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The increase in the frequency of drought and flood 
events due to changes in the global water and energy cycle 
poses higher risks to human settlements, especially those 
in floodplains and areas with frequent heat waves and def-
icit in precipitation, in an era of rapid population growth. 
Monitoring and forecasting of the occurrence, intensity, 
and evolution of drought and flood events are considered 
to be more and more important by humanitarian and 
government agencies for issuing timely warnings, moni-
toring ongoing hazards, and developing short‐term and 
long‐term risk assessments and management plans. In the 
past two decades, there have been significant advances in 
both numerical modeling and remote sensing approaches. 
These complementary approaches have been critical com-
ponents in producing integrated information for droughts 
and floods.

This monograph reviews recent advances in the mod-
eling and remote sensing of droughts and floods, cov-
ering many relevant topics including: (a) the currently 
available, widely used techniques and products for obtain-
ing timely and accurate global‐scale or continental‐scale 
drought and flood information; (b) the features, strengths 
and weaknesses, and advances and challenges in each of 
these global products; (c) how these products have been 
used by humanitarian, government, and development 
sectors in recent natural disaster cases; and (d) discus-
sions about the gaps between the products and end users, 
and insights for further improving the workflow in 
response activities from perspectives of both hazard 
information providers and users.

This book is organized into three closely connected sec-
tions. Part I focuses on remote sensing approaches for 
global drought and flood mapping. It starts with an over-
view of progress, challenges, and opportunities in remote 
sensing of drought. As critical components for drought 
monitoring, two well recognized remote‐sensing‐based 
products for evapotranspiration measurement and reser-
voir parameters (elevation, storage, and area) are then 
introduced and discussed in the following two chapters. 
Two widely used remote‐sensing‐based flood mapping 
products are described in the next two chapters, respec-
tively, followed by a thoughtful chapter proposing an 
integration of Earth Observation (EO) data and numerical 
models, with the latter as the focus of the next section.

Part II summarizes current widely used modeling 
approaches and systems, including model physics,  features, 

validation, strength, limitations, and challenges in their 
further improvement and applications. In this section, the 
first three chapters are focused on modeling of drought 
using statistical, process‐based or hybrid approaches. For 
flood modeling, an overview of the state‐of‐the‐art flood 
models is presented in a dedicated chapter. An open 
challenge for almost all global flood models, i.e., large‐scale 
calibration of models, is discussed in the following chapter. 
The rest of the section then focuses on two common data 
sets, i.e., derivations based on digital elevations model 
(DEM), and land use and land cover (LULC), which are 
fundamental for both drought and flood simulations.

Part III provides a review of recent advances in drought 
and flood damage estimation and risk assessment, and 
in‐depth discussions on challenges in humanitarian 
response and management activities when integrating the 
hazard information from multiple products and data 
sources. Flood risk assessment under climate change is 
first introduced and discussed. Then practical activities in 
hazard response from national and international agencies 
are detailed in the next two chapters. The final chapter of 
this section describes the emerging role of the Global 
Flood Partnership (GFP), a network of scientists, users, 
and private and public organizations active in global 
flood response and risk management. The GFP shares 
flood information in near real‐time for national environ-
mental agencies and humanitarian organizations to 
support emergency operations and to reduce the overall 
socioeconomic impacts of disasters. A conclusion sum-
marizes the whole book, with a brief  discussion on exist-
ing challenges and the strategies of improving the 
monitoring and prediction of drought and flood.

Drought and floods have unsurprisingly become the hot 
topics of several recently published books. The unique-
ness of this book, however, lies in the fact that: (a) it rep-
resents most of the ongoing modeling efforts, including 
current widely used products, and as chapter contributors 
are the developers of these products, this allows them to 
describe in detail and depth the strengths, weaknesses, 
advances and challenges in their further development 
and  integration; (b) it brings together  contributors 
from  humanitarian, government, and development sec-
tors, describing how these products are used in risk 
assessment and catastrophe response activities from a 
users’ standpoint, shedding light on how to narrow the 
gap between product providers and users in both 
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expectation and communication. As a result, this book 
should appeal to a broad community of researchers, engi-
neers, practitioners, policy makers, and decision makers, 
from various national and international agencies and non-
governmental organizations (NGOs) working in drought 
and flood disaster management, and in sustainable and 
resilient construction. It should also be of interest to 
college students and teachers with interests in subjects 
including hydrology, remote sensing, meteorology, natural 
hazards, emergency management, and global change.

Last, we note that many of the chapters on floods are 
born out of presentations given at recent American 
Geophysical Union’s Fall Meeting sessions on “Global 
Floods: Forecasting, Monitoring, Risk Assessment, and 

Socioeconomic Response” and the annual meetings of 
the Global Flood Partnership (GFP). These sessions and 
meetings foster global flood forecasting, monitoring, and 
impact assessment efforts with the aim to strengthen pre-
paredness and response and to reduce global flood losses.
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1.1. INTRODUCTION

Drought is a recurring natural feature of climate and is 
defined as below‐normal precipitation, usually over an 
extended period of time (Wilhite & Buchanan‐
Smith,  2005). Droughts cause billions of dollars of 
damage to multiple sectors globally, specifically to agri-
culture. Droughts may also cause, or co‐occur with, other 
hazards such as heatwaves, which collectively escalate the 
ramifications of this natural hazard (Raei et  al.  2018). 
Indeed, the concurrence of climatic extremes, in particular 
droughts and heat waves, can result in forest fires 
(Goulden,  2018; Silva et  al.,  2018; Taufik et  al.,  2017), 

1
Progress, Challenges, and Opportunities in Remote 

Sensing of Drought

Arash Modarresi Rad1, Amir AghaKouchak2, Mahdi Navari3, and Mojtaba Sadegh4

ABSTRACT

Drought, one of the most daunting natural hazards, is linked to other hazards such as heatwaves and wildfires, and 
is related to global and regional food security. Given the severe environmental and socioeconomic ramifications of 
droughts, comprehensive and timely analysis of droughts’ onset, development, and recovery at proper spatial and 
temporal scales is of paramount importance. Droughts are categorized by different variables, such as precipitation, 
soil moisture, and streamflow, depending on the target of the analysis. The root cause of droughts, however, is 
sustained below‐average precipitation. Large‐scale oceanic and atmospheric circulations drive precipitation vari-
ability, and hence droughts should be analyzed from a continental to global perspective. Given the spatial scale of 
interest, as well as the poor spatial resolution and temporal inconsistency of ground observations, multisensor 
remotely sensed climatological, hydrological, and biophysical variables offer a unique opportunity to model droughts 
from different perspectives (meteorological, agricultural, hydrological, and socioeconomic) and at the global scale. 
It is also often required to model droughts using multiple indices and analyze feedbacks between droughts and other 
hazards, such as heatwaves. Multiple satellites,  missions, and sensors offer invaluable information for multi‐indicator 
modeling of droughts and their feedbacks with other natural hazards in an era of big data. Remote sensing satellite 
data, however, are associated with major challenges including temporal limitations, consistency within and between 
multiple sensors and data sets, reliability, lack of uncertainty assessment, managing data volumes, and paucity of 
research on translating remote sensing of drought into actionable science. With challenge comes opportunity. The 
focus of the scientific community should be on merging the information provided from different satellites and sen-
sors, to underpin their uncertainties, and to offer long‐term and consistent data sets for drought analysis.
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land degradation and desertification (Hutchinson & 
Herrmann,  2016; Olagunju,  2015; Vicente‐Serrano 
et  al.,  2015), water shortage for agriculture and urban 
water supply (AghaKouchak, Farahmand, et  al., 2015; 
Gober et  al.,  2016; Khorshidi et  al.,  2019; Van Loon 
et  al.,  2016), and economic impacts, and may prompt 
water bankruptcy (Howitt et  al.,  2014; Madani 
et al., 2016). Therefore, the impacts of drought are com-
plex and can propagate to regions outside the area of its 
occurrence. Drought is often categorized in four groups: 
meteorological, agricultural, hydrological, and socioeco-
nomic (Dracup et  al.,  1980). Meteorological drought is 
defined as precipitation deficiency over a long period, 
and it best represents the onset of drought (Utah Division 
of Water Resources, 2007). An extended period of mete-
orological drought results in soil moisture deficit as 
evapotranspiration continues despite the lack of precipi-
tation, which leads to agricultural drought (Cunha 
et  al.,  2015). Persistence of metrological drought ulti-
mately reduces overall water supply and drought is mani-
fested in a hydrological form (Modaresi Rad et al., 2016). 
Socioeconomic drought then occurs as supply and 
demand of some economic goods are impacted by mete-
orological, agricultural, and hydrological droughts 
(Shiferaw et al., 2014). The observed changes in temporal 
patterns of precipitation associated with unsustainable 
water withdrawal may escalate the drought severity 
around the globe (Mallakpour et al., 2018; U.S. Global 
Change Research Program,  2018); and large‐scale 
changes in weather patterns are likely to affect water 
storage around the globe and threaten water supply par-
ticularly in arid and semi‐arid regions (Ault et al., 2014).

Drought detection requires observation of  a plethora 
of  different climatic and biophysical variables. 
Observations in situ, however, do not provide a uniform 
spatial distribution and are limited to populated areas, 
hence satellite‐based observations provide a unique way 
to analyze and monitor drought at a global scale. 
Satellites offer observations for a wide range of  climate 
variables such as  precipitation, soil moisture, tempera-
ture, relative humidity, evapotranspiration, vegetation 
greenness, land‐cover condition, and water storage 
(Aghakouchak, Farahmand, et  al.,  2015; R. G. Allen 
et al., 2007; L. Wang & Qu, 2009; Whitcraft et al., 2015). 
Although remote sensing provides more opportunities 
for the scientific community to monitor Earth systems 
and offer better understanding of  drought impact at 
regional to global scales, it is not without flaws or chal-
lenges. The main challenge is the insufficient length of 
the observed records provided for the variables of 
interest. Other challenges include data consistency, ease 
of  access, quantifying uncertainty, and development of 
appropriate drought indices, which will be discussed 
throughout this chapter.

1.2. PROGRESS IN REMOTE SENSING 
OF DRIVERS OF DROUGHT

This section presents the recent remote sensing tech-
niques used for identification and quantification of 
drought as characterized by different climatic and bio-
physical variables.

1.2.1. Precipitation

A meteorological drought can be described as precipita-
tion deficiency over a period of time (WMO, 1975), often 
represented in terms of an index of deviation from normal. 
Drought indices not only serve the scientific communities 
but they are also great tools for facilitating the decision‐
making and policy‐making processes for stakeholders and 
managers when compared with the raw data. One of the 
most widely used and informative meteorological drought 
indices is the standardized precipitation index (SPI) devel-
oped by Mckee et al. (1993). Several other meteorological 
drought indices have also been proposed, including, but not 
limited to, precipitation effectiveness (Thornthwaite, 1931), 
antecedent precipitation (API; McQuigg,  1954), rainfall 
anomaly (RAI; Van Rooy, 1965), drought area (Bhalme & 
Mooley,  1980), effective precipitation (Byun & 
Wilhite, 1999), and rainfall variability indices (Oguntunde 
et  al.,  2011). The SPI is  currently being used in many 
national operational and research centers and was recog-
nized as a global measure to characterize meteorological 
drought by the World  Meteorological Organization 
(WMO,  2009). Computation of SPI requires measured 
rainfall data and a normalization process of monthly data, 
either by utilizing an appropriate probability distribution 
function (PDF) to transform the rainfall PDF (e.g., gamma 
or Pearson type III probability distribution) into a standard 
normal distribution (Khalili et al., 2011), or by utilizing a 
nonparametric approach (Hao & AghaKouchak,  2014). 
Precipitation deficit can be specified for different timescales 
(e.g., from 1 to 24 months) when using SPI, where precipi-
tation abnormalities in shorter timescales reflect soil mois-
ture wet/dry conditions and longer timescales portray the 
wet/dry conditions of subsequent processes such as stream-
flow, reservoir levels, and ultimately groundwater.

Since the root cause of droughts is deficit in precipita-
tion, meteorological drought indices, and in particular SPI, 
are suitable indices for revealing the onset of drought (Hao 
& Aghakouchak, 2013). Indeed, precipitation is regarded 
as a key component in drought  analysis. Clustering 
approaches have been used as a common practice to iden-
tify spatially homogeneous drought areas by utilizing mete-
orological drought indices such as SPI (Santos et al., 2010). 
Assessment of temporal variability of metrological drought 
utilizing SPI, however, has shown formation of nonco-
herent clusters in spatiotemporal clustering (Modaresi Rad 
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& Khalili, 2015). This is due to precipitation’s large spatial 
variability, which creates diverse spatial patterns even 
at small scales. Considering spatial variability of precipita-
tion is crucial, since a dense and evenly distributed network 
of gauging stations is required for describing spatiotem-
poral characteristics of drought. Similarly, ground‐based 
weather radars also suffer from spatial discontinuity and 
are error prone due to contamination by surface back-
scatter, uncertainty of approximation of relation between 
reflectivity and rain rate, and bright band effects, making 
them unfeasible for global applications (Kidd et al., 2012; 
Wolff & Fisher, 2008). As a result, a more robust approach 
would be to use satellite observations that would produce 
gridded data as an input not only for drought models, but 
also for meteorological and hydrological models such as 
weather research and forecasting (WRF) and variable infil-
tration capacity (VIC).

Visible (VIS) satellite images provide information about 
cloud thickness and infrared (IR) images provide 
information on cloud top temperature and cloud height 
that are used to estimate precipitation rate via different 
retrieval algorithms (Joyce & Arkin,  1997; Sapiano & 
Arkin, 2009; Turk et al., 1999). Geostationary (GEO) VIS/
IR satellites offer approximately a 15–30 min frequency of 
observations, but their accuracies are disputed. On the 
other hand, passive microwave (MW) sensors capture data 
of hydrometeor signals and scattering signals of raindrops, 
snow, and ice contents in the lower atmosphere and sense 
the bulk emission from liquid water, and therefore provide 
a more accurate estimation of precipitation rate (Behrangi 
et al., 2014). The MW sensors, however, often face diffi-
culties distinguishing between light rain and clouds and 
have less frequent overpass (almost two observations per a 

day). Therefore, it is suggested that a combination of both 
MW and VIS/IR satellite observations can result in more 
accurate estimations (Joyce et  al.,  2004). Currently, a 
variety of precipitation satellite data sets or products exist, 
amongst which that of the Tropical Rainfall Measuring 
Mission (TRMM) has found notable success towards 
improving the forecast of extreme events (Figure  1.1a). 
This data set is a joint mission between the National 
Aeronautics and Space Administration (NASA) and the 
Japan Aerospace Exploration Agency (JAXA) that 
advances the understanding of tropical rainfalls over the 
ocean by providing three‐dimensional images. The mission 
was launched in 1997 and terminated in 2015, and the 
project was continued in 2014 by NASA’s Goddard Space 
Flight Center and JAXA as Global Precipitation 
Measurement (GPM), with a new calibration standard for 
the rest of the satellite constellation and a core observatory 
that possessed a Dual‐frequency Precipitation Radar 
(DPR) and a GPM Microwave Imager (GMI) (Hou 
et al., 2014). Other satellite precipitation data sets include 
the Climate Predicting Center (CPC) Morphing Technique 
(CMORPH; Joyce et al., 2004), CPC Merged Analysis of 
Precipitation (CMAP; Xie & Arkin,  1997), TRMM 
Multisatellite Precipitation Analysis (TMPA; Huffman 
et  al.,  2007), Special Sensor Microwave Imager (SSM/I; 
Ferraro, 1997), Global Precipitation Climatology Project 
(GPCP; Adler et al., 2003), Precipitation Estimation from 
Remotely Sensed Information using Artificial Neural 
Networks (PERSIANN; Figure 1.2; Ashouri et al., 2015; 
Hsu et al., 1997; S. Sorooshian et al., 2000), and the new 
GPM mission known as the Integrated MultisatellitE 
Retrievals for GPM (IMERG; Figure  1.1b; Huffman 
et al., 2015).

(a) (b)

1998 – 2011
Total rainfall (cm) September 17 – 20, 2019

50 km N

Satellite estimateds show
rainfall totals reaching 75 cm (30 in)

in parts of southeast Texas

G u l f  o f  M e x i c o

0 25 50 75

Average rain rate 1998 – 2011 (mm day–1)

0 7.5 15

Figure 1.1 Rainfall map by NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite. (a) Average rate of 
 rainfall per day for the period of 1998‐2011. (b) A tropical storm in southeast Texas causing record‐breaking 
floods, produced using the IMERG precipitation product. (Courtesy: NASA’s Earth observatory: https://
earthobservatory.nasa.gov/images)

https://earthobservatory.nasa.gov/images
https://earthobservatory.nasa.gov/images
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One of the major challenges associated with satellite 
precipitation data is measurement or inference uncer-
tainty due to the presence of uncorrected biases (A. 
Sorooshian et al., 2008). Studies have shown that although 
TMPA can be used to produce reliable results when 
driving hydrological models for monthly streamflow 
simulation, it does not perform well at the daily time-
scale (Meng et  al.,  2014). Since precipitation is a key 
variable in hydrology, the problem with uncertainty is 
further aggravated if  it is left untreated in drought mon-
itoring and hydrological modeling. As a result, several 
post‐processing techniques have been developed for 
bias  correction (Khajehei et  al.,  2018; Madadgar & 
Moradkhani, 2014). For further information regarding 
the validation process against ground‐based measure-
ments, interested reader is referred to AghaKouchak 
et  al. (2012), Lu et  al. (2018), Mateus et  al. (2016), 
Nasrollahi et  al. (2013), Y. Tian et  al. (2009), and Xu 
et  al. (2017). Another limitation of  satellite precipita-
tion data is associated with their short length of  record. 
Drought analysis requires at least a minimum of  30 
years of  data (Mckee et al., 1993). Therefore, the near‐
real‐time satellite precipitation products such as GPCP 
with nearly 19 years of  recorded data cannot single‐
handedly be used to develop drought‐monitoring sys-
tems. To remedy this shortcoming, near‐real‐time 
satellite data are combined with the long‐term GPCP to 
produce the required  timespan for drought calculation 
(AghaKouchak & Nakhjiri,  2012). In their study, 
AghaKouchak and Nakhjiri (2012) used a merged prod-
uct of  GPCP (1979–2009) and PERSIANN (2010 to the 

present) in a Bayesian data‐merging framework to pro-
duce a near‐real‐time meteorological drought moni-
toring system using SPI.

1.2.2. Soil Moisture

Agricultural drought is a result of precipitation deficit 
plus accumulated evapotranspiration over a prolonged 
period of time that eventually leads to extended periods of 
low soil moisture that affect crop yields and livestock pro-
duction (Cunha et al., 2015). Agricultural drought disrupts 
the chain of supply and demand of agricultural products 
and contributes to socioeconomic drought (Wilhite & 
Glantz, 1985). Soil moisture is a key component of agri-
cultural drought and defines the readily available water 
that plants can access from the soil through their root 
system. Soil moisture regulates the water and energy 
exchange between the land surface and the atmosphere. It 
also influences the partitioning of nonintercepted precipi-
tation into surface runoff and infiltrations and influences 
the partitioning of net radiation into sensible, latent, and 
ground heat fluxes that are essential climate variables 
(WMO,  2006). Soil moisture condition directly reflects 
ecosystem functionality and agricultural productivity, 
therefore an agricultural drought influences the economy 
at local to global scales (IPCC, 2007; Ryu et al., 2014).

Warm surface temperature and rapidly decreasing soil 
moisture due to a lack of precipitation and hot tempera-
tures are associated with rapidly developing drought con-
ditions that are often known as “flash droughts” (M. C. 
Anderson et  al.,  2013; Otkin et  al.,  2016). Ford et  al. 
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Figure  1.2 Near real‐time 0.04° precipitation information provided by the Global Water and Development 
Information (G‐WADI) map server of University California at Irvine using the PERSIANN‐Cloud Classification 
System (PERSIANN‐CCS). 



REMOTE SENSING OF DROUGHT 7

(2015) demonstrated that measurements of soil moisture 
in situ would drastically enhance the identification of 
flash droughts. Therefore, identification and quantifica-
tion of drought at different timescales with high‐resolu-
tion satellite imagery is crucial for decision making and 
 developing drought mitigation strategies (D’Odorico 
et al., 2010). Several drought indices have been proposed 
to address deficiency in soil moisture, including the Crop 
Moisture Index (CMI; Palmer, 1965), Keetch–Byram 
Drought Index (KBDI; Keetch & Byram,  1968), Soil 
Moisture Percentile (Sheffield et al., 2004), Soil Moisture 
Deficit Index (SMDI; Narasimhan & Srinivasan, 2005), 
Scaled Drought Condition Index (SDCI) that uses multi-
sensor data (Rhee et  al.,  2010), Microwave Integrated 
Drought Index (MIDI) that integrates precipitation, soil 
moisture, and land surface temperature derived from 
microwave sensors such as TRMM and AMSR‐E (Zhang 
& Jia,  2013), Soil Moisture Drought Index (SODI; 
Sohrabi et  al.,  2015), and Standardized Soil Moisture 
Index (SSI; Hao & Aghakouchak, 2013; Figure 1.3).

What is required for agricultural drought and land sur-
face models is the water content of the plant root zone in 
soil. This requires observatories in situ that are able to 
measure soil‐water content at deeper layers of soil and 
provide more accurate estimations of soil moisture for 
purposes of drought monitoring as well as validation of 

satellite estimations of soil moisture. The cosmic‐ray soil 
moisture observing system (COSMOS; Zreda et al., 2012) 
and the German terrestrial environmental observatories 
(TERENO; Zacharias et  al.,  2011) are two examples 
of  such in situ measurement networks. Moreover, the 
International Soil Moisture Network (ISMN) (http://
www.ipf.tuwien.ac.at/insitu) provides a long record of 
global in situ soil moisture data, however, these measure-
ments are typically available at point scales and contain 
significant spatial and temporal gaps. While point‐based 
measurements are time consuming and costly, passive 
and active microwave sensor data retrieved from satellites 
readily provide spatiotemporally consistent observations 
of soil moisture from the top  5  cm of soil (Entekhabi 
et al., 2010; L. Wang & Qu, 2009). Given that agricultural 
drought monitoring requires information about soil 
moisture content of the entire soil column (i.e., surface 
and root zone), remotely sensed soil moisture data alone 
are not adequate for drought monitoring and comple-
mentary information about root zone soil moisture needs 
to be provided using modeling and data assimilation (e.g., 
Mladenova et  al.  2019). Surface soil moisture data are 
derived mainly from passive or active microwave satellites 
(De Jeu et al., 2008; Njoku et al., 2003; Takada et al., 2009; 
Wagner et al., 1999). Currently, the Soil Moisture Active 
Passive (SMAP; Figure 1.4; Entekhabi et al., 2010) and 

Monitoring

D4 D3 D2 D1 D0 W0 W1 W2 W3 W4

Figure 1.3 Near real‐time drought monitoring and prediction system by the Global Integrated Drought Monitoring 
and Prediction System (GIDMaPS) using the Standardized Soil Moisture Index (SSI) for February 2016 based on 
the Modern‐Era Retrospective analysis for Research and Applications (MERRA) data set. D0 indicates abnormally 
dry; D1 moderate drought; D2 severe drought; D3 extreme drought; D4 exceptional drought; and the same 
applies to wetness (W) scale. 

http://www.ipf.tuwien.ac.at/insitu
http://www.ipf.tuwien.ac.at/insitu
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the Soil Moisture Ocean Salinity (SMOS; Kerr 
et al., 2010) missions are the main sources of the remote‐
sensing‐based soil moisture estimates. These data sets 
have been used extensively for drought monitoring (e.g., 
Mishra et al., 2017; Sadri et al., 2018; Sánchez et al., 2016). 
Soil moisture also can be inferred from other microwave 
sensors (Entekhabi et  al.,  2010; Martínez‐Fernández 
et al., 2016; Moradkhani, 2008; Scaini et al., 2015) such 
as: the Scanning Multichannel Microwave Radiometer 
(SMMR), the SSM/I, the European Remote Sensing 
(ERS) scatterometer, the TRMM microwave imager, 
the  Advanced Scatterometer (ASCAT), and Advanced 
Microwave Scanning Radiometer2 (AMSR2). Long‐term 
soil moisture data appropriate for monitoring drought 
can be obtained through certain databases such as 
the  Water Cycle Multimission Observation Strategy 
(WACMOS), which is derived from multiple satellites 
(Ambaw, 2013). Similarly, the European Space Agency’s 
Climate Change Initiative (ESA CCI) offers a soil‐mois-
ture data set with a record of over 30 years that is partic-
ularly suitable for monitoring agricultural drought. The 
ESA CCI merges soil moisture retrievals of a number of 
different satellites and provides three types of product: 
active microwave, passive microwave, and combined 
active–passive microwave (Gruber et al., 2019). The ESA 
CCI soil‐moisture data set, however, has large gaps over 
densely vegetated areas. Martínez‐Fernández et al. (2016) 
show the reliability of the CCI soil‐moisture data set for 
purposes of modeling agricultural drought.

Monitoring agricultural drought requires high‐resolu-
tion data to reveal detailed variations of soil moisture. To 
improve the spatial resolution of soil moisture data, sev-
eral downscaling methods have been used, such as 

machine learning frameworks (Im et  al.,  2016; Park 
et  al.,  2017), DISaggregation based on Physical And 
Theoretical scale CHange (DISPATCH) which uses 
shortwave and thermal data from Moderate‐Resolution 
Imaging Spectroradiometer (MODIS) to downscale 
SMOS data (Merlin et al., 2015), and Smoothing Filter‐
based Intensity Modulation (SFIM) which integrates 
microwave data from SMAP, Sentinel‐1, and AMSR2 to 
downscale soil moisture data to an enhanced resolution 
of 0.1° × 0.1° (Santi et al. 2018).

1.2.3. Relative Humidity

Water vapor has a significant influence on Earth’s cli-
mate and energy distribution as it displaces nearly half  
the trapped heat in an upward and poleward direction 
and is considered a natural greenhouse gas (Sherwood 
et  al.,  2010). Advances in remote sensing have made it 
possible to monitor water vapor and relative humidity 
through satellite sensors. Relative humidity is defined as 
the amount of water available in air with respect to the 
required water vapor for saturation at a specific tempera-
ture. Remotely sensed relative humidity data can be 
used as an early detection variable to monitor drought 
(Farahmand et  al.,  2015). A recently proposed 
Standardized Relative Humidity Index (SRHI) offers 
potential information about early drought detection and 
can be used in conjunction with other indices such as SPI 
or the Palmer Drought Severity Index (PDSI; Palmer, 
1965) for drought monitoring and early warning systems 
(Farahmand et al., 2015; Figure 1.5). Studies also show 
that a combination of near‐surface air temperature, 
vapor pressure deficit, and relative humidity can enhance 

May 27–31, 2015

May 27–31, 2015
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Figure 1.4 Soil moisture observation by NASA’s Soil Moisture Active Passive (SMAP) satellite. (a) Soil moisture 
observation of the United States. (b) Global view. (Courtesy of NASA’s earth observatory: https://earthobservatory.
nasa.gov/images).

https://earthobservatory.nasa.gov/images
https://earthobservatory.nasa.gov/images
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the detection of drought onset (Behrangi et al., 2016). To 
detect onset of drought, Farahmand et al. (2015) used the 
Atmospheric Infrared Sounder (AIRS20) satellite’s 
relative humidity data and developed a SRHI. The AIRS 
mission provides relative humidity data with a spatial res-
olution of 1° and covers a period ranging from 2002 to 
present. The authors suggested that due to the limited 
period of recorded data from AIRS for the purposes of 
drought analysis (< 30 years), the Gravity Recovery and 
Climate Experiment (GRACE) observations, Evaporative 
Stress Index data, and a combination of AIRS and 
reanalysis data sets could be used to extend the observa-
tion records.

Measurements of relative humidity via remote sensing 
are often undertaken with IR‐based observing platforms 
(e.g., the AIRS20) (Fetzer et al., 2006; B. Tian et al., 2004). 
However, clouds tend to bias the IR observations, which 
is a major limiting factor since no observation of wet 
conditions will be available after a strict cloud screening 
(John et al., 2011). Another major issue is the variation of 
relative humidity due to changes in saturated vapor 
pressure, as it is significantly influenced by air tempera-
ture. Therefore, even with a fixed water vapor content, 
changes in air temperature will result in variations in 
relative humidity (Moradi et  al.,  2016). On the other 
hand, microwave sounder retrievals can produce large 
errors owing to modeling errors of Earth’s limb radiances 
(e.g., Microwave Limb Sounder) (Lambert et al., 2007). 

In general, too much uncertainty arises from observa-
tions of water vapor in diurnal and spatial distribution of 
the troposphere (Boyle & Klein,  2010), and having a 
course resolution of 2–3 km in both IR and microwave 
sounders, these instruments are unable to portray a 
detailed vertical structure of water vapor.

Vergados et  al. (2015) used the Global Positioning 
System Radio Occultation (GPSRO) observations from 
the Constellation Observing System for Meteorology, 
Ionosphere, and Climate (COSMIC) mission that 
resolved the challenges associated with the presence of 
cloud. The authors demonstrated that the GPSRO‐
derived relative humidity data possess high quality. 
Sondeur Atmosphérique du Profil d’Humidité 
Intertropicale par Radiométrie (SAPHIR) from the 
Megha Tropiques satellite provides relative humidity data 
with temporal resolution of several observations per day 
and has six channels specifically for the water vapor 
absorption line at 183 GHz with a spatial resolution of 
10 km at nadir for all the channels. Using the measure-
ments of SAPHIR, Moradi et  al. (2016) found larger 
diurnal amplitude over land compared to the ocean; 
larger oceanic amplitude over convective regions com-
pared to subsidence regions; and showed that in tropical 
regions, relative humidity of the troposphere showed 
large inhomogeneity in diurnal variation. Brogniez et al. 
(2016) further improved the relative humidity estimates 
from the SAPHIR Sounder by producing uncertainty 
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Figure 1.5 Standardized Relative Humidity Index (SRHI) for (a) August 2010, (b) probability of drought detection, 
and (c) missed drought ratio, which indicates that relative humidity can be used in conjunction with other 
drought indices for early detection of drought onset (Farahmand et al., 2015).
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estimates of the relative humidity through a Bayesian 
framework. Studies also suggested the appropriateness 
of using algorithms based on data from satellites such as 
the Advanced Very High Resolution Radiometer (AVHRR), 
National Oceanic and Atmospheric Administration 
(NOAA) Geostationary Operational Environmental 
Satellites (GOES), and MODIS to derive estimates of 
the  surface level relative humidity (Han et  al.,  2005; 
Ramírez‐Beltrán et al., 2019).

The frequency of unusually dry and hot conditions has 
increased in various parts of the world (Griffin & 
Anchukaitis,  2014; Seager & Hoerling,  2014). Some 
studies reported that the ever‐increasing anthropogenic 
radiative forcing is responsible for the recent changes in 
Earth’s hydrological cycle (Chikamoto et al., 2017; Littell 
et al., 2016; Williams et al., 2015). Chikamoto et al. (2017) 
demonstrated that droughts enhance wildfire probabilities 
in forested systems that take a huge toll on the economy, 
environment, and local communities in the countryside. 
Wildfire smoke tremendously increases the level of 
air  pollution and therefore proliferates mortality, and 
respiratory and cardiovascular morbidity. Accurate 
measurement of relative humidity is essential for 
retrieving Aerosol Optical Thickness (AOT) and quanti-
fying particulate matter (PM). Aerosol optical thickness 
can be derived from the MODIS on board NASA’s Terra 
and Aqua satellites. The humid air surrounding hygro-
scopic aerosols causes swelling and this will substantially 
increase the scattering efficiency of the particles (Hess 
et al., 1998; Twohy et al., 2009). Gupta et al. (2006) found 
that a relative humidity ranging from 50% to 80% would 
increase AOT less than 5%, whereas a relative humidity 
range of 98–99% results in a more pronounced increase 
(more than 25%). These results indicate that relative 
humidity data can be used to enhance the measurements 
of PM and devise mitigation strategies (Bowman & 
Johnston,  2005) to reduce the adverse impacts of the 
hazard (i.e., drought‐associated events such as wildfires).

1.2.4. Evapotranspiration

Evapotranspiration (ET) is an important variable in 
agriculture, accurate estimation of which is essential 
for  modeling agricultural drought. Evapotranspiration 
directly affects socioeconomic systems and agriculture, as 
irrigation water demand and crop yield are determined 
by this variable. Ecosystem and agriculture responses to 
drought are depicted by the ratio between actual ET 
(AET) and potential ET (PET) (Thornthwaite,  1948). 
Accordingly, several drought indices have been proposed 
that incorporate ET into their calculation including the 
PDSI, Crop Water Stress Index (CWSI; Jackson 
et  al.,  1981), Supply–Demand Drought Index (SDDI; 
Rind et  al.,  1990), Water Deficit Index (WDI; Moran 

et  al.,  1994), Reconnaissance Drought Index (RDI; 
Tsakiris & Vangelis,  2005), Evaporative Drought Index 
(EDI; Yao et  al.,  2010), Standardized Precipitation 
Evapotranspiration Index (SPEI; Vicente‐Serrano 
et  al.,  2010), Evaporative Stress Index (ESI; M. C. 
Anderson et al., 2016), Drought Severity Index (DSI; Mu 
et al., 2013), Green Water Scarcity Index (GWSI; Núñez 
et  al., 2013), Green Water Stress Index (GrWSI; 
Wada,  2013), Standardized Palmer Drought Index 
(SPDI; Ma et  al.,  2014), Multivariate Drought Index 
(MDI; Rajsekhar et al., 2015), effective Reconnaissance 
Drought Index (eRDI; Tigkas et al., 2017), Normalized 
Ecosystem Drought Index (NEDI; Chang et al.,  2018), 
and Aggregate Drought Index (ADI; S. Wang et al., 2018).

Both RDI and SPEI are widely used water‐balance‐
system agricultural drought indices that utilize precipita-
tion and PET as their input (Tsakiris et  al.,  2007; 
Vicente‐Serrano et  al.,  2010). While SPEI uses the 
Penman–Monteith method to derive PET (Figure  1.6), 
RDI utilizes temperature‐based methods to estimate 
PET and can use satellite‐retrieved air temperature data 
(Dalezios et al., 2012). Recently, Tigkas et al. (2017) mod-
ified the RDI index by substituting precipitation by effec-
tive precipitation (the amount of water that contributes 
to crop development and is absorbed by the root system), 
which can more effectively describe plant water consump-
tion. The modified index (eRDI) has the advantage of 
considering different stages of crop development and has 
shown higher correlation to reduction of crop yield in the 
location studied (Tigkas et al., 2017). Despite the advan-
tages of utilizing the temperature‐based method of PET, 
it suffers from several shortcomings as other factors such 
as net radiation, wind speed, and relative humidity that 
have strong influence on PET are being neglected in the 
process (Donohue et al., 2010; McVicar et al., 2012). Ma 
et al. (2014) outlined some issues regarding the climatic 
water balance system used by SPEI and suggested that 
SPEI would be more realistic if  soil‐moisture‐related 
hydrometeorological processes are considered. They 
redefined the procedure of PDSI calculation on the basis 
of the mathematical framework of SPEI and proposed 
a new multiscalar drought index. While indices such as 
SPI or PDSI can be used as early warning systems to 
detect potential drought imposed on an ecosystem, NEDI 
offers an actual drought stress response to limited water 
availability.

The remotely sensed methods of ET estimation can be 
categorized into four groups, including water balance sys-
tems (R. G. Allen et al., 1998; Senay, 2008), surface energy 
balance systems (R. G. Allen et  al.,  2007; Anderson & 
Kustas, 2008), vegetation indices (Glenn et al., 2011), and 
hybrid approaches that incorporate vegetation indices 
and surface temperature measurements (Kalma 
et  al.,  2008; Yang & Shang,  2013). MODIS data have 
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been frequently used worldwide to obtain land surface 
temperature data and derive ET for purposes of drought 
monitoring such as estimation of Evaporative Stress 
Index (ESI; Figure 1.7; M. C. Anderson et al., 2007) and 
DSI. Some other satellites capable of measuring land sur-
face temperature include Advanced Spaceborne Thermal 
Emission and Reflection Radiometer (ASTER) on board 
Terra, Landsat, AVHRR on board polar orbiting plat-
forms of NOAA, and visible and infrared imager 
(MVIRI) on board Meteosat satellites. The ECOsystem 
Spaceborne Thermal Radiometer Experiment on Space 
Station (ECOSTRESS) is a multiple wavelength imaging 
spectrometer that was launched on 29 June 2018 to the 
International Space Station (ISS) that provides ET 

estimates. This product has a spatial resolution of ~70 m 
and temporal resolution of approximately 3 days and is 
variable depending on ISS. Different ECOSTRESS data 
products are available for download through the United 
States Geological Survey (USGS) satellite image query 
tool (https://earthexplorer.usgs.gov/).

1.2.5. Snow

Snow and ice are key components of the hydrological 
cycle. The lack of  snow and ice storage in the snow‐
dominated regions significantly impacts the availability 
of water throughout the dry seasons, and influences 
 reservoir operation, flood risk management, recreation, 
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Figure 1.6 Three‐month Standardized Precipitation Evapotranspiration Index (SPEI) with 1° spatial resolution. (a) 
Global view of SPEI for November 2018. (b) Time series of SPEI for 9.25° E and 31.25° S in Africa. (Source: The 
Standardized Precipitation Evapotranspiration Index (SPEI), http://spei.csic.es/map/maps.html)
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tourism, energy production, navigation, and river ecology 
(Staudinger et  al.,  2014). Therefore, snow shortage in 
snow‐dominated mountain watersheds drives a range of 
adverse economic and social outcomes. Studies suggest 
that the occurrence of earlier peak discharge in western 
United States due to a warmer climate results in increased 
periods of summer water stress, which can in turn change 
forest structure (Harpold et  al.,  2014; Harpold,  2016). 
The continuous changes in the climate of snow‐domi-
nated watersheds (i.e., less snow, more rain, and earlier 
snowmelt) motived researchers to introduce the concept 
of snow drought (Hatchett & McEvoy,  2018). Only a 
 little research has been undertaken, however, with 
respect to developing a snow‐based indicator of drought. 
Currently, there is no generally accepted classification 
scheme for snow droughts. Three key metrics, the peak 
snow water equivalent (SWE), the date of peak SWE 
(DPS), and the snow disappearance date (SDD), how-
ever, have been used to characterize snow drought in the 
mountainous watersheds. The concept of snow drought 
can be defined as below‐average SWE at approximately 
when the maximum SWE typically occurs (Hatchett & 
McEvoy,  2018). Different definitions of snow drought 
have been proposed throughout the literature, including 
Van Loon and Van Lanen (2012) and Harpold et al. (2017).

Van Loon and Van Lanen (2012) described different 
scenarios of snow related drought according to their 
development: (a) rain‐to‐snow season drought, (b) cold 
snow season drought, and (c) warm snow season drought. 
Rain‐to‐snow season drought is developed due to a short-
age of rainfall in the rain season (spring, summer and/or 

autumn) and ends in snow season (winter) with precipi-
tation being in the form of snow. Consequently, soil 
moisture, streamflow, and groundwater remain relatively 
low until the upcoming melt season. Cold snow season 
drought is a result of abnormally low temperature in the 
snow season and a possible coincidence with below‐
average precipitation that can be categorized into three 
subtypes of A, B, and C. Subtype A describes climates 
with continuous snow cover during winter and below 
zero temperature. Early beginning of the snow season is 
the main driver of this drought type. Subtype B has the 
same climate as A, however, delay in snowmelt due to low 
temperature at the end of winter drives this type of snow 
drought. Subtype C is climate with a temperature around 
zero and limited snow accumulation in winter. Snowmelt 
often provides recharge to groundwater and streamflow 
during snow season. An abnormal temperature drop in 
winter results in an intermediate shortage of water for a 
few weeks to months duration.

Harpold et  al. (2017) divided snow drought into two 
categories: (a) warm snow drought, where accumulated 
precipitation during October–March is larger than the 
long‐term average and SWE on 1st April is less than 
the  long‐term average; (b) dry snow drought, where 
accumulated precipitation for the same period is less 
than  the long‐term average and SWE on 1st April is 
less than the long‐term average SWE.

In addition to the conceptual definition of snow 
drought, operational systems require relevant indicators 
to monitor snow drought. These indicators should pro-
vide insight on frequency, severity, and duration of snow 
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Figure 1.7 Evaporative Stress Index (ESI) derived from observations of land surface temperatures and leaf area 
index from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites 
and the Visible Infrared Imaging Radiometer Suite (VIIRS) of the Suomi National Polar‐orbiting Partnership (NPP). 
(a) The drought in New England that put crops and businesses under stress. (b) The drought that reduced food 
production and increased famine in the Greater Horn of Africa. (Courtesy: NASA’s earth observatory: https://
earthobservatory.nasa.gov/images)

https://earthobservatory.nasa.gov/images
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drought and help to develop prevention and mitigation 
strategies (Paneque, 2015). Indices such as SPI or PDSI 
are widely used to characterize hydrological droughts, 
however, these indices do not explicitly account for the 
effects of snow on water availability in snow‐dominated 
watersheds (Mote et al., 2016). Staudinger et al. (2014) 
proposed a drought index that would account for snow. 
This new index, termed Standardized Snow Melt and 
Rain Index (SMRI), is calculated similar to the SPI but 
uses summation of snowmelt and rain as input. The 
authors proposed an algorithm based on temperature 
threshold that does not require snow data and utilizes 
temperature and precipitation to model snow. It should 
be noted that the output of any snow model could be 
used to calculate the index. Knowles et al. (2017) devel-
oped a snow aridity index (SAI) to assess ecosystem 
 disturbance based on a long history of snow remote 
 sensing. The SAI is defined as a ratio of the sum of 1st 
April to 31st August PET to maximum SWE (𝑃𝐸𝑇/𝑆𝑊𝐸; 
Figure 1.8). It can be argued that SAI is a suitable index 
for characterizing snow drought since it uses both 
 potential evapotranspiration and SWE (Knowles 
et al., 2017, 2018).

Snowpack is often characterized in terms of snow 
albedo (SA), snow depth (SD), SWE, DPS, snow covered 
area (SCA), and fractional snow‐covered area (fSCA) 
(Kongoli et  al.,  2012). Remote sensing can effectively 
describe the relationship between snowpack dynamics 
and climate variability (Guan et al., 2012). Using remote 
sensing techniques and retrieval algorithms to measure 
snow‐related variables may provide insight for real‐time 
snow drought monitoring. The following provides a very 

short review of different remote sensing data and prod-
ucts that can be used to characterize snowpack.

Snow possesses a strong spectral gradient that ranges 
from high albedo in visible wavelengths to low reflectance 
in middle infrared wavelengths. Therefore, a commonly 
used method such as the band ratios can be utilized to 
map and monitor snow cover (Lettenmaier et al., 2015). 
The Normalized Difference Snow Index (NDSI) is one 
that shows the presence of snow on the ground. The 
NDSI algorithm distinguishes between snow and most 
cloud types, therefore, it better characterizes the snow 
cover areas than fSCA. The NDSI utilizes the reflectance 
ratios to detect snow and is described as the normalized 
difference between green and SWIR reflectance 
(RGreen−  RSWIR2)/(RGreen  +  RSWIR2) (Hall et  al.,  2002). 
Hatchett and McEvoy (2018) suggested using NDSI in 
conjunction with data from ground‐based observation 
networks to monitor snow drought. In forested regions, 
however, the NDSI has shown poor snow identification 
accuracy and the recently developed Normalized 
Difference Forest Snow Index (NDFSI) can produce 
higher identification accuracy. The NDFSI utilizes near‐
infrared in place of the green band, which has a higher 
reflectance that is useful when there is snow in a forested 
area (X. Y. Wang et al., 2015).

Several satellites are capable of detecting fSCA, such as 
the AVHRR, MODIS, and Landsat. However, a common 
issue with AVHRR is the inadequacy of its 1 km spatial 
resolution for snow mapping on small catchments 
(Simpson et  al.,  1998; H. Xu et  al.,  1993). Rott et  al. 
(2010) suggested that the Cold Regions Hydrology High‐
Resolution Observatory (CoReH2O) from the ESA 
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Figure 1.8 A below‐normal snowpack observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) 
on NASA’s Terra satellite. (a) Percent of fractional snow cover on 25 January 2016. (b) Below normal conditions 
in 29 January 2018. (Courtesy of NASA’s earth observatory: https://earthobservatory.nasa.gov/images)
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would deliver accurate and spatially detailed observa-
tions of snow mass. MODIS and Landsat Thematic 
Mapper (TM) alleviate this shortcoming to some extent 
by offering observations with a spatial resolution of 
250 m and 30 m, respectively (Hall et al., 2002). A major 
concern regarding the optical‐based satellites, however, 
is  the discontinuity of observations due to the presence 
of clouds. Clouds hinder the spatiotemporal consistency 
of snow cover due to having similar reflectance properties 
to snow in a wide range of the electromagnetic spectrum 
(Aghakouchak, Farahmand, et  al.,  2015). On the other 
hand, microwave measurements can be used to estimate 
fSCA and SD even in the presence of clouds, since they 
do not depend on sunlight reflection. Similar to optical‐
based satellites, the microwave observations become 
flawed once SD exceeds 30 cm and in melting conditions 
(Foster et al., 1997; Walker & Goodison, 1993). Therefore, 
more accurate and consistent measurements of SD 
retrievals can be achieved through an integrated frame-
work by combining observations from both types of 
 satellites (Durand et al., 2008; Foster et al., 2011). In an 
effort to simulate the spatiotemporal distribution of 
SWE in mountainous regions, the NASA Jet Propulsion 
Laboratory (JPL) Airborne Snow Observatory (ASO) 
provides near‐weekly lidar surveys. The derived SDs 
obtained from lidar scanners are then assimilated into 
hydrological models to produce higher temporal resolu-
tion of SWE distribution and volume. Recently, Hedrick 
et al. (2018) combined the iSnobal physically based dis-
tributed snowmelt model with ASO and produced daily 
SWE images with spatial resolution of 50 m.

Snow water equivalent is a critical parameter for 
 hydrological applications and the characterization of 
snowpacks, and is commonly estimated using passive 
microwave signals utilizing empirical relationships or 
radiative transfer models. Well‐known limitations of 
spaceborne passive microwave data, such as coarse 
spatial resolution, saturation in deep snowpack, and 
signal loss in wet snow, however, present major draw-
backs for passive microwave retrieval algorithms. Brodzik 
et al. (2016) developed high‐resolution passive microwave 
brightness temperature data that can be used to improve 
the SWE estimate in mountainous regions with complex 
physiography.

Peak SWE is an important variable in snow hydrology, 
traditionally, 1st April has been set as the date of peak 
SWE, however, many studies have shown that the peak 
SWE happens at different times. Margulis et  al. (2016) 
showed that the assumption of 1st April peak SWE can 
lead to a significant underestimation of peak SWE. They 
also highlighted the role of elevation and interannual var-
iability of peak SWE in the Sierra Nevada (California). 
Snow models and observations in situ are complemen-
tary tools that can be used in conjunction with remote 

sensing to accurately estimate the peak SWE and the date 
of peak SWE.

Although application of snow‐based drought indices 
for drought monitoring by remote sensing has been 
increased recently (Knowles et  al.,  2017; Sadegh, Love, 
et  al., 2017; Staudinger et  al.,  2014), the majority of 
research incorporates satellite observations of snow data 
into land‐surface and climate models (He et  al.,  2011; 
Kumar et al. 2014, Margulis et al., 2006, 2016). Global 
drought models based on snow are primarily challenged 
by the time lag between occurrences of precipitation as 
snow and changes in ground and surface waters that 
could vary between weeks to months depending on 
catchment characteristics and climate (Aghakouchak, 
Farahmand, et al., 2015; Van Loon & Van Lanen, 2012). 
As a final note, interested readers are encouraged 
to  explore the different snow drought tools available 
online  at (https://www.drought.gov/drought/data‐maps‐
tools/snow‐drought).

1.2.6. Groundwater

Prolonged meteorological droughts can severely 
affect  groundwater levels and the problem is further 
 exacerbated if  it is followed by an anthropogenic 
drought  (AghaKouchak, Feldman, et al., 2015; Alborzi 
et al. 2018). A decrease in groundwater recharge results in 
lower groundwater discharge and storage, a condition 
that is defined as a groundwater drought (Mishra & 
Singh,  2010). The lack of any imposed restriction for 
groundwater abstraction enhances hydrological drought, 
which is often overlooked due to poor understanding of 
hydrological cycle relations (Van Loon et al., 2016). The 
overuse of groundwater due to anthropogenic influences 
not only magnifies the drought condition, but also can 
cause permanent damage such as decreases in ground-
water storage capacity and subsequent land subsidence 
(Famiglietti et al., 2011; Faunt et al., 2015; Taravatrooy 
et al. 2018). The lack of continuous spatiotemporal mea-
surements of groundwater levels at a groundwater moni-
toring station (well) makes it difficult to characterize 
groundwater drought; however, with the launch of the 
GRACE satellites it has become possible to study the 
dynamics of water storages at a global scale (Wahr 
et  al.,  2006). The GRACE (2002–2017) and GRACE 
Follow‐On (2018 to present) satellites monitor changes in 
water storage compring groundwater, surface water reser-
voir, soil moisture, and snow water storage components.

The GRACE missions provide global changes in total 
water storage by converting gravity anomalies into changes 
of water equivalent height (Rodell & Famiglietti,  2002; 
Figure 1.9). The observed terrestrial water storage (TWS) 
from GRACE has spatial resolution of 150,000  km2 
per  grid that cannot be used for regional assessments; 
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