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Preface

This volume contains the papers presented at the 20th UK Workshop on
Computational Intelligence (UKCI 2021), held virtually by Aberystwyth
University, September 8–10, 2021. This marks the 20th anniversary of UKCI, a
testament to the increasing role and importance of computational intelligence
(CI) and the continuing interest in its development. UKCI provides a forum for the
academic community and industry to share ideas and experience in this field. UKCI
2021 is the only event in the workshop series to be held online since the inaugural
event in 2001, due to the COVID-19 pandemic. EDMA 2021, the 4th International
Engineering Data- and Model-Driven Applications Workshop, is also incorporated
and held in conjunction with UKCI 2021.

Paper submissions were invited in the areas of fuzzy systems, neural networks,
evolutionary computation, machine learning, data mining, cognitive computing,
intelligent robotics, hybrid methods, deep learning, and applications of CI. In
addition to UK institutions, UKCI 2021 attracted submissions from Canada, China,
India, Italy, Japan, Thailand, and the USA, reflecting the global appeal of research
in this area.

Fifty papers were accepted at the workshop, with each paper having been
reviewed by at least two members of the program committee. Of these, 42 were
accepted for presentation at UKCI 2021 (34 as regular papers and eight as short
papers). Eight papers were accepted for presentation at EDMA. The papers in this
volume have been divided into eight sections: fuzzy systems, evolutionary algo-
rithms, neural networks/deep learning, intelligent robotics, data mining/machine
learning, image analysis, health informatics, and engineering data- and
model-driven applications.

There were three keynote talks given by established researchers in the field: Prof.
Bernadette Bouchon-Meunier (CNRS National Center for Scientific Research),
Prof. Emma Hart (Edinburgh Napier University), and Dr. Una-May O’Reilly (MIT
Computer Science and Artificial Intelligence Lab). We would like to thank
everyone who contributed to the success of UKCI 2021. We particularly thank the
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members of the program committee for their reviews and recommendations, the
keynote speakers, the authors and presenters, and the organizing committee. We are
also grateful for the support provided by Aberystwyth University and Springer.

Neil Mac Parthaláin
Richard Jensen
Thomas Jansen

Qiang Shen
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An Evolving Feature Weighting Framework
for Granular Fuzzy Logic Models

Muhammad Zaiyad Muda(B) and George Panoutsos

Department of Automatic Control and Systems Engineering, The University of Sheffield,
Sheffield, UK

mzmuda1@sheffield.ac.uk

Abstract. Discovering and extracting knowledge from large databases are key
elements in granular computing (GrC). The knowledge extracted, in the form of
information granules can be used to build rule-based systems such as Fuzzy Logic
inference systems. Algorithms for iterative data granulation in the literature treat
all variables equally and neglects the difference in variable importance, as a poten-
tial mechanism to influence the data clustering process. In this paper, an iterative
data granulation algorithm with feature weighting called W-GrC is proposed. By
hypothesising that the variables or features used during the data granulation pro-
cess can have different importance to how data granulation evolves, the weight
of each feature’s influence is estimated based on the information granules on a
given instance; this is updated in each iteration. The feature weights are estimated
based on the sum of within granule variances. The proposed method is validated
through variousUCI classification problems:- Iris,Wine andGlass datasets. Result
shows that for certain range of featureweight parameter, the new algorithm outper-
forms the conventional iterative granulation in terms of classification accuracy.We
also give attention to the interpretability-accuracy trade-off in Fuzzy Logic-based
systems and we show that W-GrC produces higher classification performance -
without significant deterioration in terms of its interpretability (Nauck’s index).

Keywords: Granular computing · Iterative data granulation · Fuzzy logic ·
Feature weights · Feature relevance

1 Introduction

One of the key steps in building data driven Fuzzy Logic (FL) models is the process
of extracting knowledge from data [1]. Granular Computing (GrC) and iterative data
granulation algorithms are an effective approach to extract knowledge from data within
the context of human-centric systems [2, 3]. Among the most widely used techniques
for this process are fuzzy c-means (FCM) and hierarchical clustering.

In recent years, iterative data granulation algorithms, also known as granular clus-
tering proposed in [3, 4] have become a proven alternative in data mining and devel-
oping FL rule-bases. The main idea of this algorithm is to merge two most compatible
information granules iteratively until sufficient data compression is achieved [3]. The

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Jansen et al. (Eds.): UKCI 2021, AISC 1409, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-030-87094-2_1
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4 M. Z. Muda and G. Panoutsos

compatibility measure can simply be distance based (such as in hierarchical clustering
algorithms) or potentially involve more complex formulations that combine granular
density, cardinality, overlap etc.

GrC algorithms have a similarity with agglomerative hierarchical clustering in terms
of its ‘find and merge’ strategy. However, one main distinction between these algorithms
is that in GrC, every granule consist of sub-granules originating directly from the actual
data. This contributes to strong connection between the raw data and the information
granules. Moreover, the compatibility measure in GrC is very useful tool in monitoring
the similarity between granules; this can be linked to a numerical criterion to terminate
the granulation in order to avoid merging of low compatibility granules [4].

So far GrC algorithms treat all features equally during the data granulation process.
This is not desirable especially when dealing with data consisting of high number of
features [5]. In many cases, some features are not as crucial as other features in the devel-
opment of the FL model [1], while other features may have an importance that changes
throughout the granulation process. This leads to the idea of continuously measuring
and assigning appropriate weight for each feature throughout the data granulation (as in
adaptive feature weighting for classical clustering algorithms).

Even though the feature weight concept has been introduced elsewhere [4], most
of the works regarding this algorithm such as [6] and [7] use fixed weight for each
feature. Investigations in feature weighting for GrC are scarce; for example in [8] a
Fast Correlation-Based Filter which is based on symmetrical uncertainty to determine
the most relevant features of a welding process. However, this is a preprocessing step
(acting as a filter method) where the feature weights are determined in advance, and their
values are constant throughout the evolution of the granulation process.

In this paper, we propose a new GrC algorithm that assigns and updates the feature
weights based on the importance of the input features throughout the evolution of the
iterative data granulation. With this approach we enable the more important features
to have higher influence in the data granulation than the less important features, for a
given iteration. Furthermore, instead of assigning the weight in the preprocessing step,
the feature weighting in this research is embedded in the granulation process itself. This
allows the feature weights to be adjusted according to the information granules that have
been formed. The hypothesis here is that as information granules merge, and patterns
develop, the importance of particular features to the evolution of such granules may
change. While this approach is new in GrC, it has already been proven to be effective in
other data mining and clustering algorithms.

Feature weighting has been applied in many clustering algorithms to overcome the
problem of feature selection. Wu et al. introduced a new weighted fuzzy c-means algo-
rithm taking into account the between-cluster separability [9]. The iterative formulas of
the feature weights and membership degrees are obtained by maximizing the in-cluster
compactness and the between-cluster separability. In another research, Huang et al.
proposed W-k-means, the weighted version of k-means that outperformed the standard
k-means in recovering clusters in data [5]. They also demonstrated that eliminating the
irrelevant features based on the feature weights may enhance the clustering results. In
the area of hierarchical clustering, Amorim implemented the feature-weighting scheme
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in an improved version of Ward, called Wardp [10]. He demonstrated the effectiveness
of Wardp over the conventional Ward in particular in datasets comprising noisy data.

2 Background: The GrC-Fuzzy Logic Model

The general framework for GrC-Fuzzy Logic modelling consists of two main steps,
which are knowledge discovery and followed by the formation of a Fuzzy Logic rule-
base. In the knowledge discovery step, granular computing and the process of iterative
data granulation mimic the cognitive human abstraction in grouping entities with sim-
ilar features (i.e. geometrical properties, cardinality, density, etc.) [6]. The knowledge
discovered in the form of information granules defines the structure of the FL rule-base,
specifically the parameters of the FL membership functions.

2.1 Knowledge Discovery

The process of iterative data granulation starts with finding the pair of granules with
the highest compatibility measure. Next, the granules are merged together in a new
information granule that consists of original granules [7]. These steps are repeated until
a satisfactory data abstraction level is accomplished.

The compatibility measure of two granules A and B is defined as:

C(A,B) = DistanceMAX − DistanceA,B.exp(−α × R) (1)

where

Density R = CA,B/CardinalityMAX

LA,B/LengthMAX
(2)

DistanceMAX is defined as the sum of maximum distance in each dimension d :

DistanceMAX =
∑d

v=1
(distancev) (3)

DistanceA,B is the average multidimensional distance between granules A and B
weighted by feature weight wv:

DistanceA,B =
∑d

v=1wv(D1 − D2)

d
(4)

in which

D1 = max(maxAv,maxBv) (5)

D2 = min(minAv,minBv) (6)

maxAv: maximum value in granule A for dimension v, minAv: minimum value in
granule A for dimension v, α: weights the requirement between distance and density,
CardinalityMAX : the total number of instances in the data set, LengthMAX : the maximum
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(a) 

(b)

Fig. 1. Data granulation process from (a) 400 data vectors to (b) 20 information granules and (c)
5 information granules
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(c) 

Fig. 1. continued

possible length of a granule in the data set, CA,B: the cardinality when granule A merge
with granule B, and LA,B: length of the granule A and B, defined as:

LA,B =
∑d

i=v
(maxXv − minXv) (7)

Typically, the feature weight parameter wv in Eq. (4) used in most previous works
is set to 1 for all dimensions (i.e. feature weighting is not used), or used at a fixed
pre-determined value for each feature. The computation and adaptive adjustment of this
parameter is the focus in this paper.

Figure 1 illustrates the evolution of a data granulation process for a two-dimensional
synthetic data set with 150 instances. It starts with the initial raw data where every data
instance is considered as one granule-point. These granules are then merged iteratively
causing the number of granules to be reduced until the final information granules are
established (in a predetermined manner, or using some termination criterion).

2.2 Formation of Fuzzy Logic Rule-Base

Taking a Gaussian Fuzzy Logic membership function (MF) as an example, the MF
depends on two parameters σ and c which represent the width and the centre of a fuzzy
set [11]. The standard deviation and median of data in each information granule can
be used to determine the σ and c, respectively. Each information granule characterises
one fuzzy rule [12]. For example, five information granules in Fig. 1 will lead to the
formationoffive fuzzy rules. Figure 2 shows theoverviewofGrC-FuzzyLogicmodelling
framework.
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By determining the parameters σ and c across each input dimension individually in
a multi-input single-output (MISO) system, the rules based onMamdani fuzzy inference
system (FIS) can be written as follows:

Rule1:
IF(inputA = A1 and inputB = B1 and . . . )then(output = O1)

Rule2:
IF(inputA = A2 and inputB = B2 and . . . )then(output = O2)

(8)

Extract membership function parameters from the final information granules

Construct Fuzzy Logic rule-base 

Iterative data granulation

Final model

Raw data

Fig. 2. The overview of GrC-Fuzzy Logic modelling framework

3 Proposed Methodology: Evolving Feature Weighting GrC

The Weighted K-Means (WK-Means) algorithm introduced by Huang et al. [5]
minimises the following object function:

W (S,C,w) =
∑K

k=1

∑
i∈Sk

∑
v∈V wβ

v d(yiv, ckv) (9)

The Equation above is minimised by an iterative method, optimising (9) for S, C,
and w, where S = {S1, S2, . . . , Sk , . . . , SK }, ck ∈ C is the centroid for each granule k,
yi is an object in dataset Y , and β is the feature weighting parameter that balances the
degree of effect between the weight and its contribution to the distance. There are two
possibilities for the update of wv, with S and C fixed, subject to β > 1:

wv =

⎧
⎪⎨

⎪⎩

0, if Dv = 0
1

∑h
j=1

[
Dv
Dj

] 1
β−1

, if Dv �= 0 (10)



An Evolving Feature Weighting Framework 9

where h is the number of features where Dv �= 0.
The parameterwv (feature weight) in Eq. (4) has a fixed value, often pre-determined,

in works related to GrC. In this paper, the weight for each feature v is defined and
iteratively updated based on Eq. (10).

As shown in the equation, nonzeroweight is only assigned to a featurewhereDv �= 0.
Dv = 0 indicates that the vth feature consists of single value in each granule [5] and will
be assigned zero weight. In this research,Dv is set as the sum of within granule variance:

Dv =
∑K

k=1

1

N − 1

∑N

i=1
|yiv − ckv|2 (11)

where N is the cardinality in the granule k.
The underlying principle here is to assign higher weights for features with lower

within granule variance i.e. high variance in granules is set to be undesirable, hence
penalised in the compatibility index. High variance would translate into high sigma
(width) MFs. Hence, features that drive the creation of low variance granules, in any
given iteration step, are promoted by the use of this adaptive weight and such features are
considered here as more important for the evolution of the granulation process towards
the development of FL rule-bases for classification problems.

3.1 Simulations and Empirical Results

Simulations were conducted on three datasets with regard to classification problems:–
Iris, Wine and Glass (UCI Machine Learning Repository). All features are scaled to the
interval of [0, 1]. The ratio of training and testing data is set to 80:20. The range of
feature weighting parameter β is selected between 1.5 and 10. The root mean square
error (RMSE) and prediction accuracy % were calculated as the average of ten trials.

The Iris data consists of 150 instances with four input features. Next, the experiment
is scaled up to datasets with higher feature dimensionality, which are Glass and Wine
data with 10 and 13 input features, respectively. A bootstrapping method is applied to
Glass data to balance the number of instances for each class. Due to this, the number
of instances increases from 214 to 371. For comparison purposes, based on previous
work [12], the number of granules selected for Iris and Wine is 5, while for Glass is 30
granules.

3.2 Evolving Feature Weights

Figure 3 shows how the feature weights evolve throughout the iterative granulation
process, as an example for two features in the Iris dataset. The weights are plotted
starting from the fourth iteration (out of 115 iterations), after which the feature weights
are observed to be stable. This is due to the fact that the feature weights are assigned
based on the within granule variance, while the merging process at the beginning only
involves singleton granules (i.e. Dv = 0).

The featureweight average is computed and is comparedwith othermeasures such as
mutual information and feature importance score as shown in Table 1. Mutual informa-
tion gives information about the relevance between two random variables and normally
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being estimated between each feature and the given class labels [13]. The feature impor-
tance score ranks the features using a chi-square (χ2) test [14]. The feature importance
score is the negative log of chi-square tests’ p-value [15].

This result shows that the feature weight ranking is consistent with the other two
independent measures, confirming our hypothesis in capturing feature importance via
the proposed method. All these three measures rank Petal width as the most important
feature, followed by Petal length, Sepal length and Sepal width.

(a) (b)

Fig. 3. Feature weights throughout the granulation for (a) Sepal length and (b) Sepal width

Table 1. Comparison of average feature weight in W-GrC with the feature importance score and
mutual information

Average weight (W-GrC) Feature importance score Mutual information

Sepal length 0.2721 41.7358 0.6415

Sepal width 0.2062 19.1551 0.3935

Petal length 0.3072 97.8866 1.2663

Petal width 0.3623 101.1028 1.3245

3.3 Empirical Results Using Simulations

Table 2 summarises the performance of W-GrC with different values of β. The ‘no
feature weighting’ row presents the results for the GrC without feature weighting, also
known as conventional GrC. It is observed that with careful selection of β, the proposed
W-GrC outperforms the standard GrC in terms of RMSE and accuracy. β needs to be
treated as a hypermeter here, which will be identified in each case (problem specific).

For the Iris data, good results were obtained at β ∈ {3, 4, 5, 6, 7, 8, 10}. The highest
accuracy was achieved when β = 3 and β = 6 with 96.33% of correct prediction as
compared to 94% in the conventional GrC. ForWine data, improvement can be observed
at β ranging from 3 to 6. Most experiments showed accuracies of above 90%, except for
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β = 1.5. This result is comparable to other literature results, however it is recognised
that this specific case study may be too simple to stress test the proposed methodology
(Glass and Wine data offer higher complexity and dimensionality).

In the case of the Glass dataset, we can see more clearly that higher values of β

(β ≥ 3) are more desirable to produce good result. The best performance is recorded at
β = 5 with 71.86% accuracy in comparison with 62.79% in conventional GrC.

From Table 2, it can be observed that in general, W-GrC outperforms the conven-
tional GrC. It achieves highest accuracy for all datasets, when an appropriate value of β

is selected. This is because features that are more important for a given instance during
the iterative granulation process are assigned with larger weights in forming the infor-
mation granules. However, it is noted that the selection of β is important to obtain high
classification accuracy. From the result, we suggest (β ≥ 3) as the appropriate value of
β, for this particular case study.

Results are benchmarked against other research such as [16] with 96.67% in Iris,
[17] with 97.14% in Wine and [13] with 71.66% in Glass.

Table 2. Average RMSE and % accuracy performance of W-GrC with various β values, testing
(unseen) data, 10 runs per β value

Iris Wine Glass

RMSE Accuracy (%) RMSE Accuracy (%) RMSE Accuracy (%)

No feature weighting 0.1415 94 0.1173 92.3 0.2020 62.79

β = 1.5 0.1473 91.67 0.3101 66.67 0.4274 26.74

β = 2.0 0.1551 90.67 0.1238 91 0.3365 32.33

β = 3.0 0.1205 96.33 0.1082 94 0.2235 63.02

β = 4.0 0.1302 94.67 0.1123 92.67 0.2164 69.30

β = 5.0 0.1253 94.33 0.1033 95.67 0.2144 71.86

β = 6.0 0.1251 96.33 0.1067 93 0.2165 66.98

β = 7.0 0.1285 95.67 0.1230 92 0.1980 66.51

β = 8.0 0.1189 96 0.1342 90.33 0.2219 66.05

β = 9.0 0.1346 93.67 0.1186 91.67 0.2105 68.14

β = 10.0 0.1273 95 0.1212 91.33 0.2224 65.81

3.4 Interpretability Index

In designing Fuzzy Logic systems (FLS), interpretability and accuracy are often con-
flicting objectives; one can be enhanced by sacrificing the other, a situation that is
termed as interpretability-accuracy trade-off. For example the enhanced interpretability
of Mamdani-based FLS, versus the enhanced predictive accuracy of TSK-based FLS.
Interpretability, within the FLS context, can be defined as the trait of a model to enable
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human to understand a system’s behavior by scrutinising its rule base [18]. In this study,
we use the models developed using values of β that perform the best in terms of accu-
racy as in Table 2 to assess if the models’ interpretability is affected by the enhanced
predictive performance.

The impact of feature weighting on interpretability measure is investigated using
Nauck’s index. Nauck’s index is a numerical index introduced by Nauck in order to
assess the interpretability of FL rule-based classification systems [19, 20]. It is computed
as the product of three terms: complexity of FLS (comp), average normalized coverage
of fuzzy partition (cov) and average normalized partition index (part) given by:

Nauck index = comp × cov × part (12)

(readers are referred to [19] and [20] for further details).
Table 3 summarises the comparison of the interpretability index for the proposed

W-GrC and the conventional GrC. It is demonstrated that W-GrC is able to producing
higher accuracy without a statistically significant deterioration in terms of model inter-
pretability. The impact on interpretability index is minor, less than 2% on the Iris data,
and even less for the Wine and Glass case studies. Note that the Nauck’s index in Glass
is comparatively to the other cases small due to the high number of rules (30 as opposed
to 5 in Iris and Wine).

Table 3. Comparison of the interpretability index

Nauck’s index

W-GrC GrC

Iris 0.3076 0.3129

Wine 0.0929 0.0928

Glass 7.02 × 10−4 7.07 × 10−4

4 Conclusion

In this paper, a new iterative data granulation algorithm is presentedwith evolving feature
weighting to characterise the importance of data features and use such weights to drive
the information granulation process. The weight for each feature is determined based
on the sum of within granule variances from the granules that have been formed, at any
given iteration. In each iteration, the importance of all features is evaluated to identify
the most important features that contribute most to the computation of the granules’
compatibility measure.

The resulting importance of features, estimated via averaging feature weights
throughout the data granulation process, are compared with other methods such as
chi-square test and mutual information; agreement in feature ranking is demonstrated.
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Simulation results in UCI classification problems have shown that the proposed W-
GrC algorithm outperforms the conventional GrC in terms of classification accuracy.
Improvement can be seen, in more complex datasets such as Glass case study. The
experiment results showed that the proposed GrC-Fuzzy-modelling framework is able
to handle data with various dimensionality. The interpretability of the resultingmodels is
assessed, usingNauck’s index, and no significant deterioration of predictive performance
is observed despite the higher resulting % accuracy in the classification tasks. While this
study shows positive preliminary results, a greater range of complexity in case studies
can be investigated in the future, aswell as performance can be assessedmore extensively
against non GrC-based methods.

Acknowledgement. This research is sponsored by Universiti Teknologi MARA, Ministry of
Education, Malaysia and The University of Sheffield, UK.
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Abstract. Explanation, or system interpretability, has always been
important in applications where critical decisions need to be made, for
example in the justice system or biomedical applications. In artificial
intelligence and machine learning, there is an ever increasing need for
system interpretability. This paper investigates a Fuzzy Multi-Criteria
Decision-Making (MCDM) model as the basis for an interpretable frame-
work for explainable classification. The proposed framework includes a
Fuzzy Inference System paired with a modified MCDM-based model for
data-driven classification. The modular nature of MCDM allows for the
development of a model-based layer capable of generating factual and
counterfactual explanations. Results on a ‘Titanic’ survivors’ dataset
classification, which illustrates a minimal trade-off in predictive perfor-
mance while gaining textual and graphical explanation, autonomously
provided by the proposed model-based MCDM framework.

Keywords: Fuzzy logic · Interpretability · Multi-criteria decision
making · Explainable-AI

1 Introduction

Interpretability has been a topic of significant interest among researchers with
the vision that it could shape how machine learning (ML) frameworks are
adopted in the future [1–4]. The current state-of-the-art ML classification frame-
works are not necessarily interpretable; a property of models that could enable
explainability of the models’ results. With the advent of deep learning and the
power of high performance computing, data-driven ML seems to be the obvious
choice for data-rich tasks. For the most part, deep learning and other state-of-
the-art ML techniques are sufficiently accurate predictive models and, are con-
structed with data paired with minimal, if any, expert knowledge. The challenge
with such models is the fact they are often black box models; hence, they are
neither inherently interpretable nor explainable. The lack of transparency is an
obstacle to the wide adoption of such methods, especially in applications requir-
ing precise decision justification [1,4,5]; for example, safety critical applications
such as nuclear, medical and advanced manufacturing.
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The focus of this paper, is multi-criteria decision making, and in partic-
ular interpretable data-driven Fuzzy-Multi-Criteria Decision-Making (Fuzzy-
MCDM) for classification problems. In this Section, a literature review summary
on MCDM, interpretability and explainability are covered. The methodology
used, in Sect. 2, is an expansion of Fuzzy-Amended fused TOPSIS-VIKOR for
Classification (Fuzzy-ATOVIC) [11], a MCDM-based technique developed for
achieving satisfactory performance while being interpretable. Fuzzy-ATOVIC is
consequently augmented with an explanation framework designed for explain-
ing the classification output. Section 3 includes the framework’s application to
the Kaggle ‘Titanic’ dataset, which presents a classification problem [6]. The
results demonstrate the model’s ability to provide graphical and textual expla-
nation, while maintaining comparable classification performance. The paper fin-
ishes with concluding remarks and future work.

Multi-CriteriaDecisionMaking (MCDM) is a set ofmodellingmethods capable
of providing decision support based on several criteria [7]. MCDM are applied in a
variety of applications such as business, supply chain and manufacturing [8]. The
methods often use a range of criteria to determine a rank for each object. An exam-
ple of a typical MCDM application is the ranking of a supplier list. In this case, a
company would compare a set of suppliers by using a set of criteria such as speed of
delivery, pricing, and payment terms. Depending on the circumstances, different
levels of importance can be assigned to different criteria using weights. The process
results in a ranked list with the alternatives. Although MCDM was not initially
intended as a classifier, nevertheless, there were attempts of developing MCDM-
based classification frameworks [9,10]. MCDM can utilise human-understandable
criteria, hence it can become interpretable by nature deeming it a viable candidate
for explainable AI systems, when combined with AI-based methods.

Amended fused TOPSIS-VIKOR for Classification (ATOVIC) is a supervised
learning MCDM framework that can be trained by a combination of data and
expert knowledge [9]. A Fuzzy Logic-based extension of the method, Fuzzy-
ATOVIC, makes use of a Fuzzy Inference System (FIS) to replace the final step
in the decision making process, introducing greater potential for interpretability
to the overall MCDM framework [11]. Fuzzy-ATOVIC as an initial proposal was
the first step towards adapting ATOVIC as a fully data-driven classification
framework while maintaining its interpretability [11]. Achieving explainability
in complex ML structures has always been a challenge due to the inherent non-
interpretable nature of many such models. The lack of explanatory information
in such models delayed the long awaited wide adoption in several industries.
Explanation, as a functional requirement, is considered important in areas where
the wrong decision is likely to have a major or catastrophic consequence. In these
applications, it is imperative that ML models can provide explanation because
without it, the user is faced with relying on their own calculations to make
decisions, defying the ultimate purpose of the model - improving the overall
efficiency and accuracy of the process.

Interpretability has two main categories: model-based or post-hoc [3]. Model-
based, as the name suggests, is interpretability that utilises the model itself (its
parameters and variables), as the source of interpretation. In contrast, post-hoc
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interpretability relies solely on the input(s) and output(s) as the source of inter-
pretation [3]. Many researchers have attempted to utilise post-hoc to attempt
to explain the output [12,13]. One of the weaknesses of post-hoc interpretability
is the fact that it does not directly explain how the model arrived at a certain
decision, rather it is in some way an explanation estimator. On that account,
model-based interpretability offers the potential for a direct explanation of the
models’ decision making process. One of the main challenges in pursuing model-
based interpretability is to overcome the trade-off of performance (accuracy,
interpretability) [1].

2 Methodology

2.1 ATOVIC and Fuzzy-ATOVIC

Amended Fused TOPSIS-VIKOR for Classification (ATOVIC) is an MCDM-
based classification technique introduced by Baccour in 2018 [9]. ATOVIC is a
fusion of two MCDM-based techniques: TOPSIS and VIKOR [9]. As opposed
to most MCDM techniques, ATOVIC is supervised and data-driven: however,
it relies on expert knowledge for setting whether a feature is a cost or benefit.
It is vital to set features as costs or benefits effectively to maximise perfor-
mance. Furthermore, relying on expert knowledge for data-driven applications
could be problematic for datasets where such knowledge does not exist; thus, a
method was implemented, as will be explained in Step 2 of model construction,
to numerically classify a feature as a cost or benefit. Fuzzy-ATOVIC is a fuzzy
extension of ATOVIC that uses a Fuzzy Inference System (FIS) for the final step
of decision making [11].

Construction of the ATOVIC model is achieved using the following steps.
The procedure is based on Baccour’s literature [9], while steps 2 and 3 were
modified to enhance the methods of weight calculation and feature classification;
to improve the accuracy performance and eliminate the requirement of expert
knowledge.

1. Training dataset normalisation using (1, 2) where θ is the normalised term,
r denotes the reference matrix, x is the non-normalised term and h is the
normalisation coefficient, p is the class number, i is the object number and j
is the feature number.

2. Weight calculation using (3) where wj is the weight and ρj is the Pearson
correlation coefficient [15]; of feature j.

3. Classifying features as a benefit or cost is determined using ρ. If ρj ≤ 0 then
j is a cost for Class 2 and a benefit for Class 1; while if ρj > 0 then j is a
cost for Class 1 and a benefit for Class 2. Where j is the feature number.
To achieve this, the labels for class 1 and 2 data have to be set as 1 and 2
respectively.

4. Ideal solutions calculation using (4, 5) where two sets of ideal solutions f
are calculated: positive and negative. For positive ideal solutions f+

p , the
maximum is used for a benefit feature while the minimum is used for a cost
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feature. Intuitively, it is vice versa for negative ideal solutions, as shown in
(5). The ideal solutions are later used for classification.
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After model construction, the data is classified by executing the steps below.

1. Testing data normalisation using (1) and, based on the values of hr
jp

defined
during model construction.

2. Distance measures S and R are the Manhattan and Chebyshev distances,
respectively. They are obtained by calculating the distance types from the
ideal solutions for class c = 1 to 2. This implementation of ATOVIC, as
opposed to the original version, does not use the Q measure - a weighted sum
of S and R. The purpose is to improve traceability and simulatability [1].

3. Comparing distance measures for classification by use of a FIS.

Sci =
n∑

j=1

wj ∗ (f+
ijc

− θtijc)/(f+
ijc

− f−
ijc

), Sci ∈ [0, 1] (6)

Rci = max
j

[

wj ∗ (f+
ijc

− θtijc)/(f+
ijc

− f−
ijc

)
]

, Rci ∈ [0, 1] (7)

The measures S and R (6, 7), are input into a FIS to compute the fuzzy class. The
FIS has six inputs as defined by (8, 9) where ΔMc is calculated for M = {S,R}
and class c = 1 to 2.

ΔMc = Mc,2 − Mc,1 (8)

nM = |ΔM2| − |ΔM1| (9)

Furthermore, the input-output membership functions (MFs) were configured as
below.
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– Sc, Rc: two MFs: class 1, class 2
– nS , nR: two MFs: positive (positive outcome model is used for decision),
negative (negative outcome model is used for decision)

– Output: four MFs: class c strong, class c normal, for class c = 1 to 2.

Consequently, a set of 16 rules were configured to cover all possible combinations
of inputs; this includes cases where the two sub-models are in agreement or
conflict. The S measures are utilised to take a decision, while the R measures
translates to a higher chance of certainty; if it is in agreement with S. If the
measures are in agreement, a strong output MF, corresponding to the class, is
set while a normal one is used in the case of conflict, as illustrated in Fig. 1. The
updated configuration of ATOVIC means the FIS had to be modified to process
the measures S and R, instead of just the weighted sum measure Q; in the first
iteration of Fuzzy-ATOVIC [11].

Is nS
positive (P) or 
negative (N)?

Is nR
positive (P) or 
negative (N)?

Yes:
Use both 
measures

No:
Use 

only

Is there 
agreement between
 the two measures 

( , )?

Output MF:
class_c_normal

Output MF:
class_c_strong

P: 
P: 

N: 
N: 

Fig. 1. Flowchart explaining the conditions for formulating the fuzzy rules: binary
classification

Despite ATOVIC not utilising user-defined linguistic terms, using human-
understandable features meant this is not necessary for interpretation. However,
for features that are not human-understandable, it would be essential to intro-
duce interpretability by pre-processing techniques suitable for the problem.


