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Preface

In the last two decades basic semiconductor research has increasingly focussed
attention away from cubic crystal III-V and II-VI compounds toward the “wide-
bandgap semiconductors” Ga, Al, In binary and ternary nitrides, and silicon carbide.
These smaller anion compounds pack more densely in hexagonal crystals, with the
consequence of very high spontaneous and deformation induced electrostatic polar-
ization.

The importance and potential functionality of was rapidly recognized in the late
1990s. In 2000 the Multi-disciplinary University Research Initiative (MURI) of
“Polarization Effects in Wide Bandgap Semiconductors” was initiated by the Of-
fice of Naval Research to accelerate and consolidate understanding, engineering
and device application of the extra electro-physical parameter space. The winning
program, “Polaris” by teams centered at UC San Diego, and Cornell University, was
one of the most productive in the history of the MURI program, and is testament to
the value of sponsored collaborative research so ardently defended by the Director
of Defense Research and Engineering (DDR&E) Office of the Secretary of Defense
(OSD).

Electronic polarization has profound consequences on the electrostatics and elec-
trodynamics of epitaxial films and heterostructures. Polaris team members devel-
oped a comprehensive scientific understanding and made many conceptual advances
in polarization-related semiconductor physics. As a result, many electronic and op-
tical devices have been significantly improved and novel devices conceived and re-
alized.

This book is an attempt to ensure that the pioneering advances of the Polaris
investigators are collected and expanded to allow efficient recognition and under-
standing of the many new scientific and engineering principles, considerations and
applications developed in the 5 year program.

Each chapter addresses aspects of polarization effects from a different perspec-
tive, and for different purposes. There is some overlap in the introductory content
in several chapters, albeit each with its own unique flavor. The editors decided to
retain this format as it serves to make each chapter self-contained, so that readers

v



vi Preface

have the option of perusing them independently without loss of continuity, and to
guide readers more effectively to the subtle differences in perspectives.

Arlington, VA Colin Wood
Notre Dame, IN Debdeep Jena
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Theoretical Approach to Polarization Effects
in Semiconductors

Piotr Boguslawski and J. Bernholc

1 Introduction

As a rule, investigations of physical effects in solids are motivated by the need of
understanding at a fundamental level, which facilitates their effective application in
the fabrication of devices. The problem of electrical polarization of piezoelectric,
ferroelectric, and pyroelectric solids is no exception. In the last 15 years we have
witnessed very intensive investigations of the theory of spontaneous polarization,
as well as of the dielectric response of crystals to external perturbations. Our cur-
rent understanding stems from the development of electronic structure calculations
based on first principles, and subsequently from evolution of appropriate theoretical
approaches allowing for both a proper definition of polarization and accurate calcu-
lations. From the experimental side, much of the impetus came from experimental
work devoted to, e.g., GaN-like group-III nitrides, in which internal electric fields of
both pyro- and piezoelectric origin are large, determining the properties of quantum
structures and devices [1]. Spectacular progress in this area has led to innovative
devices described in several chapters of this book.

There are two important issues clarified by first principles calculations in the last
two decades. The first achievement was to provide a link between microscopic dis-
tribution of electrons determined by first-principles calculations and the description
based on classical macroscopic electrostatics. In particular, calculations have shown
how actual charge densities and dipole layers at surfaces and/or interfaces in semi-
conductor heterostructures look like at the atomic scale, what are their localization
and origin, etc. These basic concepts and ingredients of classical electrodynamics
developed during the last two centuries are now visualized by first principles theory.
Typical results are described in Sections 6 and 7.

The second success is a demonstration of the fact that spontaneous polariza-
tion and piezoelectric effects are bulk properties of solids, and thus may be studied
by calculations performed for infinite crystals [2, 3]. This subject was first treated
in the paper by Martin [4], who showed that the piezoelectric tensor of an insu-
lator is a bulk quantity. In fact, the development of elegant theoretical approaches

1



2 P. Boguslawski and J. Bernholc

[2, 3] has enabled efficient calculations, and the results are in good agreement with
experiment. Furthermore, a wealth of new information has been obtained. In this
chapter, we briefly summarize the theoretical approaches and illustrate them with
appropriate examples.

As an example of the role played by the electric field, we discuss field-induced
electromigration of hydrogen in GaN/AlN heterojunctions rather than the impact
of electric field on the electronic structure, which was discussed at length in many
papers [1] and other chapters of this book.

2 Basic Electrostatics

The distribution of free carriers and the magnitude of electric currents in a semi-
conductor are determined by electric fields. In a “classical” semiconductor or semi-
conductor structure, such as a Si-based junction, the field is of external origin. The
electric field inside the structure is determined by, e.g., the applied voltage, which
is screened by electrons and nuclei of the solid. The situation is more complex in
ferroelectrics, pyroelectrics, and piezoelectrics, where there may exist an internal
field even in the absence of the external one, due to the presence of non-vanishing
electric polarization. Independent of the origin of the fields, electrostatics of macro-
scopic media introduce basic concepts and relationships briefly recalled below.

In a bulk homogeneous insulator, the electric field E, polarization P, and the
electric displacement D are related by:

D = εE = E+ 4πP, (1)

see the classical textbook by Jackson [5]. Here ε is the static dielectric constant.
According to Poisson’s equation, D is determined by the external electric charge
density qn:

divD = 4π qn (r), (2)

where q is the elementary (positive) charge. To solve this equation one needs bound-
ary conditions. For a finite solid, boundary conditions at surfaces or at interfaces
between layers of a heterostructure play an important role, since they determine dis-
continuities at the boundaries and thus the magnitudes of fields in the whole system.
The continuity condition at the surface reads [5]

∆D• i = 4π σ. (3)

Here, ∆D = D2 − D1, where D2 is outside and D1 inside the solid, and i is the
unit vector normal to the surface. Thus, the change in the normal component of the
displacement is determined by the surface charge density σ. It should be stressed that
σ is of external origin, as it follows from the Poisson’s equation, Eq. 2, and does not
include polarization charges. For example, σ can be the macroscopic charge density
on the plates of a charged capacitor, which generates the electric field. Discontinuity
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of polarization at the surface or, in general, at an interface between two dielectrics,
is related to the polarization surface charge density σpol by

−∆P• i = σpol (4)

Eqs. 3–4 indicate that the field in the bulk of an insulator is defined by the surface
charge. This is the basis of operation of sensors, where the adsorption of a molecule
changes the electric characteristics of a device. Moreover, Eqs. 3–4 show that in the
absence of external charges at interfaces of, e.g., a superlattice, discontinuities of
the field and the polarization are related by ∆E• i = −4π ∆P• i.

Similarly, the discontinuity of the electrostatic potential φ is determined by the
dipole layer at the surface (or interface). In analogy with Eq. 3, the discontinuity of
the electrostatic potential is given by

∆ φ = 4π δ, (5)

where δ is the surface dipole density. Clearly, as already indicated, the continuity
equations apply both to free surfaces and to interfaces in heterostructures and super-
lattices. Both are of interest in this review.

To highlight the difference between the situations relevant for the discussions
that follow, we show in Fig. 1 three cases of an insulator with and without surface
charges. In the first case, two opposite surfaces are charged. This situation holds for
a solid placed in a charged capacitor. The surface charge densities are of external
origin (capacitor plates), and they induce a non-vanishing displacement field D in
the solid in which polarization P and electric field E are parallel. The polarization
induced by the external electric field consists of a relative displacement of positive
and negative charges inside a solid, which screen (weaken) these fields.

+ σ

− σ

(b) (c)

A+ σ

− σ

(a)

Fig. 1 Surface charges of opposite sign, shown as gray layers, produced by (a) external reservoirs,
(b) the piezoelectric effect, with the gray arrows indicating the external pressure, and (c) a strained
solid shown in (b) but with short-circuited surfaces, which led to a flow of a current. The config-
urations shown in (b) and (c) corresponds to, e.g., a zinc-blende crystal strained uniaxially in the
[110] direction, which induces polarization oriented in the [001] direction.
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The second case looks similar, but now the surface charges are obtained when a
piezoelectric is appropriately strained. In this case there is no external charge, thus
D = 0,E =−4π P, i.e., P and E are antiparallel. The surface charge density owns its
origin to bulk piezoelectric polarization. By applying stress that produces polariza-
tion, an internal electric current is induced, leading to the separation of charge and
formation of charged surface layers. The fact that polarization is related to current
flow is exploited in the modern approach to theory of polarization, briefly summa-
rized in Sec. 5.

Finally, in the case of a strained piezoelectric, the electric field may be eliminated
by short-circuiting the two charged surfaces (i.e., E = 0, but P �= 0 and D = 4π P).
This case is of interest for the calculations of polarization presented below, which
explicitly assume a vanishing electric field. The strain-induced electric field explains
the difference between longitudinal and transverse optical phonons in a polar semi-
conductor like GaAs: in the former case phonon-induced atomic displacements in-
duce not only the polarization, but also an electric field of opposite sign, which pro-
vides an additional restoring force that increases the frequency of the longitudinal
phonon relative to the transverse branch.

3 Polarization

In general, polarization of a solid in a finite electric field may be expressed as a sum

P = P0 + Pel + Plat , (6)

where P0 is the spontaneous polarization of the lattice at equilibrium and zero elec-
tric field, while Pel and Plat correspond to the electron and lattice contributions. The
low symmetry of several types of lattices allows the presence of non-vanishing bulk
polarization at zero field. In particular, a crystal with the Wurtzite structure is py-
roelectric, and its polarization is oriented parallel to the [0001] direction, i.e., only
along the c-axis. It is always present and has the same sign independently of the
field. In contrast, in ferroelectrics such as the Perovskites, the orientation of polar-
ization can be reversed by an external electric field. In real samples, the intrinsic
polarization is in general screened by free carriers that originate from ionized native
defects present in the bulk of the sample, and/or by surface charges.

In the regime of linear response, the two latter components of Eq. (6), which are
induced by either electric field or stress, may be expressed as follows. Pel is the
electronic screening obtained under the condition that the atoms are not displaced
from their equilibrium sites,

Pel = (1/4π)(ε∞ −1)E, (7)

where ε∞ is the electron component of the dielectric tensor, i.e., the high-frequency
dielectric constant describing the response of the electron gas at frequencies higher
than the phonon frequencies, but lower than electronic excitations. The full dielectric
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response to an external electric field, given by the static dielectric constant intro-
duced in Eq. 1, includes also the lattice contribution, i.e., possible displacements of
the nuclei from their equilibrium positions.

Plat is induced by the lattice response and describes the piezoelectric effect, i.e.,
lattice polarization in vanishing electric field. The stress-induced polarization con-
sists of two terms:

Plat = (q/Ω)Z∗u+ κ e. (8)

The first is given by the relative displacements of sublattices in ionic crystals. The
ionic displacements ui relative to the cell center satisfy Σui = 0. For example, in
the zinc blende structure the relative displacement u of cation and anion sublattices
change the dipole moment of the unit cell by Z∗u, where Z∗ is the Born effective
charge and Ω is the unit cell volume. The second term describes polarization induced
by strain when the sublattices are not displaced relative to each other, i.e., the atomic
coordinates are rescaled by the macroscopic stress, but the electrons are allowed to
relax due to the stress-induced changes in distances between atoms. κ is the so-
called clamped-ion component of the piezoelectric tensor, and e is the strain field
tensor.

Finally, it is important to observe that the quantity accessible experimentally is
not the polarization itself, but rather its changes induced by temperature changes
(pyroelectricity), by external pressure (piezoelectricity), or electric field [3]. Simi-
larly, as will be described below, in theoretical calculations polarization of a system
is defined and calculated with respect to a non-polar phase.

Before presenting the recently developed advanced theory we illustrate in the
next section the basic concepts underlying the macroscopic Eqs. (1–5) with exam-
ples of results obtained by microscopic ab initio calculations.

4 Ab Initio Calculations of the Electronic Structure

From the theoretical point of view, electrostatics of solids poses a question of how to
compute the response of a dielectric to two most important external perturbations,
i.e., the electric field and pressure. The electric field in a material is determined by
the distribution of atoms and their electrons. To support an electric field the material
must be an insulator, otherwise the field would be screened by electrons. Calcu-
lations of the vibronic, dielectric, piezoelectric, and ferroelectric properties based
on density functional perturbation theory are described in Ref. [6]. An alternative
approach involving analysis of electron redistribution and the phases of electron
wavefunctions leads to a relatively simple, intuitive description of polar materials. It
is presented briefly in the next Section. In both cases, the starting point is provided
by ab initio calculations of the electronic structure based on the density functional
theory (DFT).

For a given configuration of atoms, DFT [7] accurately predicts the distribution
of electrons through the solution of Schrödinger-like Kohn-Sham equations for the
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one-electron wave functions ψi (in Rydbergs):

{
−∇2 +VN(�r)+

∫
2ρ(�r′)d�r′

|�r−�r′| + µxc[ρ(�r)]
}

ψi(�r) = εiψi(�r), i = 1, . . .M. (9)

Here, the first term represents the kinetic energy, the second is the potential due to
nuclei (or atomic cores in the pseudopotential approach), the third is the classical
electron-electron repulsion potential, and the fourth, the so-called exchange and cor-
relation potential, accounts for the Pauli principle and spin effects. Summing over
squares of the M occupied wave functions gives the microscopic electron density ρ .

Semiconductors of interest for this chapter contain either 2 atoms in the unit cell
(GaAs or GaN in the zinc-blende (zb) phase) or 4 (GaN and AlN in the Wurtzite
(w) structure). More complex materials, including those containing defects or sur-
faces, can be modeled with a large, periodically-repeated unit cell, containing tens
or hundreds of atoms. This is also the case for superlattices. The methods for solving
DFT equations for perfect crystals or large “supercells” are by now quite advanced
and several techniques exist for obtaining the wave functions and optimizing the
structural parameters of a material by minimizing the total energy of the system [8].
For example, the methods that we use employ real-space grids and multi-grid ac-
celeration techniques [9]. The use of grids leads to effective parallelization over
hundreds of processors through domain decomposition, thereby enabling accurate
calculations for rather large supercells.

5 Modern Theory of Polarization

The polarization of a solid can be expressed as a sum of ionic and electronic contri-
butions

�P = �Pion +�Pel =
q

Vsample

⎡
⎣∑

l

Zl
�bl −

∫
sample

�rρ(�r)d�r

⎤
⎦ (10)

where Zl and�bl are the ionic charge and position of the l-th atom in the solid, ρ(�r)
is the electron density, and Vsample is the volume of the sample. In the pseudopoten-
tial approach, Zl is the charge of the ionic core and only valence electrons are taken
into account. However, calculations directly based on this definition were never per-
formed for at least two reasons. First, a straightforward summation over charges
would need to include the entire sample and its surfaces, which is prohibitively ex-
pensive in terms of computational time. The second and more important reason that
motivated an impressive theoretical effort in the last two decades is the following.
It is empirically known that polarization (or rather polarization changes, which are
actually measured, see Sec. 3) is a bulk property, and therefore independent of the
state of surface of the sample, its reconstruction, etc. The bulk nature of polarization
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of a piezoelectric insulator was first demonstrated by Martin [4]. However, the cal-
culations for bulk systems use periodic unit cells; there are no surfaces and the field
must be zero in order to satisfy the periodic boundary conditions. Furthermore, dif-
ferent unit cells can be used to describe a periodic structure and different cells cut
through different bonds. A calculation of a dipole moment thus turns out to give dif-
ferent values, depending on what unit cell is used. Only for the case of well-localized
electrons, e.g., for negative ions, is the dipole moment per unit cell uniquely defined.
This is the well-known Clausius-Mossotti limit, used to relate the dielectric constant
to atomic polarizabilities in ionic solids.

It was also recognized that polarization of an infinite crystal is not a uniquely-
defined quantity [10] and is in fact multi-valued [11]. Consequently, the physical
quantity that is to be evaluated is the difference between macroscopic polarizations
of a solid in two different states. Typically, one of these states is a non-polar ref-
erence state. This approach enables calculations for infinite crystals, where surface
effects are absent by construction. Furthermore, comparisons between the polar and
non-polar states often provide deep insight into the physics of polarization in a very
elegant way. The first example of an approach along this line is presented in Sec. 7
for BeO, where the spontaneous polarization of Wurtzite w-BeO was evaluated us-
ing the zinc blende zb-BeO phase as a reference system with zero polarization.

An important point is that there must exist an adiabatic transformation of the
system under consideration from the non-polar to the polar configuration, which
keeps the solid insulating. For example, in the case discussed in Sec. 7, one can
imagine the construction of a polar w-BeO phase from the infinite cubic non-polar
zb-BeO crystal by generating a suitable sequence of stacking faults. A reference
non-polar system may be also an artificial one: in the case of BN polar nanotubes,
the non-polar nanotube consisted of artificial atoms that were 50% B and 50% N,
and the built-up of polarization was followed by smoothly changing the properties
of atoms (computing polarization many times along the way) until the nanotube
become a real system with 100% B and N atoms [12].

The details of the theoretical approach are found in the papers by King-Smith and
Vanderbilt [2] and by Resta [3]. Below, we outline only the main points. In quantum
mechanics, all the information required for an unequivocal computation of polar-
ization is contained in the system’s wave functions. However, unlike the electron
density ρ(�r), which is the squared modulus of the wave function, the polarization
is fundamentally related to the phase of the wave function [2, 3]. Let’s assume that
the system is adiabatically transformed from a non-polar “reference” configuration
to a polar one. During the transformation, an adiabatic current �j must flow through
the unit cell to account for the charge redistribution and the resulting polarization.
The origin of this current, or more generally the intimate relationship of polarization
with electric current, may intuitively be understood based on Fig. 1, which shows the
piezoelectric effect. Initially, a crystal is unstrained and unpolarized. Application of
strain induces both the distortion of the crystal and its polarization, which in turn
is displayed by the presence of surface charge densities σ, due to electric currents
that have flown through the crystal. This current may be measured when the crys-
tal’s surfaces are short-circuited, as shown in Fig. 1c. In a similar way, polarization
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of w-BeO layers in a w-BeO/zb-BeO superlattice discussed in Sec. 7 and shown in
Fig. 3 is related to the 2-dimensional charge densities accumulated at consecutive in-
terfaces. These charge densities screen the polarization field present in the wurtzite
part of the superlattice and can be viewed as the result of current flow created during
an imaginary transformation of this part from a non-polar zinc-blende structure to
the polar wurtzite structure.

Writing the complex wave functions as |ψ(�r)|exp{iϕ(�r)}, the current

�j = i(ψ∇ψ∗ −ψ∗∇ψ) (11)

will depend on the phases ϕ(�r) of system’s wave functions. The geometric phase (or
Berry phase) technique provides an elegant solution for the problem of computing
electronic polarization in a periodic system by linking the phase evolution of the
system’s wave functions to the current flowing during the transformation and thus
to the polarization change:

∆�Pel =
∫ ∆t

0
�j(t)dt. (12)

The ionic part of polarization �Pion is computed with a trivial summation over point
charges of nuclei (or atomic cores).

More formally, let us assume that the system is adiabatically transformed from
a non-polar reference configuration to a polar one. The transition may be parame-
terized with a variable λ, which changes respectively from 0 to 1. Resta [3] has
proposed that the corresponding change in polarization is calculated using

∆�P =
1∫

0

(∂�P/∂λ )dλ (13)

where within the LDA

∂Pα/∂λ =

i f qh̄
NΩme

∑
k

M

∑
n=1

∞

∑
m=M+1

< ψ(λ )
kn

∣∣∣ p̂α

∣∣∣ψ(λ )
kn >< ψ(λ )

km

∣∣∣∂V (λ )
KS /∂λ

∣∣∣ψ(λ )
km >

(ε(λ )
kn − ε(λ )

km )2
+ c.c.

(14)

where α is the Cartesian direction, VKS is the self-consistent Kohn-Sham potential,
me is the electron mass, N is the number of the unit cells in the crystal, M is the
number of the occupied bands, εkn is the eigenenergy of the state k in the n-th band,
and f is the occupation number of states in the valence band ( f = 2 when spin
degeneracy in taken into account).

After algebraic transformations described in detail in Ref. [2] one may obtain
the electronic polarization per unit cell calculated from the periodic parts of the
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occupied wave functions of the solid, ψnk(�r) = unk(�r)ei�k�r, as

�Pel = − 2iq
(2π)3 ∑

nocc

∫
BZ

d�k 〈unk|�∇k |unk〉 . (15)

If we denote by �Gi the reciprocal lattice vectors defined by �Gi ·�R j = 2πm, where �R j

belongs to the real-space lattice of all allowable translations of the unit cell, we can
introduce the electronic (or Berry) phase for the system as

ϕel = Ω�Gi ·�Pel/q. (16)

By following the change in the Berry phase during the transformation (which must
keep the system insulating) we can obtain the difference in polarization. However,
because the Berry phase (as a true angular variable) is calculated modulo 2π , the
polarization can only be obtained modulo 2q�R/Ω. The difference in total polariza-
tion, ∆�P, will then be well defined if |∆�P|<< |2q�R/Ω| or, if the change in the Berry
phase is accurately monitored along a continuous path, as was done for the case of
BN nanotubes, the multiple of 2q�R/Ω in the Berry phase is also determined. This is
important to ensure appropriate cancellation between the electronic and ionic terms,
which can separately undergo large changes in their Berry phases [12].

Alternatively, one can transform the periodic wave functions into “bonding”
functions, which tend to be localized around individual atoms or bonds in the unit
cell. These are the so-called Wannier functions, which form an orthonormal basis
and are defined as

Wn(�r) = Vcell/(2π)3
∫

ψnk(�r)d�k, (17)

where the integral is over the Brillouin Zone. The electron density is easily ex-
pressed in terms of Wannier functions

ρ(�r) =
1

(2π)3 ∑
nocc

∫
|ψnk(�r)|2 d�k = ∑

nocc
|Wn(�r)|2. (18)

The Wannier functions lead to an amazingly simple expression for polarization,
namely

�Pel = −q
∫

�rρ(�r)d�r = −2q ∑
nocc

〈Wn|�r |Wn〉 = −2q ∑
nocc

�rn, (19)

which involves only the centers of Wannier functions �rn = 〈Wn|�r |Wn〉. Thus, the
difference in polarization, ∆�P, is obtained by simply treating these centers as point
charges that move during the transformation. No ambiguity arises, because the cen-
ters of the Wannier functions are uniquely assigned to each unit cell of the crystal.
We may thus think of the electronic charge as being localized into point charges −q
located at the Wannier centers associated with the occupied states in each unit cell.
In this picture, a quantum mechanical system of crystal electrons is mapped onto a
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Fig. 2 Examples of “sp3” Wannier functions associated with the N atoms in AlN. Light and dark
spheres represent N and Al atoms, respectively.

classical system of point charges, in analogy with the Clausius-Mossotti limit. As
an example, in Fig. 2 we show two of the eight Wannier functions corresponding
to the doubly occupied orbitals in the unit cell of w-GaN. Several algorithms have
been developed to efficiently calculate Wannier functions [13, 14].

6 Polarization at Interfaces: Interface Dipoles

6.1 Averaging Microscopic Charges and Field

The microscopic electric fields in solids, which are local and varying at length scales
shorter than the lattice constant, are related to the microscopic charge density of
nuclei and electrons by Poisson’s equation. The electron density can be calculated
from Schrödinger’s equation or, when using density functional theory, from the self-
consistent Kohn-Sham equations (9). However, in heterojunctions and other systems
in which the effective mass description of the free carriers is valid, one is interested
in macroscopic fields, which are slowly varying on the scale of a lattice constant.

To use Eqs. 1–5 on the macroscopic scale, it is convenient to average the electron
density, the electrostatic potential, and the fields. In practice, the smallest possible
and meaningful volume is that of the unit cell. In a heterojunction, the most conve-
nient approach is to first average in the (x,y) plane of the interface, and then average
over an appropriate lattice period in the perpendicular direction. One should notice
that the average electron density n in Eqs. 1–5 is a macroscopic average of the mi-
croscopic charge density of valence electrons ρ(r).
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6.2 AlAs/GaAs Superlattice

To illustrate the conceptual aspects of linking macroscopic electrostatics with
quantum-mechanical calculations, we summarize below the results of a study of
electronic structure of interfaces in AlAs/GaAs superlattices [15], a simple but rel-
evant example for the remainder of this chapter. The system studied was a (001)-
oriented (GaAs)3(AlAs)3 superlattice consisting of three layers of each component.
In the zb structure, the consecutive (001) planes contain only one kind of atoms.
Their positions along the [001] axis are shown in the upper part of Fig. 3, and
are denoted by Ga, Al, and As, respectively. The authors have used first-principles
pseudopotential calculations and Fig. 3 also displays the average valence electron
density n and the electrostatic potential energy V for this system.

We first analyze the electron density and begin with the obvious statement that
the average electron density in bulk of a III-V compound is 8 electrons per unit cell.
As is evident from the figure, in spite of the very short period of the superlattice, the
calculated average electron density is 8 in the middle of each layer.

Next, conventional ideal interface planes of this system are placed on As atoms;
one of them is in the middle of the figure, at z = 0, while the two others are at its
edges. In the vicinity of interfaces the electron density differs from 8 by about 0.5
%. More precisely, across each interface the density has a typical dipolar shape and
the sign of the dipoles alternates at consecutive interfaces. These results indicate
that both the bulk region of each layer and interfaces between them are well de-
fined. This, in turn, is necessary to correctly delineate the interfaces, and properly
distinguish between bulk and interface effects. The calculated interface dipole lay-
ers, which have zero thickness in classical textbooks, turn out to extend over about 4
atomic monolayers, i.e., about 5 Å, in this particular case. This is indeed negligible
in macroscopic samples. The dipoles are formed due to charge transfer between the
nearest Ga-As and Al-As bonds only at the interface, which explains their strong
spatial localization. Very similar results are found for (110)- and (111)-oriented su-
perlattices [15].
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Fig. 3 Macroscopic averages of electron density n (full line) and potential energy V (dashed-dotted
line) of (001)-oriented (GaAs)3(AlAs)3 superlattice. See Ref. [15] for details. Figure reprinted
with permission from Ref. [15]. Copyright (1988) by the American Physical Society.
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In agreement with Eq. 4, the interface dipoles induce a difference in electrostatic
energy, which is 0.41 eV. This energy is constant inside the GaAs and AlAs layers,
which indicates that the electric field vanishes, as expected. It is the electrostatic
contribution to the band offset in a GaAs/AlAs heterojunction.

7 Spontaneous Polarization in the Wurtzite Structure: BeO

The first calculations of spontaneous polarization in a crystal with the wurtzite sym-
metry, BeO, were performed by Posternak et al. [16]. They have used an infinite
superlattice (SL) consisting of alternating layers of BeO in two phases, namely w
and zb, shown in the upper panel of Fig. 4. The essential idea underlying this ap-
proach is that the zb phase has no intrinsic polarization due to its high symmetry,
and thus the polarization in this system is entirely due to the spontaneous polariza-
tion of the wurtzite phase. Thus, the zb phase plays here the role of the non-polarized
reference system, as mentioned earlier.

The results are shown in Fig. 4. The lower panel displays the averaged va-
lence electron density and the potential energy. The average electron density n is
practically constant in the middle of each layer and significant deviations from
the average value only occur close to interfaces. Therefore, similar to the case of

Fig. 4 Upper panel: configuration of atoms in the large unit cell (i.e., one period of the SL). Solid
and open circles represent Be and O atoms, respectively. With the usual conventions for the w
structure, the positive c-axis direction points towards the right. Vertical dashed lines indicate the
conventional interfaces between wurtzite and zinc blende layers. Lower panel: macroscopic aver-
ages of the electron density n (solid line) and of the electrostatic potential energy V (dotted line)
in the case of ideal wurtzite geometry. Figure reprinted with permission from Ref. [16]. Copyright
(1990) by the American Physical Society.
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interface dipoles in GaAs/AsAs SL, interfacial monopoles are strongly localized
and limited to about 2 monolayers, i.e., 4 Å. As expected, charge accumulation and
depletion regions alternate at consecutive interfaces, generating an electrostatic po-
tential via the Poisson’s equation. Since the crystal is neutral, the formation of in-
terface monopoles is due to charge transfer between interfaces and they have equal
magnitudes and alternating signs.

Except for the regions at interfaces, the potential varies linearly in space, which
corresponds to a constant electric field. Since polarization in the zb phase vanishes
by symmetry, the polarization present in the system is entirely due to the layers of
the wurtzite phase and has been calculated from the slope shown in Fig. 4. Finally,
one should note the absence of interface dipoles, since at both sides of each interface
there are the same Be-O bonds, and atoms in both zb and w structures have the same
coordination of nearest neighbors.

The monopole contribution, i.e., the interface charge density, is related to the
difference between bulk polarizations by the continuity equation, Eq. 4. In a general
case, where zb-BeO and w-BeO layers are of different widths, Eq. 4 may be written
in the form

σint = (PA −PB)(ιA + ιB)/(ιA εB + ιB εA), (20)

where ι is the width of a given layer, and ε its static dielectric constant. In particular,
when ιA �= ιB electric fields also differ.

As was mentioned earlier, the quantity of interest is the average electric field
defined in Sec. 6 rather than the polarization. Electric fields are determined not only
by the local charge distribution but also by the boundary conditions. A standard
approach to compute the electronic structure of a semiconductor heterostructure is to
use an appropriate superlattice. In this case, the use of periodic boundary conditions
requires that the electrostatic potential is periodic, which results in electric fields in
the two different parts of the superlattice having opposite signs, with a vanishing
average over the full superlattice period. Moreover, the vanishing average electric
field corresponds to short-circuiting of the two free surfaces in a finite sample.

We end this Section by mentioning that in the case of ideal zb and w layers of BeO
shown in Fig. 4, the calculated electric field is 0.59×109 V/m. It is also possible to
determine the piezoelectric constant of w-BeO, by varying the geometry of atoms
in the supercell from the ideal one to the appropriately distorted.

8 GaN/AlN Superlattice: Spontaneous Polarization
and Piezoelectricity

The same approach has been used to study spontaneous polarization and piezoelec-
tric effects in a GaN/AlN superlattice, in which both compounds have the wurtzite
structure [17]. In this system, the two effects discussed above, i.e., the spontaneous
polarization and the formation of interface dipoles, are simultaneously present.
Moreover, in addition to the spontaneous polarization of GaN and AlN, there is
a piezoelectric contribution to the polarization induced by the difference in lattice
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constants of AlN and GaN, and the imposed assumption of pseudomorphic growth,
i.e., the condition that the in-plane lattice constants of GaN and AlN are equal. The
choice of the substrate (GaN, AlN, or an intermediate case) determines in which
layer(s) the piezoelectric effect is present.

Figure 5 displays the atomic structure of the superlattice, the total average charge
density (equal to zero in the bulk regions of every layer), and the macroscopic
electrostatic potential. Qualitatively, these results can be viewed as a superposi-
tion of those from Figs. 3 and 4. First, the potential varies linearly within each
layer, which demonstrates the presence of electric fields, and second, there are large
‘discontinuities’ at the interfaces that originate from formation of dipole layers via
charge transfer between the nearest Al-N and Ga-N bonds at interfaces. It should be
stressed that the electrostatic potential is continuous at the microscopic scale, and
by a discontinuity ∆V we denote the difference between its averaged values at each
side of the interface, as schematically shown in Fig. 5b.

These effects may be analyzed by decomposing the total charge density into a
monopole and dipole components discussed in the previous examples. The results
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Fig. 5 (a) Total (electronic plus ionic) density, and the electrostatic potential (in Hartrees),
for AlN/GaN superlattice lattice-matched to GaN. The magnitude of the electric field is about
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sion from Ref. [17]. Copyright (1997) by the American Physical Society.) (b-c) Schematic of the
potential energy shown in (a), and of the band offsets of GaN/AlN superlattice.
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are shown in Fig. 6. While an exact definition of the monopole and dipole contribu-
tions is not possible in the low-symmetry wurtzite lattice, which in particular lacks
an inversion plane perpendicular to the c-axis, the procedure used by the authors is
satisfactorily accurate, see [17] for details.

The monopole component gives rise to macroscopic electric fields and is due to
both the spontaneous polarization and the piezoelectric effects. In principle, it can be
calculated a la Posternak et al. [16] separately for GaN and AlN using appropriate
superlattices. However, it is the difference of polarizations between GaN and AlN,
and between the generated electrostatic fields, which is of practical importance. The
calculated fields are about 109 V/m, similarly to those in BeO.

For obtaining the full spectrum of polar properties, it is easier and more accurate
to use the Berry phase approach. The values of the spontaneous polarization Peq,
effective charge Z, and the two components of the piezoelectric tensor calculated
using this method are given in Table 1. Similar values were obtained in Ref. [18].
For comparison, the results for ZnO are also presented.
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Fig. 6 Total electron density (dash-dotted), and its monopole (solid) and dipole (dashed) com-
ponents for the superlattice shown in Fig. 5. Figure reprinted with permission from Ref. [17].
Copyright (1997) by the American Physical Society.

Table 1 Spontaneous polarization Peq, (in C/m2) effective charge Z∗, and the two components of
the piezoelectric tensor (in C/m2) calculated in Ref. [19].

Peq Z∗ e33 e31

AlN −0.081 −2.70 1.46 −0.60
GaN −0.029 −2.72 0.73 −0.49
InN −0.032 −3.02 0.97 −0.57
ZnO −0.057 −2.11 0.89 −0.51
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Given the similarity of the [0001] direction in wurtzite with the [111] direction in
zinc-blende crystals, it is possible and meaningful to compare the respective com-
ponents of the piezoelectric tensor of the nitrides with those of other zb-III-V and
zb-II-VI semiconductors. The detailed results of Ref. [19] show that:

(i) The absolute values of the piezoelectric constants are an order of magnitude
higher in group-III nitride crystals than in other III-V and II-VI crystals.

(ii) Similarly, the spontaneous polarization is very large and only about 4 times
smaller than in typical perovskite ferroelectric crystals.

(iii) The sign of the piezoelectric constants is the same as in II-VI compounds but
opposite to the III-V ones. This effect is due to the high ionicity of III-N ni-
trides, as manifested by the high values of the effective charges Z, which are
close to those of ZnO (see Table 1), and higher than those of phosphides or
arsenides. Consequently, the internal-strain ionic contribution, which is pro-
portional to Z, dominates the clamped-ion term in Eq. 8.

(iv) Among the nitrides, the spontaneous polarization of AlN is the strongest be-
cause of its largest deviation from the ideal wurtzite structural parameters
(c/a =

√
8/3, and u = 0.375).

Finally, for application purposes, alloys with tailored chemical compositions are
often of greater interest than pure binary compounds. For this reason, the important
physical properties of III-N alloys, like GaInN, have been investigated as a function
of chemical composition. The obtained results show that lattice parameters follow
Vegard’s law, i.e., they change linearly with composition. On the other hand, polar-
ization in III-N alloys turns out to be a non-linear function of the chemical compo-
sition of the alloy [18, 20, 21]. This holds for both the spontaneous polarization and
the piezoelectric constants. The main reason for these non-linear dependences is the
lattice mismatch, i.e., the difference between the lattice constants of the nitrides,
which results in internal distortions in alloys.

As in the case of GaAs/AlAs superlattices, potential discontinuities contribute to
band energy discontinuities or band energy offsets at heterointerfaces, as shown in
Fig. 5c. The offsets are found to depend on the substrate: for AlN on GaN ∆Eval =
0.20eV, and for GaN on AlN ∆Eval = 0.85eV [17]. The non-equivalence of the two
cases is strain-induced, caused by strong piezoelectricity of the nitrides. Similar
results were obtained by Buongiorno Nardelli et al. [22] for zinc-blende GaN/AlN
superlattices.

9 Electric Field-Driven Diffusion and Segregation of Dopants
in Superlattices

9.1 Introduction

Polarization in bulk III-N nitrides results in the presence of electric fields discussed
in the previous Sections. The impact of these fields on the electronic properties has
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been briefly mentioned above and is discussed in detail in several chapters of this
book. The aim of this Section is to point out that electric fields, if strong enough,
alter not only the electronic structure, but also the distribution of dopants and de-
fects in nitride-based quantum structures. They may also result in electrodiffusion
of charged dopants.

Hydrogen in GaN/AlN superlattices is chosen as the key example; it is the domi-
nant impurity that passivates dopants in structures grown by metalorganic chemical
vapor deposition. As will be shown below, the distribution of H in a GaN/AlN su-
perlattice is determined not only by its solubility, but also by the presence of elec-
tric fields. We show that these fields give rise to a field-driven electrodiffusion of
charged impurities, which can lead to, e.g., an accumulation of hydrogen close to
the appropriate interfaces.

In general, properties of semiconductor structures rely entirely on accurate con-
trol of doping and stoichiometry. These, in turn, are determined by solubility of im-
purities and the presence of native defects. For this reason, the issue of equilibrium
concentrations of dopants and defects in bulk semiconductors has been extensively
studied in the last decade. The first principles theory of doping efficiency [23, 24]
allows one to relate the equilibrium concentrations of dopants with the conditions
of crystal growth. Moreover, in the wide-gap III-N nitrides self-compensation, i.e.,
non-intentional formation of native defects, plays an important role [25]. However,
since semiconductor systems of current interest are not bulk materials but rather
epitaxial heterostructures, such as GaN/AlN, a question arises about the equilib-
rium distribution of dopants and defects in heterostructures. Experimentally, ther-
mally activated segregation of impurities through semiconductor heterointerfaces
has been investigated for Si/SiGe heterostructures, where the equilibrium concen-
trations of dopants in Si and SiGe layers differ by a factor of two to three [26–29].
The segregation is stronger in III-V heterostructures [28, 30, 31], where concentra-
tion differences may reach two orders of magnitude and affect the luminescence
efficiency of light-emitting diodes [32]. A theory of interfacial segregation has been
recently formulated in modern terms [33], allowing studies of this effect by accurate
ab initio methods.

To illustrate the general features that determine segregation, typical dopants and
defects in GaN/AlN structures are discussed. The results show that the distribution
of dopants in a heterojunction cannot in general be obtained from calculations per-
formed for isolated bulk crystals. The large differences in segregation properties
between cation- and anion-substituting dopants are discussed and explained, as are
those between shallow and deep ones, and the impact of the defect’s charge state
(the Fermi level position) on segregation.

9.2 Interfacial Segregation

Consider first the basic concepts describing the doping of a homogeneous solid: The
equilibrium concentration of dopants is defined for given conditions of growth under
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the assumption that equilibrium is maintained between the growing sample and the
reservoirs of relevant atomic species characterized by their chemical potentials µ
[23, 24]. At these conditions, insertion of an impurity atom into a solid induces a
change in the total energy of the system, which is the formation energy E f orm. For
example, E f orm of a neutral interstitial H in GaN is

E f orm = Etot(GaN : H)-Etot(GaN)-µ(H), (21)

where Etot is the total energy of the crystal with or without the impurity. Neglecting
small changes in the vibrational entropy, one finds that the equilibrium concentration
of dopants is equal to

Nimp = N0 exp(-E f orm/kBT ), (22)

where N0 is the density of lattice sites that can be occupied by a given dopant.
Turning to interfacial segregation in an A/B heterostructure, the equilibrium con-

centrations of dopants at the A and B components, Nimp(A) and Nimp(B) respec-
tively, are determined by the condition that the chemical potential of the dopant is
the same in the whole system, and in particular at both sides of the interface. Using
this fact one finds that the segregation coefficient, defined as the ratio of impurity
concentrations at the two sides of the interface, is

kseg = Nimp(A)/Nimp(B) = N0(A)/N0(B)exp(Eseg/kBT ), (23)

where Eseg = E f orm (A) - E f orm (B) is the segregation energy. Therefore, kseg only
depends on the difference between the formation energies and is independent of
µimp, i.e., of the actual source of the impurity atoms. To describe quantitatively the
interfacial segregation, the above analysis needs to be supplemented by first princi-
ples calculations of the total energies. They were done using the methods described
in Sec. 4.

In general, dopants and defects in semiconductors are ionized. Ionization of
dopants affects their distribution in GaN/AlN heterojunctions in two ways that are
discussed in more detail below. First, electric fields present in a junction lead to
field-driven diffusion and redistribution of ionized dopants. This effect was seen
experimentally for B in a Si homojunction [34]. Second, in a homogeneous crys-
tal, E f orm depends on the charge state of the defect. The transfer of m electrons
from a defect level Eimp to the Fermi level EF changes the formation energy by
m(EF − Eimp), which should be added to the right-hand side of Eq. 21 [23, 24].
Consequently, since Eseg is the difference between E f orm of the two materials, seg-
regation depends on the charge state of the defect as well. It will be shown below that
this dependence is in general weak for shallow defects, but may be substantial for
deep ones.


