasanas 356
HAVING ClAUSE.......coviviuereresessssssese e e s ss s sn s sesss s s sesssssssssasens 357

TABLE OF CONTENTS

UPAate QUEKIES ...cvvueerieiriec et e e e 358
DEIELE QUETIES....ceiererrereeereresrse e r s a s a s nesp s s 359
SUMIMAIY ..t s b e e e e b b e e e e Re e A e e e e e Re e Re A e e e e e Re R e e e e naennn 360
Chapter 9: Criteria APl........ccciiiciiniisesessnnnnre s s ssssssnsseess 361
LT S 361
THE CHEEHA APL......eeveeeeeceere e s e s sr e ne s e e nne e 362
Parameterized TYPES ...cccveeerrereresere s s nre s 363
DYNAMIC QUEKIEScuveveeereeerenesesesesee s s se s e s ses e e s e s s e se s se s e sss e senss e nssenenns 364
Building Criteria APl QUEKIEScveeerrererrnsesrssesessssesrssessssess e e ssssessssessssssessassssssesssssssssssssesssssnns 368
Creating a Query Definitioncoocvnrennesrns s 369
BASIC SITUCLUE ...t ne e 370
Criteria Objects and MUtabilitycccueeerrenrinnnnes s 371
Query Roots and Path EXPreSSiONS.........ccueeernseresenesesssensssssssessssesssssssssssssssssssssssssssssssanes 372
THE SELECT ClAUSE......c.cveeerreeerreeresesessesessssessssessssessssesessssssssssssssssssssssssssesssssnssssssssnssssssenens 375
The FROM CIAUSEcccovreererrenerreesesesessesessssssesssnssssssssnsssssssnnns 380
THEe WHERE CIAUSEccceererreerreeresesessesessssesessesesssssssssessssssssssssssssssssssssssssssssnsssssssessssssenees 382
BUIIAING EXPIESSIONScoveeerrrrerersesesreesssessssesessssessssssessssssssssssssesssssssssssssssnsssssssssssnssssssssnnes 383
The ORDER BY ClAUSE........ceererreererererseersesesesesesseses e sessesessssessesesssssessssssssssssesssssssssssenens 399
The GROUP BY and HAVING ClAUSES........ceeeerersererenerreerensesesesessesessssssessesssssssssssssssssssssenens 400
Bulk Update and Delete ... sn e s sn s sne s 401
Strongly Typed Query DefinitionScccvirieriinine e 402
The Metamodel APL..........cooii 403
Strongly Typed APl OVEIVIBWcceveeerrniesrssesessesessssessssesssss s sessssessssssesssssssssessssasssssssssnns 405
The Canonical Metamodel..........ccouceevenerinernesrne s 407
Choosing the Right Type of QUETY........ccvieeieriinnre e ees 410

£ 1§14 R 411

xi

TABLE OF CONTENTS

Chapter 10: Advanced Object- Relational Mapping.......cccussemrenssssssnsssssssnsssssssnnns 413
Table and ColUMN NAMES ... 414
Converting Entity STateccoveerrerrerererer e 416

Creating @ CONVEIEN..........ccvvreiirir et e e s 416
Declarative Attribute CONVErSioNcoooeeeirenrer e 417
AUtOMALIC CONVEISION ... e sre e e e nnenens 420
Converters and QUETIESccoceeerrerererererrese s sesese s se e ses e sse e se e ses e e sasessens 422
Complex Embedded ODJECTSccrveerererereerncre e 423
Advanced Embedded Mappings ..o enes 423
Overriding Embedded RelationShipscccvverrenenenernsesesesesese s s 425
ComPOUNd Primary KEYS.......cvorerernsmressesessesmsessesssssssssssesesssnns 427
ID ClASS....ueuerrenerensesessesersssesessesessasessssesessesesse e sss e sesse e sse e sen e ssnsssesse e sensesnnseessesenensssnssnensanes 427
EMDEAdEd ID ClaSS.......ccvererrrererenerreesrssesssesesssse s sessesssssssssssessssssessssssssssssssssssssnssssnsssnnes 430
DeriVed IHENTITIEIS.....cueeerree s e nr s 432
Basic Rules for Derived [dentifiersccuvernesernssnsesssesess s sessnses 433
Shared Primary KeY........cccvuinenernsessesessse s sss s s sssss s sessssssssssssssesesssssssssensanes 434
Multiple Mapped ARFDULEScccoeirirer e 436
Using EMDeddedId...........ccoveerererecrneserese s 438
Advanced Mapping EIBMENTS........c.ouccvvererinernsessnesessse s sss s e s ssssessssssessssessanes 441
Read-0nly MappPingsccoceuerrrenerenerrssesssesessse s ssssesssssse s s ssssessssssnssssessssessssesssssssssases 441
OPLONANTY .o —————————— 443
Advanced RelationShiPS.......cccvveveiririenenr s s sa s sae e nne s 444
USING JOIN TADIES......ceiererieciriere st s e e a e s a e e s nesa e e e nne e 444
Av0iding JOIN TADIEScccvvveruererirsere s sr s s s a e e s s a e nen 445
Compound JOiN COIUMNS........ccecerirtrrirere st serse e s sae e s s ae e e e sae e 446
Orphan REMOVALccccvuivieiiriere e s s se e s sa s a e e sae st s ae s a e e nae e 449
Mapping Relationship STate ... 451
L]0 L = TR 454

xii

TABLE OF CONTENTS

INNEHTANCEcvicccer e 458
Class HIBrarChies.........cuuuuenmrerermsnesesesssssssssse s s se s s snssssnses 459
INheritance MO IS ... s 464
MiXed INNEITANCEcccerererrrerere e 474

£ 1134 7 478

Chapter 11: Advanced QUEIIEScusourrsssnrmssnsmsssnsesssnsesssnsesssnsesssnsesssnnesssnnssssnnssssas 481

SQL QUETIES ...cueererreseneeseressasssesesessssssssesssessssessssssessssesssssssssssesssssssssssssssassssssnssssssssssessasensans 481
Native QUEriES VS. JDBC ... 483
Defining and Executing SAL QUETIEScoceererereesmsereresssesesesessssssssesesessssssssssesessssssssnesens 485
SQL ResSult Set MaPPINGccoeoeeereeirrrcrircrire s ses e e s e s se e e se e e s s sas e e s 489
Parameter BiNAiNG........ccocviiiienininsin e st s s s s 498
SEOrEA PrOCEAUIES........ceeeeereeceree e ne e 499

ENLItY GraPNS.....cceccceeecerecr e e 503
Entity Graph ANNOTALIONSccoviieececrrc e s 506
ENtity Graph APL........ooeeeeee e e 514
Managing Entity Graphsccoveenerenernsenensesesese s sesesese s ses e ses s sessesesssssssssesenses 518
USing ENtity Graphs ..o s 520

B30T 1117 S 524

Chapter 12: Other Advanced TOPICS.....cuueemmrsssssnnnrssssanssssssssnnnssssssnnsssssssnnssssssnnnnss 525

LifeCyCle CalIDACKSccveeruerrrririereresensenesesessesessessesessessesaesessessessessssessessesssssssessessessssssesaens 525
LI (=T [T T 1) S 525
Callback METhOUS ..o s 527
o1 U] (=T T £ 529
Inheritance and LIfeCYCIe EVENTS.......ccccevvvririernsirrere st se s ssssessesne s 533

ValiALION ... e 539
USING CONSIIAINEScvereevieierere s sessere s s s sse e e s s sae s se s s s e e s saesaese s e ssesaesa e e snesnees 540
LYo T 10 IR Lo F LT O 542
Validation GrOUPS.....ccueverreriererserersersessesssssssessessessssessessesssssssessessessssessessesaesssnessessesssssssensesaes 543
Creating NeW ConSIrainNtS.......ccccvivveririerennsirsere s sese e s sss e s saesss e ssesnessssessesne s 545
Validation in Jakarta PersiStence ... 548

xiii

TABLE OF CONTENTS

Enabling Validation ... s 550
Setting Lifecycle Validation GrOUPSccccvvrervererenesserseressssessessessssessessessessssessessesssssssessees 550

(0] T 1T =T oo OSSO 552
Entity OPerations ..o e s 552
ENTITY ACCESS ...uveeeriiriree et rer et r s s a e s s e s s e e s e e e e s e e e s e e sae e e e aesneeaenanans 552
Refreshing Entity State ... 553
[T o S 557
L0011 T3 (e T o O 557
PeSSIMISTIC LOCKING......crreerrrcreriresenesesse s s e sesse e ses e sesss e sssessnnes 571

072 T 1 o S 577
Sorting Through the LAYETScccvveevreserese s s sesss s sessssessssessnses 577
SNArEd CACNEceeereeereerenesere s ne e nr s 580
ULIlILY ClASSES......errrrererreerreerrsessssesesss e ssssesssse e sa e srs e s e s se s e e s e sn s e e s e 586
PerSiStENCRULIL.......cceeerrerernerrn e re e nr s 586
PersistenCeUNItULIL.........ccvieercrr s 587

BT 11134 OO 588
Chapter 13: XML Mapping FileS......ccceurusssnnnmmmssssnnsssssssnsssssssssnssssssssnssssssssnssssssnnnnss 591
The Metadata PUZZIE............ccorereeeeerece e 593
The MapPING FIlecccvereerrrr e e e s e e e 594
Disabling ANNOTALIONSccoveceerererescr e 595
Persistence Unit DEfaUILSoocoereecreecrrcree e 598
Mapping File Defaulls..........couciriinnnninr s s 603
Queries and GENEIALONS........c.cvvureesererereseessse e e se e se s sa s ne s nnns 606
Managed Classes and MappingsS.........ccvrrnineriennnmnsne s ssssessessessssessessesnes 613

0] 1] T 648
£ S 651

Xiv

TABLE OF CONTENTS

Chapter 14: Packaging and Deployment........c.ccccmmmmssmnmnmmssssnnsmssssssnssssssssssssssssnnnss 653
Configuring Persistence UNILS........ccccvrecrnrrnicnre s ris e ses et se s e sens 654
Persistence Unit NAME ..o 654
TraNSACTION TYPE...ciueiieir st b p e s p e e nn 655
PerSiStENCE PrOVILEN........cociireercer e 656
DALA SOUICE ... b 657

1 To] 0] T T TSR 660
MANAGEA CIASSES ...uveuererrerrererersersesessersersessssessessesssssssessesasssssessessesssssssessessessesessesssssssensesaes 661
Shared Cache MOUEccouieerirererreesesr e 665
Validation MOE.........ccoiiiiere e 666

D0 (o 10T (0] LT S 666
Building and Deploying ... s 667
Deployment Classpath..........cccoeiiinniennieri s s 667
Packaging OPLioNS........ccoeinevninn s e e e s 668
Persistence UNIt SCOPE.......uirrerrerererrerererssseressesseses e saesassessessessssessessessssessessesasssssessesaes 674
OUESIAE ThE SEIVEN ...t e 675
Configuring the Persistence Unit..........ccccovvnininninnn s ns 675
Specifying Properties at RUNTIME. ... 678
System Classpati.........cocvciiinnin s ————— 679
SCHEMA GENEIALION........coveceeceree e ne e 679
The GENEration PrOCESS.......ccoverererererererieseresesese s res s e sre e s e snenens 680
Deployment Properties ... s s se s s s ss s nnas 681
RUNTIME PrOPeriES.....coceier s e 686
Mapping Annotations Used by Schema Generation............cccccvvrinnininnnnnsnsnsesesessenennns 687
UNiQUE CONSTIAINTScoveiriircreresir e e e b e 687
NUIE CONSEIAINTScoeeeeereecrercre e e enre e 689
101 (T 689
Foreign Key CONSEIaintsc.cccviinninininnsn s sn s sasssssessesnes 690

TABLE OF CONTENTS

String-Based COIUMNS........ccuvrerererrereresss s s seessssesse e ssssessessesasssssessesaessssessessessessnsesneses 692
Floating Point COIUMNS........ccvverierertrsere st sere e s s s s sre s s se e sae s e e saesae e s e naennes 693
Defining the COIUMN......coi i a e sae s p e e e e e e aenaes 693
31111117 OO S 695
Chapter 15: TeSHNG..uuuuemmrmsssnnnmmssssnnnssssssnssesssssnnssssssnssesssssnnssssssnnnssssssnnnssssssnnnnss 697
Testing Enterprise Applications.........ccccucrierinnnni s e 697
L] 0T 10 PR 698
Testing QutSide the SEIVEN ... s 700
JUNIE o 702

0T L=] T S 703
TeSHNG ENTIIES ...vceeeceeecere s 703
Testing Entities in COMPONENTS ..o 705

The Entity Manager in Unit TESEScccvoerererernseseneseseseressesesese s s sessesessssessssesessesessenens 708
INtegration TESTINGccceveerresresr e 712
Using the Entity MaNAJENccccorvrernereresersse s se s s sesssssssssessases 712
Components and PersiStENCE.........cccvrniinin e 720

TESE FraMEWOIKSccrercerreeriee s s e se e e e srs e sensnsnssnens 734

BESE PraCliCeSccveierrierine st e e 737

£ 1§14 R 738
1T = 741

About the Authors

Lukas Jungmann is the specification project lead for
Jakarta Persistence and for a number of other Jakarta
Specification projects including Jakarta Activation, Mail,
XML Binding, SOAP with Attachments, and XML Web
Services; contributor to Jakarta Platform, JSON Processing,
and JSON Binding specification projects; lead for a number
of implementation projects of various Jakarta specifications

including EclipseLink, Eclipse Metro, and Eclipse Angus. He
holds a bachelor’s degree in Applied Informatics from the
University of Finance and Administration in Prague, Czech Republic, and has over 15
years of experience working with Enterprise Java-related technologies. He has spoken
at numerous conferences around the world. He is employed as a software developer at
Oracle in Prague, Czech Republic.

Mike Keith was the co-specification lead for JPA 1.0 and a
member of the JPA 2.0 and JPA 2.1 expert groups. He sits on
a number of other Java Community Process expert groups
and the Enterprise Expert Group (EEG) in the OSGi Alliance.
He holds a master’s degree in Computer Science from
Carleton University and has over 20 years of experience in
persistence and distributed systems research and practice.
He has written papers and articles on JPA and spoken at

numerous conferences around the world. He is employed as
an architect at Oracle in Ottawa, Canada. He is married and
has four kids and two dogs.

xvii

ABOUT THE AUTHORS

Merrick Schincariol is a consulting engineer at Oracle,
specializing in middleware technologies. He has a Bachelor
of Science degree in Computer Science from Lakehead
University and has more than a decade of experience

in enterprise software development. He spent some

time consulting in the pre-Java enterprise and business
intelligence fields before moving on to write Java and J2EE
applications. His experience with large-scale systems and
data warehouse design gave him a mature and practiced
perspective on enterprise software, which later propelled

him into doing Java EE container implementation work.

Massimo Nardone has more than 25 years of experience
in security, web/mobile development, cloud, and IT
architecture. His true IT passions are security and Android.
He has been programming and teaching how to program
with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years. He holds a Master of
Science degree in Computing Science from the University of
Salerno, Italy.

He has worked as a CISO, CSO, security executive, IoT
executive, project manager, software engineer, research
engineer, chief security architect, PCI/SCADA auditor,

and senior lead IT security/cloud/SCADA architect for many years. His technical skills

include security, Android, cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile
development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,
Django CMS, Jekyll, Scratch, and more.

He worked as visiting lecturer and supervisor for exercises at the Networking
Laboratory of the Helsinki University of Technology (Aalto University). He holds four
international patents (PKI, SIP, SAML, and Proxy areas). He is currently working for

Cognizant as head of cyber security and CISO to help both internally and externally with

clients in areas of information and cyber security, like strategy, planning, processes,

policies, procedures, governance, awareness, and so forth. In June 2017 he became a

permanent member of the ISACA Finland Board.

xviii

ABOUT THE AUTHORS

Massimo has reviewed more than 45 IT books for different publishing companies
and is the co-author of Pro Spring Security: Securing Spring Framework 5 and Boot
2-based Java Applications (Apress, 2019), Beginning EJB in Java EE 8 (Apress, 2018), Pro
JPA 2 in Java EE 8 (Apress, 2018), and Pro Android Games (Apress, 2015).

Xix

About the Technical Reviewer

Jan Beernink works for Google and is a contributor to several projects related to
OmniFaces. Jan holds an MSc degree in Computer Science from the Vrije Universiteit of
Amsterdam, the Netherlands.

xxi

Acknowledgments

Many thanks go to my awesome and beloved family - my wife Barbora, and my children
Tobiés, Sofie, and Mikulés - for their endless patience and support while working on
this book.

I also want to thank Steve Anglin for giving me the opportunity to work on this
edition of this book. A special thanks goes, to Mark Powers for supporting me during the
editorial process.

Finally, I want to thank Jan Beernink, the technical reviewer of this book, for helping
me make the book better.

—Lukas Jungmann

xxiii

CHAPTER 1

Introduction

Enterprise applications are defined by their need to collect, process, transform, and
report on vast amounts of information. And, of course, that information has to be kept
somewhere. Storing and retrieving data is a multibillion-dollar business, evidenced

in part by the growth of the database market as well as the emergence of cloud-based
storage services. Despite all the available technologies for data management, application
designers still spend much of their time trying to efficiently move their data to and from
storage.

Despite the success the Java platform has had in working with database systems, for
a long time it suffered from the same problem that has plagued other object-oriented
programming languages. Moving data back and forth between a database system
and the object model of a Java application was a lot harder than it needed to be. Java
developers either wrote lots of code to convert row and column data into objects or
found themselves tied to proprietary frameworks that tried to hide the database from
them. Fortunately, a standard solution, the Jakarta Persistence API, was introduced into
the platform to bridge the gap between object-oriented domain models and relational
database systems.

This book introduces version 3.1 of the Jakarta Persistence API as part of the
Jakarta EE 10 and explores everything that it has to offer developers.

One of its strengths is that it can be slotted into whichever layer, tier, or framework
an application needs it to be in. Whether you are building client-server applications to
collect form data in a Swing application or building a website using the latest application
framework, Jakarta Persistence can help you provide persistence more effectively.

To set the stage for Jakarta Persistence, this chapter first takes a step back to show
where we've been and what problems we are trying to solve. From there, we will look at
the history of the specification and give you a high-level view of what it has to offer.

© Lukas Jungmann, Mike Keith, Merrick Schincariol, Massimo Nardone 2022
L. Jungmann et al., Pro Jakarta Persistence in Jakarta EE 10, https://doi.org/10.1007/978-1-4842-7443-9_1

https://doi.org/10.1007/978-1-4842-7443-9_1

CHAPTER 1 INTRODUCTION

Relational Databases

Many ways of persisting data have come and gone over the years, and no concept has
more staying power than the relational database. Even in the age of the cloud, when

“Big Data” and “NoSQL"’ regularly steal the headlines, relational database services are

in consistent demand to enable today's enterprise applications running in the cloud.
While key-value and document-oriented NoSQL stores have their place, relational stores
remain the most popular general-purpose databases in existence, and they are where the
vast majority of the world’s corporate data is stored. They are the starting point for every
enterprise application and often have a lifespan that continues long after the application
has faded away.

Understanding relational data is key to successful enterprise development.
Developing applications to work well with database systems is a commonly
acknowledged hurdle of software development. A good deal of Java’s success can
be attributed to its widespread adoption for building enterprise database systems.

From consumer websites to automated gateways, Java applications are at the heart
of enterprise application development. Figure 1-1 shows an example of a relational
database of user to car.

Relational DB Example:

User to Car
b Jcorype |
|
————1 OpelAstra
1 Massimo Nardenes ———— — "
i il Fiat 500
2 Antti Jalonen S
S— |
3 Mario Faliero TS =
H‘“‘HH T~ 2 FiatPunto

3 Renault

Figure 1-1. User to car relational database

CHAPTER 1 INTRODUCTION

Object-Relational Mapping

“The domain model has a class. The database has a table. They look pretty similar. It
should be simple to convert one to the other automatically.” This is a thought we've
probably all had at one point or another while writing yet another data access object
(DAO) to convert Java Database Connectivity (JDBC) result sets into something object-
oriented. The domain model looks similar enough to the relational model of the
database that it seems to cry out for a way to make the two models talk to each other.

The technique of bridging the gap between the object model and the relational
model is known as object-relational mapping, often referred to as O-R mapping or
simply ORM. The term comes from the idea that we are in some way mapping the
concepts from one model onto another, with the goal of introducing a mediator to
manage the automatic transformation of one to the other.

Before going into the specifics of object-relational mapping, let’s define a brief
manifesto of what the ideal solution should be:

o Objects, not tables: Applications should be written in terms of
the domain model, not bound to the relational model. It must be
possible to operate on and query against the domain model without
having to express it in the relational language of tables, columns, and
foreign keys.

o Convenience, not ignorance: Mapping tools should be used only
by someone familiar with relational technology. O-R mapping
is not meant to save developers from understanding mapping
problems or to hide them altogether. It is meant for those who have
an understanding of the issues and know what they need, but who
don’t want to have to write thousands of lines of code to deal with a
problem that has already been solved.

o Unobtrusive, not transparent: It is unreasonable to expect that
persistence be transparent because an application always needs to
have control of the objects that it is persisting and be aware of the
entity lifecycle. The persistence solution should not intrude on the
domain model, however, and domain classes must not be required to

extend classes or implement interfaces in order to be persistable.

CHAPTER 1 INTRODUCTION

o Legacy data, new objects: It is far more likely that an application will
target an existing relational database schema than create a new one.
Support for legacy schemas is one of the most relevant use cases
that will arise, and it is quite possible that such databases will outlive
every one of us.

e Enough, but not too much: Enterprise developers have problems to
solve, and they need features sufficient to solve those problems. What
they don'’t like is being forced to eat a heavyweight persistence model
that introduces large overhead because it is solving problems that
many do not even agree are problems.

e Local, but mobile: A persistent representation of data does not
need to be modeled as a full-fledged remote object. Distribution
is something that exists as part of the application, not part of the
persistence layer. The entities that contain the persistent state,
however, must be able to travel to whichever layer needs them so that
if an application is distributed, then the entities will support and not
inhibit a particular architecture.

o Standard API, with pluggable implementations: Large companies
with sizable applications don’t want to risk being coupled to product-
specific libraries and interfaces. By depending only on defined
standard interfaces, the application is decoupled from proprietary APIs
and can switch implementations if another becomes more suitable.

This would appear to be a somewhat demanding set of requirements, but it is
one born of both practical experience and necessity. Enterprise applications have
very specific persistence needs, and this shopping list of items is a fairly specific
representation of the experience of the enterprise community.

The Impedance Mismatch

Advocates of object-relational mapping often describe the difference between the object
model and the relational model as the impedance mismatch between the two. This is

an apt description because the challenge of mapping one to the other lies not in the
similarities between the two, but in the concepts in each for which there is no logical
equivalent in the other.

4

CHAPTER 1 INTRODUCTION

In the following sections, we present some basic object-oriented domain models
and a variety of relational models to persist the same set of data. As you will see, the
challenge in object-relational mapping is not so much the complexity of a single
mapping but that there are so many possible mappings. The goal is not to explain how to
get from one point to the other but to understand the roads that may have to be taken to

arrive at an intended destination.

Class Representation

Let’s begin this discussion with a simple class. Figure 1-2 shows an Employee class with
four attributes: employee ID, employee name, start date, and current salary.

Employee

id: int

name: String
startDate: Date
salary: long

Figure 1-2. The Employee class

Now consider the relational model shown in Figure 1-3. The ideal representation
of this class in the database corresponds to scenario (A). Each field in the class maps
directly to a column in the table. The employee ID becomes the primary key. With the
exception of some slight naming differences, this is a straightforward mapping.

(A) (B) (©

EMP EMP EMP
D PK [ID PK [ID
NAME NAME NAME
START_DATE START_DAY START_DATE
SALARY START_MONTH T
START_YEAR T
SALARY

Figure 1-3. Three scenarios for storing employee data

SALARY

CHAPTER 1 INTRODUCTION

In scenario (B), we see that the start date of the employee is actually stored as
three separate columns, one each for the day, month, and year. Recall that the class
used a Date object to represent this value. Because database schemas are much harder
to change, should the class be forced to adopt the same storage strategy in order to
remain consistent with the relational model? Also consider the inverse of the problem,
in which the class had used three fields, and the table used a single date column. Even
a single field becomes complex to map when the database and object model differ in
representation.

Salary information is considered commercially sensitive, so it may be unwise to
place the salary value directly in the EMP table, which may be used for a number of
purposes. In scenario (C), the EMP table has been split so that the salary information is
stored in a separate EMP_SAL table. This allows the database administrator to restrict
SELECT access on salary information to those users who genuinely require it. With such
a mapping, even a single store operation for the Employee class now requires inserts or
updates to two different tables.

Clearly, even storing the data from a single class in a database can be a challenging
exercise. We concern ourselves with these scenarios because real database schemas
in production systems were never designed with object models in mind. The rule of
thumb in enterprise applications is that the needs of the database trump the wants of
the application. In fact, there are usually many applications, some object-oriented and
some based on Structured Query Language (SQL), which retrieve from and store data
into a single database. The dependency of multiple applications on the same database
means that changing the database would affect every one of the applications, clearly
an undesirable and potentially expensive option. It’s up to the object model to adapt
and find ways to work with the database schema without letting the physical design
overpower the logical application model.

Relationships

Objects rarely exist in isolation. Just like relationships in a database, domain classes
depend on and associate themselves with other domain classes. Consider the Employee
class introduced in Figure 1-2. There are many domain concepts that could be associated
with an employee, but for now let’s introduce the Address domain class, for which an
Employee may have at most one instance. We say in this case that Employee has a one-
toone relationship with Address, represented in the Unified Modeling Language (UML)
model by the 0. . 1 notation. Figure 1-4 demonstrates this relationship.

6

Figure 1-4. The Employee and Address relationship

CHAPTER 1 INTRODUCTION
Employee Address
id: int street: String
name: String » city: String
startDate: Date 0..1 | state: String
salary: long zip: String

We discussed different scenarios for representing the Employee state in the previous
section, and likewise there are several approaches to representing a relationship in a
database schema. Figure 1-5 demonstrates three different scenarios for a one-to-one

relationship between an employee and an address.

Figure 1-5. Three scenarios for relating employee and address data

(A)
EMP ADDRESS
PK | ID PK [ID
NAME H@ == =misi= = == OH STREET
START_DATE CITY
SALARY STATE
FK1 | ADDRESS_ID ZIP
(B)
ADDRESS
EMP PK | 1D
PK (1D STREET
NAME ERSEReESSsE OH lomy
START_DATE STATE
SALARY ZIP
FK1 | EMP_ID
(©)
ADDRESS
N EMP_ADDRESS
PK | ID ol L.
= PK,FK1 | ADDRESS_ID
NAME H——OH pkrk2 | EMP ID HO—HH gITTF:{EET
START_DATE STATE
SALARY »

CHAPTER 1 INTRODUCTION

The building block for relationships in the database is the foreign key. Each scenario
involves foreign key relationships between the various tables, but in order for there to
be a foreign key relationship, the target table must have a primary key. And so before we
even get to associate employees and addresses with each other, we have a problem. The
domain class Address does not have an identifier, yet the table that it would be stored in
must have one if it is to be part of relationships. We could construct a primary key out of
all of the columns in the ADDRESS table, but this is considered bad practice. Therefore,
the ID column is introduced, and the object-relational mapping will have to adapt in
some way.

Scenario (A) of Figure 1-5 shows the ideal mapping of this relationship. The EMP table
has a foreign key to the ADDRESS table stored in the ADDRESS ID column. If the Employee
class holds onto an instance of the Address class, the primary key value for the address
can be set during store operations when an EMPLOYEE row gets written.

And yet consider scenario (B), which is only slightly different yet suddenly much
more complex. In the domain model, an Address instance did not hold onto the
Employee instance that owned it, and yet the employee primary key must be stored in
the ADDRESS table. Either the object-relational mapping must account for this mismatch
between domain class and table or a reference back to the employee will have to be
added for every address.

To make matters worse, scenario (C) introduces a join table to relate the EMP and
ADDRESS tables. Instead of storing the foreign keys directly in one of the domain tables,
the join table holds onto the pair of keys. Every database operation involving the two
tables must now traverse the join table and keep it consistent. We could introduce an
EmployeeAddress association class into the domain model to compensate, but that
defeats the logical representation we are trying to achieve.

Relationships present a challenge in any object-relational mapping solution. This
introduction covered only one-to-one relationships, and yet we have been faced with the
need for primary keys not in the object model and the possibility of having to introduce
extra relationships into the model or even associate classes to compensate for the
database schema.

CHAPTER 1 INTRODUCTION

Inheritance

A defining element of an object-oriented domain model is the opportunity to introduce
generalized relationships between like classes. Inheritance is the natural way to express
these relationships and allows for polymorphism in the application. Let’s revisit the
Employee class shown in Figure 1-2 and imagine a company that needs to distinguish
between full-time and part-time employees. Part-time employees work for an hourly
rate, while full-time employees are assigned a salary. This is a good opportunity for
inheritance, moving wage information to the PartTimeEmployee and FullTimeEmployee
subclasses. Figure 1-6 shows this arrangement.

Employee
id: int
name: String
startDate: Date
A
PartTimeEmployee FullTimeEmployee
hourlyRate: float salary: long

Figure 1-6. Inheritance relationships between full-time and part-time employees

Inheritance presents a genuine problem for object-relational mapping. We are no
longer dealing with a situation in which there is a natural mapping from a class to a
table. Consider the relational models shown in Figure 1-7. Once again, three different
strategies for persisting the same set of data are demonstrated.

