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Series Preface

Mechanical engineering, and engineering discipline born of the needs of the in-
dustrial revolution, is once again asked to do its substantial share in the call for
industrial renewal. The general call is urgent as we face profound issues of pro-
ductivity and competitiveness that require engineering solutions, among others.
The Mechanical Engineering Series is a series featuring graduate texts and re-
search monographs intended to address the need for information in contemporary
areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range of
concentrations important to mechanical engineering graduate education and re-
search. We are fortunate to have a distinguished roster of series editors, each
an expert in one of the areas of concentration. The names of the series editors
are listed on page v of this volume. The areas of concentration are applied me-
chanics, biomechanics, computational mechanics, dynamic systems and control,
energetics, mechanics of materials, processing, thermal science, and tribology.



Preface

In our modern world, best structures with specified shape, stiffness, strength, sta-
bility, frequency, and so on, can be designed with the assistance of computer-aided
methodologies including sensitivity analysis, reliability-based design, inverse engi-
neering, optimization, and anti-optimization. Buckling is an extremely important
design constraint for structures with slender members such as latticed domes and
frames; buckling of geometrically nonlinear structures is a well developed field of
research. Nevertheless, because of the complexity of nonlinear buckling behav-
ior, optimization of nonlinear structures has come to be conducted only recently
despite its importance.

It is possible to consider structural optimization as a straightforward applica-
tion of mathematical programming and operations research, as well as heuristics
and evolutionary approaches. Such, however, is not the case for optimization of
structures that undergo buckling. As cautioned by the “danger of naive opti-
mization [287],” optimized structures often become more imperfection-sensitive
and their buckling loads are reduced sharply because of the inevitable presence
of initial imperfections that arise from errors in manufacturing processes, ma-
terial defects, and other causes. It is certainly ironic that dangerous structures
are produced in the attempt to optimize their performance. In any search for
the best structure, the imperfection sensitivity of optimized structures must be
investigated.

This book offers an introduction to “optimization of geometrically nonlin-
ear structures under stability constraint,” which is an exciting and fast-growing
branch of application of structural and mechanical engineering, and also neces-
sarily involves applied mathematics. The premise of this book is that a thorough
and profound knowledge of nonlinear buckling behaviors is crucial, via proper
problem setting, as a step toward the successful design of the best structure.



viii Preface

Some optimized structures are shown to be safe, and readers are encouraged to
carry out optimization-based design with confidence.

In Part I, design sensitivity analysis and imperfection sensitivity analysis are
introduced as systematic tools to perform stability design of structures. The
influence of design parameters on structural performance is to be expressed
as parameter sensitivity. Design sensitivity analysis is implemented into the
gradient-based algorithm for structural optimization in Part II. Imperfection sen-
sitivity laws are introduced to evaluate the influence of initial imperfections on
buckling loads quantitatively. In this book, design sensitivity analysis and im-
perfection sensitivity analysis, which have been addressed independently up to
now, are described in a synthetic manner based on the general theory of elastic
stability [166]. This theory, which once was an established means to describe the
buckling of structures, is thus given a new role in the computer age. Part I is
organized as follows.

• The overview of design sensitivity analysis and its theoretical backgrounds
are presented in Chapter 1.

• Numerical methods of design sensitivity analysis are provided in Chapter 2.

• Imperfection sensitivity analysis is presented in the framework of modern
stability theory in Chapter 3.

In Part II, based on the synthetic description of sensitivity analyses presented
in Part I, we introduce state-of-the-art optimization methodologies of geomet-
rically nonlinear finite-dimensional structures under stability constraints. These
optimization methodologies are reinforced on the one hand by the stability theory
and on the other hand by finite element method and mathematical programming
with ever-increasing computing power. Design of compliant mechanisms is high-
lighted as an engineering application of shape and topology optimization with
extensive utilization of snapthrough buckling. Part II is organized as follows.

• In Chapter 4, general formulation for optimization under stability con-
straints is provided. An optimized truss dome is shown to be less
imperfection-sensitive than a non-optimal one.

• Optimal structures with snapthrough are investigated in Chapter 5 to
pave the way for shape design of compliant mechanisms using snapthrough
behavior in Chapter 6.

• Optimal frames with coincident buckling loads are investigated in Chap-
ter 7.

• Imperfection sensitivity of hilltop branching points with simple, multiple,
and degenerate bifurcation points are investigated in Chapters 8–10.

In Part III, in order to ensure the performance of optimized structures, we
introduce two design methodologies:

• optimization via the worst imperfection, and

• probabilistic analysis via random imperfections.



Preface ix

In particular, imperfection sensitivity laws are extended to be applicable to many
imperfection variables and, in turn, to deal with the probabilistic variation of the
buckling loads of structures. Part III is organized as follows.

• The asymptotic theory on the worst imperfection is formulated in
Chapter 11.

• An anti-optimization problem is formulated in Chapter 12 to minimize the
lowest eigenvalue of the tangent stiffness matrix, and a design methodology
is presented for a laterally braced frame.

• The worst imperfection is defined and investigated for a stable-symmetric
bifurcation point in Chapter 13.

• The theory on random imperfections is presented in Chapter 14, and is
applied to steel specimens with hilltop branching in Chapter 15.

• The theory is extended to the second-order imperfections in Chapter 16.

In the Appendix, derivations of several formulations and details of numerical
examples are presented. In particular, the derivation of imperfection sensitivity
laws by the power series expansion method is an important ingredient for readers
who are interested in stability theory.

This book consequently offers a wide and profound insight into optimization-
based and computer-assisted stability design of finite-dimensional structures in
a readable and illustrative form for graduate students of engineering and applied
mathematicians. General methodology is emphasized instead of studies of par-
ticular structures. Historical developments are outlined with many references to
assist readers’ further studies.

The authors are grateful to Dr. J. S. Arora for his support of an optimization
program. The suggestion of Dr. K. K. Choi was vital for the publication of this
book. The authors thank for the comments of Drs. K. Murota and Y. Kanno. For
the realization of this book, the authors owe much to Drs. K. Uetani, K. Terada,
S. Okazawa, S. Nishiwaki, J. Takagi, K. Oide, and Mr. J. Y. Zhang. The support
of C. Simpson, E. Tham and K. Stanne was indispensable for the publication of
this book. The authors conclude the preface with many thanks to Dr. I. Elishakoff
for his encouragement.

February 2007 Makoto Ohsaki
Kiyohiro Ikeda
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Part I:
Generalized Sensitivity

of Nonlinear Elastic Systems



1
Introduction to Design Sensitivity
Analysis

1.1 Introduction

Sensitivity analysis is conducted to evaluate the dependence of structural perfor-
mances on design or imperfection parameters. As stated in the Preface, dependent
on parameters to be employed, sensitivity analysis in structural stability can be
classified as follows:

• In the design sensitivity analysis, employed as parameters are design vari-
ables, such as member stiffnesses and geometrical variables. The sensitivity
(differential) coefficients of structural responses, such as displacements,
stresses and buckling loads, with respect to these parameters are obtained.
These coefficients, in turn, are put to use in gradient-based optimization
algorithms [223, 227, 262].

• In the imperfection sensitivity analysis for structures subjected to buck-
ling, employed as parameters are initial imperfections, such as errors in
manufacturing process and material defects [20, 285].

Different notations and terminologies are used in the two sensitivity analyses
presented above for the same physical properties. Because the design sensitivity
and imperfection sensitivity are mathematically equivalent, especially for a limit
point load, the two sensitivity analyses are formulated in Part I in a synthetic
manner under the name of “parameter sensitivity.” Part I serves as a theoretical
foundation of the optimization methodologies presented in Part II.

Many branches of parameter sensitivity analysis exist, as shown in Fig. 1.1,
and methods of sensitivity analysis to be employed vary with these branches.
Sensitivity analysis is classified dependent on whether the governing equation is
linear or nonlinear. Nonlinear sensitivity analysis is further classified according
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Fig. 1.1 Branches of parameter sensitivity analysis.

to whether the structure in question is in a regular state or in a singular state.
Nonlinear sensitivity analysis for a singular state has sub-branches that are de-
pendent on whether the singular state is associated with a limit point, a simple
bifurcation point, a coincident critical point, and so on.

As a prologue to the main contents of this part, Chapters 2 and 3, we present
in this chapter general framework of elastic stability to provide fundamental tools
for design sensitivity analysis to compute the differential coefficients of structural
responses with respect to the design parameters. We introduce sensitivity analysis
for simple cases, including:

• linear elastic response,

• linear buckling load as a weakly nonlinear case,

• regular state for nonlinear response, and

• limit point load for nonlinear response.

This chapter is organized as follows. General framework of elastic stability is
introduced in Section 1.2. Design parameterization is presented in Section 1.3.
A simple introduction to design sensitivity analysis for linear and nonlinear re-
sponses is given in Sections 1.4 and 1.5, respectively. A historical review of studies
on design sensitivity analysis is presented in Section 1.6.

1.2 General Framework of Elastic Stability

General framework of elastic stability of a conservative system that has the total
potential energy is briefly introduced to define variables, basic equations, and
critical points.

1.2.1 Governing equations and stability

Consider an elastic structure discretized by the finite element method and sub-
jected to quasi-static nodal loads, which are parameterized by a load parameter
or load factor Λ. The deformation of the structure is expressed in terms of an n-
dimensional nodal displacement vector U = (Ui) ∈ R

n. The stationary condition
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of the total potential energy1 Π(U,Λ) at a specified value of Λ leads to the
following set of equilibrium equations:

S,i = 0, (i = 1, . . . , n) (1.1)

where

S,i ≡ ∂Π
∂Ui

, (i = 1, . . . , n) (1.2)

is the partial differentiation of Π with respect to Ui. The set of equilibrium
points in (U,Λ)-space is called an equilibrium path, and a path that contains
the undeformed initial state is called the fundamental equilibrium path or the
fundamental path.

In the description of stability, we refer to the tangent stiffness matrix or the
stability matrix

S = [S,ij ] (1.3)

where S,ij ≡ ∂Π2/∂Ui∂Uj (i, j = 1, . . . , n). Note that S ∈ R
n×n is symmetric

owing to existence of potential, i.e.,

S,ij = S,ji, (i, j = 1, . . . , n) (1.4)

The rth eigenvalue λr and the associated eigenvector Φr = (φri) ∈ R
n of S

are defined by
n∑

j=1

S,ijφrj = λrφri, (i = 1, . . . , n) (1.5)

Since S is symmetric, all eigenvalues of S are real, and are ordered such that

λ1 ≤ λ2 ≤ · · · ≤ λn (1.6)

The eigenvectors Φ1, . . . ,Φn are ortho-normalized by
n∑

i=1

φriφsi = δrs, (r, s = 1, . . . , n) (1.7)

where δrs is the Kronecker delta, being equal to 1 for r = s and 0 for r �= s.
The stability of an equilibrium state is classified as

{
stable: all eigenvalues of S are positive (λ1 > 0)
unstable: at least one eigenvalue of S is negative (λ1 < 0) (1.8)

Thus the stability depends on the sign of λ1.

1.2.2 Critical state

A critical state is defined as an equilibrium state at which at least one eigenvalue
is zero. The first critical state on the fundamental path that is defined by λ1 = 0
is of most engineering interest as λ1 defines the stability by (1.8).

1The total potential energy function Π(U, Λ) is assumed to be sufficiently smooth. The
contact problem, for example, is out of scope of this book.
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Fig. 1.2 Equilibrium paths for simple critical points.

Load factor, eigenvalue and eigenvector at the critical state are denoted by Λc,
λc

r and Φc
r, respectively. The superscript ( · )c indicates a value at a critical state

throughout this book.
Critical points are classified as follows:

• simple critical point: a critical point is called simple or distinct if only
one eigenvalue λr becomes zero. A simple critical point is classified to a
limit point and a bifurcation point.

• coincident critical point: a critical point with m (≥ 2) zero eigenvalues
is called coincident2. The coincident critical point consisting of several bi-
furcation points is called a compound branching point. The coincident point
with bifurcation point(s) at a limit point is called a hilltop branching point.

A more detailed classification of critical points will be given in Section 3.3.
Equilibrium paths for simple critical points are illustrated in Fig. 1.2 in terms of

the relation between a displacement Ui and Λ. At a limit point, Λ reaches a max-
imum or minimum in the (U,Λ)-space, while the uniqueness of the equilibrium
state is lost at a bifurcation point.

Remark 1.2.1 An equilibrium path can be traced by the load control method,
for which Λ is chosen as the path parameter t. Namely, the equilibrium equations
(1.1) are solved for a given t = Λ. However, the path near the limit point should
be traced by the displacement increment method or the arc-length method [255],
for which the path parameter t = t(U,Λ) is generally defined as a function of U
and Λ.

Remark 1.2.2 Many numerical methods for the computation of critical points
are available [66, 90, 156, 311, 312]. For example, a simple critical point can be
pinpointed accurately by iteratively solving the extended system formulated by
(1.1) and (1.5) with (1.7) for r = 1, λ1 = 0 considering U, Φ1 and Λ as vari-
ables. In numerical examples of this book, critical points are computed within

2Coincident, compound, multiple and repeated have a similar meaning, and coincident is
mainly used in this book.
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sufficiently good accuracy so as not to influence the accuracy of sensitivity coef-
ficients.

1.2.3 Proportional loading

For a proportional loading, most common in structural analysis, the nodal load
vector P ∈ R

n is given as the product of the load factor Λ and the specified load
pattern vector p = (pi) ∈ R

n, namely,

P = Λp (1.9)

Then the total potential energy Π(U,Λ) is given as

Π(U,Λ) = H(U)− Λp�U (1.10)

where H(U) denotes the strain energy corresponding to the deformation U and
( · )� means the transpose of the associated vector or matrix. The equilibrium
equations are written as

S,i = H,i − Λpi = 0, (i = 1, . . . , n) (1.11)

where H,i is the partial differentiation of H with respect to Ui, and expresses the
equivalent nodal load in the direction of Ui. From (1.11), we have S = [H,ij ].

1.3 Design Parameterization

We define a design parameter in structural optimization (or an imperfection
parameter in stability analysis). Let v ∈ R

ν denote a ν-dimensional vector repre-
senting the mechanical properties of the structure. The vector v may correspond,
e.g., to

• sizing design parameter such as cross-sectional areas and plate thickness,

• shape design parameter such as nodal coordinates, and

• material property design parameter such as Young’s modulus and Poisson’s
ratio.

It is possible to choose topology (member location) and external loads also as
design parameters. Among many design parameters, we focus mainly on cross-
sectional areas of members and nodal coordinates in this book. See [49] for more
issues on design parameters.

Indicate by v = v0 the reference (perfect) structure. The superscript ( · )0
denotes a variable associated with the reference structure throughout this book.
Consider a modified structure, being defined by design variation vector di ∈ R

ν

(i = 1, . . . , ρ) and the associated scaling design parameter ξi (i = 1, . . . , ρ) as

v = v0 +
ρ∑

i=1

ξidi (1.12)



8 1 Introduction to Design Sensitivity Analysis

Dependent on problem formulation, we often use a single scaling parameter ξ
and employ a simplified expression

v = v0 + ξ

ρ∑

i=1

di (1.13)

Remark 1.3.1 In stability analysis, v is called the imperfection parameter vec-
tor, v0 corresponds to the perfect structure, di is the imperfection pattern vector
and ξi is the imperfection parameter. The use of multiple vectors di is vital gen-
eralization in the development of the worst imperfection in Chapter 11, and the
probabilistic variation of critical loads in Chapters 14 and 15.

We simply call ξi the parameter and present a unified formulation for de-
sign sensitivity and imperfection sensitivity. Our task of sensitivity analysis is to
quantitatively evaluate the differential coefficients of responses with respect to
ξi.

For simplicity, in the remainder of this chapter, we consider only a single pair
of parameter ξ1 and vector d1, and set ξ1 = ξ, d1 = d. Then (1.12) reduces to

v = v0 + ξd (1.14)

Accordingly, the total potential energy is written as Π(U,Λ, ξ).
In the sensitivity analysis, the total differentiation and partial differentiation

with respect to ξ should be distinguished and denoted by ( · )′ and ( · ),ξ, respec-
tively. For example, in the total differentiation, U is to be conceived as a function
of ξ, as U for a fixed value of Λ is obtained by solving the equilibrium equation
(1.1). The total differentiation U′ of U(ξ) with respect to ξ is found by total dif-
ferentiation of the equilibrium equation. The argument ξ will be often suppressed
in this chapter, for simplicity.

1.4 Design Sensitivity Analysis for Linear Response

Consider a linear response of a structure, and denote by KL(ξ) ∈ R
n×n the linear

(infinitesimal) stiffness matrix, which is a function of ξ. The total potential energy
is given as

Π(U,Λ, ξ) =
1
2
U�KL(ξ)U − Λp(ξ)�U (1.15)

Partial differentiation of Π(U,Λ, ξ) with respect to U, with the use of symmetry
of KL, leads to the equilibrium equation

KL(ξ)U − Λp(ξ) = 0 (1.16)

Here U is to be obtained as a function of ξ as a solution to (1.16). Total
differentiation of (1.16) with respect to ξ gives

KLU′ + K′
LU− Λp′ = 0 =⇒ KLU′ = −K′

LU + Λp′ (1.17)

In the direct differentiation method [115], the sensitivity coefficient vector U′

is directly computed by (1.17), as U = Λ(KL)−1p can be computed from (1.16)
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and p′ and K′
L can be easily obtained with explicit dependence of p and KL

on ξ. For example, if p is the self-weight of a truss and ξ corresponds to the
cross-sectional area, p and KL are explicit linear functions of ξ.

Remark 1.4.1 The second equation in (1.17) has the same form as (1.16) if the
right-hand-side terms are regarded as nodal loads; therefore, it is computationally
efficient to factorize KL in the process of solving (1.16) for U. Note that the
adjoint variable method is more computationally efficient if we have many design
parameters and few response quantities, sensitivity coefficients for which are to
be evaluated [49, 162].

Remark 1.4.2 Upon obtaining U and its sensitivity coefficient U′, we can
compute the sensitivity coefficients of stresses and strains in a straightforward
manner. For example, for a truss with nm members, the relation between U and
the axial force vector N ∈ R

nm
can be written as

N = DU (1.18)

where D ∈ R
nm×n is generally a function of ξ. Accordingly, the sensitivity

coefficients of N can be obtained from

N′ = D′U + DU′ (1.19)

1.5 Design Sensitivity Analyses for Nonlinear
Responses

Design sensitivity analyses for nonlinear responses, including a linear buckling
load and a limit point load, are presented.

1.5.1 Linear buckling load

We start with the sensitivity analysis of a linear buckling load, which is weakly
nonlinear. Consider a structure subjected to the proportional load P = Λp of
(1.9) with sufficiently small prebuckling deformation U � 0. The tangent stiffness
matrix S is expressed as the sum of the linear stiffness matrix KL, which does
not depend on deformation, and the geometrical stiffness matrix KG ∈ R

n×n,
which is a function of U through the internal forces or stresses at the current
(reference) state.

For the small deformation U � 0, the internal forces or stresses can be assumed
to be proportional to Λ, and KG is given as the product of Λ and a constant
matrix KG0 ∈ R

n×n, which is a function of stress under the given load p, namely,

KG = ΛKG0 (1.20)

The tangent stiffness matrix S becomes

S = KL + ΛKG0 (1.21)
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In this case, the criticality condition for eigenvalue λr = 0 in (1.5) is expressed
as

[KL + ΛLrKG0]Φr = 0, (r = 1, . . . , n) (1.22)

where ΛLr is the rth linear buckling load factor, and eigenvector Φr is normalized
by KL, which is positive definite, namely,

Φ�
r KLΦr = 1, (r = 1, . . . , n) (1.23)

Then the following relationship holds from (1.22) and (1.23) at a stable initial
state with ΛLr �= 0:

Φ�
r KG0Φr = − 1

ΛLr
, (r = 1, . . . , n) (1.24)

Eq. (1.22) defines a generalized eigenvalue problem, which yields n-eigenpairs
of ΛLr and Φr. The smallest positive eigenvalue3 ΛLr is called the linear buckling
load factor, and the corresponding Φr is called the linear buckling mode. The
critical load factor can be approximated by the linear buckling load factor with
good accuracy if the assumption U � 0 on prebuckling deformation is satisfied.

Total differentiation of (1.22) and (1.23) with respect to ξ gives, respectively,

K′
LΦr + KLΦ′

r + Λ′
LrKG0Φr + ΛLrK′

G0Φr + ΛLrKG0Φ′
r = 0 (1.25)

Φ�
r K′

LΦr + 2Φ�
r KLΦ′

r = 0 (1.26)

for r = 1, . . . , n. Sensitivity coefficients Λ′
Lr and Φ′

r can be obtained by solving
the set of n+ 1 simultaneous linear equations (1.25) and (1.26). Since KG0 is a
function of stresses under the load p, the sensitivity coefficients of the stresses
are required to compute K′

G0 in (1.25) (cf., Remark 1.5.1).
Premultiplying Φ�

r to both sides of (1.25) and using symmetry of KL and KG0,
we obtain

Φ�
r [K′

L + ΛLrK′
G0]Φr + Φ′

r
�[KL + ΛLrKG0]Φr + Λ′

LrΦ
�
r KG0Φr = 0 (1.27)

By (1.22) and (1.24), (1.27) gives

Λ′
Lr = ΛLrΦ�

r [K′
L + ΛLrK′

G0]Φr (1.28)

Hence, Λ′
Lr can be found from (1.28) by simple matrix computation if the

sensitivity coefficient Φ′
r of Φr is not needed.

Remark 1.5.1 The evaluation of K′
G0 is the most difficult process in the com-

putation of the sensitivity coefficients Λ′
Lr in (1.28). For example, for a truss

with nm members with a parameter ξ defining the cross-sectional areas, K′
G0 is

evaluated to

K′
G0 =

nm∑

j=1

∂KG0

∂Nj
N ′

j (1.29)

3The negative eigenvalues correspond to the buckling loads against the proportional load
in the opposite direction. However, in customary linear buckling analysis, the directions of the
loads are fixed and Λ is assumed to be positive.



1.5 Design Sensitivity Analyses for Nonlinear Responses 11

Λ
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0

 (ξ  + Δξ)0Ui
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Fig. 1.3 Variation of an equilibrium path with respect to parameter modification
ξ = ξ0 −→ ξ0 + Δξ.

where Nj is the axial force of the jth member, and its sensitivity coefficient N ′
j

can be computed by (1.19) after obtaining U′ by (1.17).

1.5.2 Responses at a regular state

Consider a regular state of a nonlinear response. Since the critical load cannot
be defined for the regular state, design sensitivity of displacements and stresses
for a fixed load Λ = Λ∗, instead of the critical load, is investigated.

Consider an elastic structure satisfying

• the structure is in a regular state at a load level Λ∗, where the tangent
stiffness matrix S is nonsingular, and

• the displacements and stresses are monotonically increasing functions of Λ.

Fig. 1.3 illustrates the variation of the equilibrium path with respect to the
modification of the parameter ξ from ξ0 to ξ0 + Δξ. In this case, sensitivity
coefficients U′ of U at ξ = ξ0 can be obtained based only on the response at the
load level Λ = Λ∗ without incrementally updating or accumulating U′ along the
fundamental path [45].

Since the total potential energy Π(U,Λ, ξ) is a function of U, Λ and ξ, the
total and partial differentiations of Π should be properly distinguished. The
dependence of U on ξ is implicitly defined by the equilibrium equation (1.1).
Therefore, the design sensitivity U ′

j is to be found by total differentiation of (1.1)
with respect to ξ for a fixed value of Λ = Λ∗ as

S′
,i ≡

n∑

j=1

S,ijU
′
j + S,iξ = 0, (i = 1, . . . , n) (1.30)

where in the partial differentiation

S,iξ =
∂S,i(U,Λ, ξ)

∂ξ
(1.31)
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the implicit dependence of U on ξ is not considered. Note that the sensitivity
coefficient U′ cannot be obtained from (1.30) at a critical state where S = [S,ij ]
is singular.

For a proportionally loaded structure satisfying (1.11), (1.30) reduces to
n∑

j=1

H,ijU
′
j = Λp′i −H,iξ, (i = 1, . . . , n) (1.32)

Here H = H(U(ξ), ξ) implicitly depends on ξ through U.
At the course of numerical path-tracing analysis, U ′

j can be computed from
(1.30) at minimal additional cost as follows (cf., [213, 262] for details):

• The tangent stiffness matrix S = [S,ij ] has already been computed during
the path-tracing analysis.

• Since S,i has also been computed to obtain residual (unbalanced) forces
and the dependence of S,i on ξ is known, S,iξ can be computed with ease.

• Since S has been factorized at Λ = Λ∗, (1.30) can be solved with minimal
additional computational cost.

Notice that the sensitivity equation (1.30) or (1.32) at a regular state has a
similar form as (1.17) for the geometrically linear problem in Section 1.4; i.e., the
linear stiffness matrix KL is to be replaced by the tangent stiffness matrix S.

The sensitivity coefficients of eigenvalue λr and eigenvector Φr of S are ob-
tained from the following equations, which are derived by total differentiation of
(1.5) and (1.7):

n∑

j=1

( n∑

k=1

S,ijkφrjU
′
k + S,ijξφrj + S,ijφ

′
rj

)
= λrφ

′
ri + λ′rφri,

(i = 1, . . . , n) (1.33)
n∑

j=1

φrjφ
′
rj = 0 (1.34)

Note that we have n+ 1 equations for n+ 1 unknowns λ′r and φ′ri (i = 1, . . . , n)
for each r. By multiplying φri to (1.33), summing up by i and using (1.5) and
(1.7), we obtain

λ′r =
n∑

i=1

n∑

j=1

( n∑

k=1

S,ijkφriφrjU
′
k + S,ijξφriφrj

)
(1.35)

If φ′ri is not needed, λ′r can be obtained from (1.35) by arithmetical operation,
after computing U ′

i by (1.30).

1.5.3 Limit point load

Sensitivity coefficient Λc′ of a limit point load can be found only from the equilib-
rium equations (1.1) in a similar manner as the case of the regular state presented
in Section 1.5.2.



1.6 Historical Development 13

By considering Λc as a function of ξ, and by differentiating the equilibrium
equations (1.1) with respect to ξ at the limit point load Λ = Λc, we obtain

n∑

j=1

S,ijU
′
j + S,iΛΛc′ + S,iξ = 0, (i = 1, . . . , n) (1.36)

where ( · ),Λ denotes partial differentiation with respect to Λ.
Premultiplying the critical eigenmode φc

1i to the both sides of (1.36), taking
summation over i, and using λ1 = 0 for (1.5), we can obtain the sensitivity
coefficient of the limit point load

Λc′ = −
n∑

i=1

S,iξφ
c
1i

/ n∑

i=1

S,iΛφ
c
1i (1.37)

By (1.37), the sensitivity coefficient Λc′ can be found directly without resort to
the sensitivity coefficients U′ of displacements and Φc

1
′ of the eigenmode. Since

Λc′ in (1.37) does not depend on ξ, the critical load Λc(ξ) of an imperfect system
is written as a linear function of ξ as

Λc(ξ) = Λc(0) + Λc′ξ (1.38)

Remark 1.5.2 Eq. (1.37) in principle agrees with preexisting results of stability
analysis of elastic conservative systems based on the derivatives with respect
to the displacement in the direction of Φc

1 (cf., [283, 285] and Section 3.5.2).
However, we prefer formulations based on physical coordinates, as employed in
(1.37), so as to be consistent with the conventional finite element analysis.

Remark 1.5.3 The denominator of (1.37) vanishes at a bifurcation point (cf.,
(3.25) and (3.27) in Section 3.3); therefore, (1.37) is not extendable to a bifurca-
tion point [239]. It should also be noted that the sensitivity equation presented
in this section does not depend on the symmetry of the imperfection unlike the
case of bifurcation loads (cf., Section 2.2).

Remark 1.5.4 For a proportional loading, (1.36) and (1.37) are to be rewritten
by using the following formulas (cf., (1.11)):

S,iΛ = −pi, S,iξ = H,iξ − Λp′i, S,ij = H,ij (1.39)

1.6 Historical Development

Design sensitivity analysis and shape sensitivity analysis were initiated mainly
in the field of structural optimization [49, 115], and established works on design
sensitivity analysis of linear elastic responses, eigenvalues of vibration, and so on,
are at hand. In the 1980’s, geometrically nonlinear formulations were developed
for optimization against buckling of simple structures [150, 158, 249, 316].
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For structures exhibiting limit point instability, the algorithm for design sen-
sitivity analysis was developed [239, 314, 316], and the optimum design for a
specified nonlinear buckling load factor was conducted [150, 158, 179, 249, 316].
Mathematical equivalence between design sensitivity and imperfection sensitiv-
ity was recognized [225]. The formulas for imperfection sensitivity coefficients
were implemented into optimality conditions for problems under constraint on a
limit point load, and the optimization for nonlinear buckling was studied [217,
232, 233, 254]. Thus general theory of elastic stability can effectively be used in
design sensitivity analysis for structural optimization.

A semi-analytical approach for sensitivity analysis of critical loads, and an
optimization algorithm implementing design modifications were presented [253].
Sensitivity analysis of critical loads based on asymptotic approach was also pre-
sented, where computation of the third-order derivatives of the total potential
energy was necessitated for bifurcation loads [202]. Examples of optimum design
with limit points were studied [203]. An approach considering postbuckling states
was presented [97].

Several numerical approaches to design sensitivity analyses for bifurcation
loads were developed in the framework of finite element analysis. For exam-
ple, sensitivity analyses of bifurcation loads were conducted by an interpolation
approach [227], and an approach using linear eigenvalue analysis [214, 316].

Another branch of sensitivity analysis of nonlinear response is found in
elastoplastic continuum mechanics, and formulations suitable for computational
implementation were presented [162, 177, 214, 262, 305]. However, there are only
a few studies on design sensitivity analysis of elastoplastic critical loads [215].

1.7 Summary

In this chapter,

• general frameworks of elastic stability of conservative systems have been
presented, and

• design sensitivity analyses for linear and nonlinear responses have been
classified and briefly been introduced.

The major findings of this chapter are as follows.

• The design sensitivity analyses presented herein are expressed by simple
formulas. Yet these formulas contain the essence of design and imperfec-
tion sensitivity analyses of buckling loads to be introduced in the following
chapters.

• Design sensitivity analysis for regular states can be carried out easily based
on the response quantities at the final load level. However, sensitivity co-
efficients at the critical states cannot be obtained similarly, because the
tangent stiffness matrix is singular at the critical point.

• The sensitivity coefficient of a limit point load can be obtained simply by
differentiation of the equilibrium equations.


