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Preface

I analyze business data—and I have been doing this for a long time. I was an analyst
and department head, a consultant and trainer, worked on countless problems,
written many books and reports, and delivered numerous presentations to all levels
of management. I learned a lot. This book reflects insights I gained from this
experience about Business Data Analytics that I want to share.

There are three questions you should quickly ask about this sharing. The first
is obvious: “Share what?” The second logically follows: “Share with whom?” The
third is more subtle: “How does this book differ from other data analytic books?T”’
The first is about focus, the second is about target, and the third is about competitive
comparison. So, let me address each question.

The Book’s Focus

My experience has been with practical business problems. When I finished my
academic training with a Ph.D. in economics and a heavy statistics exposure,
I immediately started my professional career with an AT&T internal consulting
group, The Analytical Support Center (ASC). I quickly learned that I needed both
a theoretical, technical understanding of quantitative work—how to estimate a
regression model, for example—and an understanding of how to deal with messy
data beyond the nice, clean data sets I used as a graduate student. My time at
the ASC was a great learning experience that I carried throughout my professional
career at AT&T, including Bell Labs, and into my own consulting business. The
lessons I learned were that good, solid data analysis for practical business problems
requires:

1. A theoretical understanding of statistical, econometric, and (in the current era)
machine learning methods

2. Data handling capabilities encompassing data organizing, preprocessing, and
wrangling

3. Programming knowledge in at least one software language
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These three components form a synergistic whole, a unifying approach if you wish,
for doing business data analytics, and, in fact, any type of data analysis. This synergy
implies that one part does not dominate any of the other two. They work together,
feeding each other with the goal of solving only one overarching problem: how to
provide decision makers with rich information extracted from data. Recognizing this
problem was the most valuable lesson of all. All the analytical tools and know how
must have a purpose and solving this problem is that purpose—there is no other.

I show this problem and the synergy of the three components for solving it as a
triangle in Fig. 1. This triangle represents the almost philosophical approach I take
for any form of business data analysis and is the one I advocate for all data analyses.

Theoretical

Framework

Data Raw Data Programming

Handling Processed Data Literacy
L J

Empirical Stage of Analysis

Fig. 1 The synergistic connection of the three components of effective data analysis for the
overarching problem is illustrated in this triangular flow diagram. Every component is dependent
on the others and none dominates the others. Regardless of the orientation of the triangle, the same
relationships will hold

The overarching problem at the center of the triangle is not obvious. It is subtle.
But because of its preeminence in the pantheon of problems any decision maker
faces, I decided to allocate the entire first chapter to it. Spending so much space
talking about information in a data analytics book may seem odd, but it is very
important to understand why we do what we do, which is to analyze data to extract
that rich information from data.

The theoretical understanding should be obvious. You need to know not just the
methodologies but also their limitations so you can effectively apply them to solve
a problem. The limitations may hinder you or just give you the wrong answers.
Assume you were hired or commissioned by a business decision maker (e.g., a
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CEO) to provide actionable, insightful, and useful rich information relevant for their
problem. If the limitations of a methodology prevent you from accomplishing your
charge, then your life as an analyst will be short-lived, to say the least. This will
hold if you either do not know these limitations or simply choose to ignore them.
Another methodological approach might be better, one that has fewer problems, or
is just more applicable.

There is a dichotomy in methodology training. Most graduate-level statistics and
econometric programs, and the newer Data Science programs, do an excellent job
instructing students in the theory behind the methodologies. The focus of these
academic programs is largely to train the next generation of academic professionals,
not the next generation of business analytical professionals. Data Science programs,
of which there are now many available online and “in person,” often skim the surface
of the theoretical underpinnings since their focus is to prepare the next generation
of business analysts, those who will tackle the business decision makers’ tough
problems, and not the academic researchers. Something in between the academic
and data science training is needed for successful business data analysts.

Data handling is not as obvious since it is infrequently taught and talked about
in academic programs. In those programs, beginner students work with clean data
with few problems and that are in nice, neat, and tidy data sets. They are frequently
just given the data. More advanced students may be required to collect data, most
often at the last phase of training for their thesis or dissertation, but these are small
efforts, especially when compared to what they will have to deal with post training.
The post-training work involves:

* Identifying the required data from diverse, disparate, and frequently disconnected
data sources with possibly multiple definitions of the same quantitative concept

* Dealing with data dictionaries

e Dealing with samples of a very large database—how to draw the sample and
determine the sample size

* Merging data from disparate sources

e Organizing data into a coherent framework appropriate for the statisti-
cal/econometric/machine learning methodology chosen

e Visualizing complex multivariate data to understand relationships, trends, pat-
terns, and anomalies inside the data sets

This is all beyond what is provided by most training programs.

Finally, there is the programming. First, let me say that there is programming
and then there is programming. The difference is scale and focus. Most people,
when they hear about programming and programming languages, immediately
think about large systems, especially ones needing a considerable amount of
time (years?) to fully specify, develop, test, and deploy. They would be correct
regarding large-scale, complex systems that handle a multitude of interconnected
operations. Online ordering systems easily come to mind. Customer interfaces,
inventory management, production coordination, supply chain management, price
maintenance and dynamic pricing platforms, shipping and tracking, billing, and
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collections are just a few components of these systems. The programming for these
is complex to say the least.

As a business data analyst, you would not be involved in this type of program-
ming although you might have to know about and access the subsystems of one or
more of these larger systems. And major businesses are composed of many larger
systems! You might have to write code to access the data, manipulate the retrieved
data, and so forth, basically write programming code to do all the data handling I
described above. And for this you need to know programming and languages.

There are many programming languages available. Only a few are needed for
most business data analysis problems. In my experience, these are:

* SQL
e Python
*« R

Julia should be included because it is growing in popularity due to its performance
and ease of use. For this book, I will use Python because its ecosystem is
strongly oriented toward machine learning with strong modeling, statistics, data
visualization, and programming functionalities. In fact, its programming paradigm
is clear to use, which is a definite advantage over other languages.

The Target Audience

The target audience for this book consists of business data analysts, data scientists,
and market research professionals, or those aspiring to be any of these, in the private
sector. You would be involved in or responsible for a myriad of quantitative analyses
for business problems such as, but not limited to:

* Demand measurement and forecasting

* Predictive modeling

* Pricing analytics including elasticity estimation
» Customer satisfaction assessment

* Market and advertisement research

* New product development and research

To meet these tasks, you will have a need to know basic data analytical methods and
some advanced methods, including data handling and management. This book will
provide you with this needed background by:

* Explaining the intuition underlying analytic concepts

* Developing the mathematical and statistical analytic concepts
* Demonstrating analytical concepts using Python
 [Illustrating analytical concepts with case studies
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This book is also suitable for use in colleges and universities offering courses and
certifications in business data analytics, data sciences, and market research. It could
be used as a major or supplemental textbook.

Since the target audience consists of either current or aspiring business data
analysts, it is assumed that you have or are developing a basic understanding of fun-
damental statistics at the “Stat 101" level: descriptive statistics, hypothesis testing,
and regression analysis. Knowledge of econometric and market research principles,
while not required, would be beneficial. In addition, a level of comfort with calculus
and some matrix algebra is recommended, but not required. Appendices will provide
you with some background as needed.

The Book’s Competitive Comparison

There are many books on the market that discuss the three themes of this book:
analytic methods, data handling, and programming languages. But they do them
separately as opposed to a synergistic, analytic whole. They are given separate
treatment so that you must cover a wide literature just to find what is needed for
a specific business problem. Also, once found, you must translate the material into
business terms. This book will present the three themes so you can more easily
master what is needed for your work.

The Book’s Structure

I divided this book into three parts. In Part I, I cover the basics of business
data analytics including data handling, preprocessing, and visualization. In some
instances, the basic analytic toolset is all you need to address problems raised by
business executives. Part II is devoted to a richer set of analytic tools you should
know at a minimum. These include regression modeling, time series analysis,
and statistical table analysis. Part III extends the tools from Part IT with more
advanced methods: advanced regression modeling, classification methods, and
grouping methods (a.k.a., clustering).

The three parts lead naturally from basic principles and methods to complex
methods. I illustrate this logical order in Fig. 2.

Embedded in the three parts are case study examples of business problems
using (albeit, fictitious, fake, or simulated) business transactions data designed to
be indicative of what business data analysts use every day. Using simulated data
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Part III
Advanced Analytics:
Going Further

Part II
Intermediate Analytics:
Gaining Insight

Part 1
Beginning Analytics:
Getting Started

Business Data
Analytics Progression

Fig. 2 This is a flow chart of the three parts of this book. The parts move progressively from basics
to advanced. At the end of Part I, you should be able to do basic analyses of business data. At the
end of Part II, you should be able to do regression and times series analysis. At the end of Part III,
you should be able to do advanced machine learning work

for instructional purposes is certainly not without precedence. See, for example,
Gelman et al. (2021). Data handling, visualization, and modeling are all illustrated
using Python. All examples are in Jupyter notebooks available on Github.

Plainsboro, NJ, USA Walter R. Paczkowski
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