

Cover
File Attachment
Thumbnails.jpg





Random Evolutionary Systems 
  



 

 

 

 

 

 

 

 

 

In memory of our teacher and mentor,  

Vladimir Semenovich Korolyuk 

 
 



 

Series Editor 
Nikolaos Limnios 

Random Evolutionary 
Systems 

 
 

Asymptotic Properties and  
Large Deviations 

 
 
 
 

 
 

Dmitri Koroliouk 
Igor Samoilenko 

 
 

 
 

 
 
 

  



 
 
 
 
 
 
 

 

 

First published 2021 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the  
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc. 
27-37 St George’s Road  111 River Street
London SW19 4EU Hoboken, NJ 07030
UK  USA 

www.iste.co.uk  www.wiley.com

 

© ISTE Ltd 2021 
The rights of Dmitri Koroliouk and Igor Samoilenko to be identified as the author of this work have been 
asserted by them in accordance with the Copyright, Designs and Patents Act 1988. 

Library of Congress Control Number: 2021937583 
 
British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN 978-1-78630-752-1 



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1. Basic Tools for Asymptotic Analysis . . . . . . . . . . . . . . . . . 1

1.1. Basic concepts of operator asymptotic analysis . . . . . . . . . . . . . . . . . . 1
1.1.1. Reducibly invertible and potential operators . . . . . . . . . . . . . . . . . . 2
1.1.2. Singular perturbation problem . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3. Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4. Semi-Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.5. Phase merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.6. Processes with independent increments . . . . . . . . . . . . . . . . . . . . 10
1.1.7. Poisson approximation scheme for the processes with independent
increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.8. Random evolutionary systems with locally independent increments . . . . 17
1.1.9. Impulse recurrent processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.1.10. Random evolutionary systems and impulsive processes in the Poisson
approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2. Nonlinear exponential generator of large deviations, Nisio semigroup
and control problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1. Martingale characterization and Brick’s formula . . . . . . . . . . . . . . . 24
1.2.2. Nonlinear exponential generator of large deviations . . . . . . . . . . . . . 28
1.2.3. Large deviations problem in the Poisson approximation scheme . . . . . . 29
1.2.4. Nisio semigroup and control problem . . . . . . . . . . . . . . . . . . . . . 35

1.3. Compactness and comparison principle . . . . . . . . . . . . . . . . . . . . . . . 48
1.3.1. Compactness and exponential compactness . . . . . . . . . . . . . . . . . . 48
1.3.2. Comparison principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



vi Random Evolutionary Systems

Chapter 2. Weak Convergence in Poisson and Lévy Approximation
Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.1. Random evolutionary systems with locally independent increments . . . . . . . 62
2.1.1. Markov switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.2. Semi-Markov switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.1.3. Unbounded jump measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.2. Impulsive recurrent process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2.1. Markov switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.2.2. Semi-Markov switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 3. Large Deviations in the Scheme of Asymptotically Small
Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.1. Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.2. Processes with locally independent increments . . . . . . . . . . . . . . . . . . 110
3.3. Random evolutionary systems in the scheme of ergodic phase merging . . . . . 111

3.3.1. Large deviations problem under the balance condition (total) . . . . . . . . 112
3.3.2. Large deviations problem under the (local) balance condition . . . . . . . . 113

3.4. Markov integral functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 4. Large Deviations of Systems in Poisson and Lévy
Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.1. Random evolutionary systems with independent increments . . . . . . . . . . . 119
4.1.1. Poisson approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1.2. Lévy approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.2. Impulsive processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.1. Poisson approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.2. Lévy approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Chapter 5. Large Deviations of Systems in the Scheme of Splitting
and Double Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1. Small diffusion scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.1.1. Large deviations under the local balance (LB) condition . . . . . . . . . . . 150
5.1.2. Large deviations under the total balance (TB) condition . . . . . . . . . . . 152

5.2. Poisson approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.3. Lévy approximation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Chapter 6. Difference Diffusion Models with Equilibrium . . . . . . . . . . . . 169

6.1. Statistical experiments with linear persistent regression . . . . . . . . . . . . . . 169
6.1.1. Persistent regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.1.2. Equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.1.3. Convergence of statistical experiments to the equilibrium state . . . . . . . 174
6.1.4. Approximation of statistical experiments by a normal process
of autoregression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



Contents vii

6.2. Exponential statistical experiments . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2.1. Steady regime for exponential statistical experiments . . . . . . . . . . . . 179
6.2.2. Approximation of an exponential statistical experiment by a normal
process of autoregression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.3. Statistical experiments with nonlinear persistent regression . . . . . . . . . . . 184
6.3.1. Equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.3.2. Approximation by a normal process of autoregression . . . . . . . . . . . . 188
6.3.3. Proof of Theorem 6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.4. Difference diffusion models with two equilibriums . . . . . . . . . . . . . . . . 191
6.4.1. The principle of “stimulation and restraint” . . . . . . . . . . . . . . . . . . 192
6.4.2. Difference evolutionary model . . . . . . . . . . . . . . . . . . . . . . . . . 194
6.4.3. Interpretation of zones of influence of equilibriums π± in the economic
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.4. Difference stochastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.4.5. Classification of equilibriums of the stochastic model statistical
experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.4.6. Approximation of the stochastic component . . . . . . . . . . . . . . . . . . 200
6.4.7. Approximation of statistical experiment in discrete–continuous time . . . . 203

6.5. Multivariate statistical experiments with persistent nonlinear regression
and equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.5.1. Basic definitions and assumptions . . . . . . . . . . . . . . . . . . . . . . . 205
6.5.2. Equilibrium and transformation of regression function . . . . . . . . . . . . 207
6.5.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.5.4. The state of equilibrium of multivariate statistical experiments . . . . . . . 211
6.5.5. Stochastic approximation of multivariate statistical experiments . . . . . . 213

6.6. Multivariant Wright–Fisher model . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.6.1. Regression function of increments . . . . . . . . . . . . . . . . . . . . . . . 215
6.6.2. Equilibrium state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.7. Binary evolutionary process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Chapter 7. Random Evolutionary Systems in Discrete–Continuous
Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.1. Discrete Markov evolutions in an asymptotic diffusion environment . . . . . . . 223
7.1.1. Asymptotic diffusion perturbation . . . . . . . . . . . . . . . . . . . . . . . 223

7.2. Discrete Markov process with asymptotically small diffusion . . . . . . . . . . 229
7.2.1. Asymptotically small diffusion . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.2.2. Exponential generator of the discrete Markov process . . . . . . . . . . . . 232
7.2.3. Rate functional of the discrete Markov process . . . . . . . . . . . . . . . . 234

7.3. The problem of discrete Markov random evolution leaving an interval . . . . . 235

Chapter 8. Diffusion Approximation of Random Evolutions
in Random Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8.1. Binary discrete Markov evolutions . . . . . . . . . . . . . . . . . . . . . . . . . 239
8.1.1. Discrete Markov evolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.1.2. Justification of diffusion approximation . . . . . . . . . . . . . . . . . . . . 243

8.2. Multivariate random evolutionary systems in discrete–continuous time . . . . . 246



viii Random Evolutionary Systems

8.2.1. Evolutionary process in discrete–continuous time . . . . . . . . . . . . . . 247
8.2.2. Difference stochastic equation . . . . . . . . . . . . . . . . . . . . . . . . . 248
8.2.3. Diffusion approximation of random evolutionary systems in
discrete–continuous time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

8.3. Discrete random evolutionary systems in a Markov random environment . . . . 252
8.3.1. Discrete and continuous Markov random environments . . . . . . . . . . . 253

8.4. Random evolutionary systems in a balanced Markov random environment . . . 260
8.4.1. Basic assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

8.5. Adapted random evolutionary systems . . . . . . . . . . . . . . . . . . . . . . . 268
8.5.1. Bernoulli approximation of the discrete Markov diffusion stochastic
component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.5.2. Adapted random evolutionary systems . . . . . . . . . . . . . . . . . . . . . 270
8.5.3. Adapted random evolutionary systems in a series scheme . . . . . . . . . . 272

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287



Preface

This book examines random evolutionary systems and their asymptotic properties,
as well as large deviations.

Our study of random evolutionary systems is based on the martingale
characterization of their trajectories, the method of associated semigroups and
generating operators, the method of inversion on the spectrum of reducible-invertible
operators, as well as the singular perturbation problem and the phase merging
method. A special role is played, not only by classical approximation schemes for
random evolutionary systems such as, in particular, diffusion approximation, but also
by new ones: the Poisson approximation and the Lévy approximation.

The diffusion and Poisson approximation of random evolutions plays a special
role.

The study of random evolutionary systems in terms of operators constructed in the
schemes of the diffusion and Poisson approximation allows us to obtain a number of
limit theorems and asymptotic expansions of processes that model complex stochastic
systems, both those that are autonomous and those dependent on an external random
environment. In this case, various orders of scaling, both of processes and their time
parameters, are used to obtain different limit results.
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Introduction

The theory of complex systems is a modern field of natural sciences, which
considers systems that consist of a large number of interacting parts. There is not a
large number of quality properties of a system that are observed in the study of its
individual parts; they arise only as a result of their interactions.

The theory of complex systems is based on methods of systems analysis as an
applied scientific methodology, consisting, in particular, of mathematical methods,
algorithmic software and computing tools, which provide the formation of holistic
knowledge about the object, as a set of interconnected processes of different natures
for further decision-making on its development and behavior, taking into account
conflicting criteria, the presence of risk factors and inaccurate information. Due to
the application of systems analysis methods, the theory of complex systems has been
actively developing in recent decades and consists, in particular, of the development
of methods for structuring, modeling, analysis and synthesis of deterministic and
stochastic systems in problems of mathematical (including statistical) physics, applied
questions of probability theory and fractal analysis and mathematical problems of
biology, sociology, ecology, economics and medicine. The main motivation that unites
all these diverse mathematical and natural sciences in a single discipline is closeness,
as well as the kinship laws and methods of studying the collective behavior of such
systems.

Mathematical problems associated with the theory of complex systems relate to the
development of mathematical methods of system simplification, which can be very
complex, even for computer analysis. In this case, the simplified system should be
such that, first, its local characteristics are determined by simple enough functionals of
the local characteristics of the original system, and, second, that the simplified model
could be qualitatively analyzed by mathematical methods and its global characteristics
are an effective approximation of the corresponding characteristics of the original
system.
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Typical examples of complex systems are evolutionary systems, which, in
particular, are modeled using random evolutionary systems and random processes.
For example, impulsive processes describe various models in the queuing theory,
namely, network structures and production systems; processes with independent
increments are used in modeling conflict systems, such as birth–death processes in
ecological and biological systems, as well as in models of statistical physics; and
stochastic evolutionary systems model problems that arise in reliability theory,
control theory, financial mathematics and so on.

We provide an analysis of the asymptotic properties of such models, which are
considered and studied from different points of view, using several approximation
schemes. That is, the question of the convergence of evolutionary systems in Poisson
approximation schemes is analyzed, the problem of large deviations for evolutionary
systems in different approximation schemes is analyzed and some applications are
discussed: the probability of leaving an interval, the conditions of equilibrium,
stationarity, the classification of equilibria and so on.

The development of the theory of random evolutions began in the late 1960s,
probably with the work of R. Griego and R. Hersh. They introduced the concept of
random evolution in Griego and Hersh (1971).

Applications of this model follow from the work of R.Z. Khasminskii (1966a,
1966b), which were stimulated by the problems of stability of stochastic systems, in
particular, by the works of R.L. Stratonovich (1967) on the problems of the nonlinear
theory of oscillations in the presence of noise. In the 1960s and 1970s, problems
related to the theory of random evolutions were actively studied by American
mathematicians R. Hersh, M. Pinsky, G. Papanikolaou, T. Kurtz, R. Griego,
L. Gorostiza (Pinsky 1968; Griego and Hersh 1971; Papanicolaou and Kellek 1971;
Gorostiza 1972, 1973a, 1973b; Hersh and Papanicolaou 1972; Hersh and Pinsky
1972; Kurtz 1973; Hersh 1974; Papanicolaou 1975) and others. In particular,
G. Papanicolaou, D. Strook and S. Varadhan proposed a martingale approach for
proving limit theorems (Papanicolaou et al. 1977) using methods similar to solving
the singular perturbation problem.

An effective method for proving the limit theorems in the theory of random
evolutions is the theory of phase merging of complex systems, developed by
V.S. Korolyuk and A.F. Turbin (1975, 1993). A.V. Skorokhod (2008) investigated
several important problems of the theory of dynamic systems, denoted by stochastic
differential equations. The problem of the stability of dynamic systems in the case of
random perturbation of their parameters was investigated by R.Z. Khasminskii
(2012) and V.S. Korolyuk (1991, 1998). Problems of stability and problems of
stochastic approximation of evolutionary systems with switching were investigated
by V.S. Korolyuk and Y.M. Chabanyuk (2007, 2007). V.S. Korolyuk and
A.V. Swishchuk also developed a theory of semi-Markov random evolutions, based
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on martingale theory (Korolyuk and Swishchuk 1995a, 1995b). Many applications of
processes with switching to the analysis of network systems can be found in the
works of V.V. Anisimov (2008).

Asymptotic methods are collected and described in detail in the book by
V.S. Korolyuk and N. Limnios (2005), where these methods are mainly applied to
models in the schemes of averaging and diffusion approximation. At increasing time
intervals, the averaging scheme demonstrates the deterministic averaging behavior of
the system, and the diffusion approximation scheme shows stochastic fluctuations
around the deterministic averaged trajectory. These two schemes differ in the
normalization of the switching process, namely, in the case of the averaging scheme,
the acceleration of time by the parameter ε−1 is considered, while, in the case of
diffusion, approximation by the parameter ε−2 or ε−3 is considered. An important
element of the algorithm is the assumption of ergodicity of the switching (Markov or
semi-Markov) process. In their book, V.S. Korolyuk and N. Limnios (2005) also
considered several models for processes with independent increments and impulsive
processes with switching in the schemes of Poisson and Lévy approximation. Here
we generalize the models in the schemes of Poisson and Lévy approximation to the
case of processes with locally independent increments, impulsive recurrent processes
and so on.

We also present another important area of research, namely, the solution of the
large deviations problem, using the methods of asymptotic analysis of nonlinear
exponential generators, associated with the singular perturbation problem. The large
deviations problem arose as a method of solving statistical problems, related to
estimating the probabilities of rare events. The first work in this direction was,
obviously, the article by H. Cramér (1938), but this idea was finally fully formed in
the work of G. Chernoff (1952).

The main method of studying such problems is the technique of substituting the
measure and using the Chebyshev inequality to obtain estimates of the probabilities
of rare events, and to calculate the rate functional. In this case, a new measure is
introduced, in relation to which the studied events have a high probability, while the
probabilities of these events relative to the initial measure are determined in terms of
the Radon–Nicodemus derivative, which connects the two mentioned measures. An
important role in determining the rate functional is also played by the Legendre
transform, which links the rate functional and the cumulant of the process. The most
famous works in this technique, which relate to Markov processes, are the works of
M. Donsker and S. Varadan (1975a, 1975b, 1976) and M.Y. Freidlin and
O.D. Wentzell (1976, 1978, 1979, 1990) (see also Deuschel and Stroock 1989;
Dupuis and Ellis 1997; Dembo and Zeitouni 2010). These works contain
comprehensive bibliographic references on this topic.
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Another approach to solving the problem is related to the convergence and
compactness of probabilistic measures. The works in which such methods are used
include articles by A.A. Puhalsky (1991), G. O’Brien and W. Vervaat (1995) and
A. de Acosta (1997).

Here, we use a method that has emerged and developed recently and is closely
related to the control problem. The idea of such an approach was presented in Hopf
(1950) and Çinlar et al. (1980) and was finally developed by Fleming and Suganidis
(1986). The most developed and generalized version of this approach can be found in
the book by J. Feng and T. Kurtz (2006), which also contains a relevant bibliography
and historical review. It should be noted that the classical normalization scheme in
which the large deviations problem is studied is the small diffusion scheme (see Feng
and Kurtz (2006) and Freidlin and Ventzell (2012) and the corresponding
bibliographic sections of these works). One of the rare models where another
possible normalization for the process with independent increments was investigated
is the work of A.A. Mogulsky (1993) (compare this to other works by
A.A. Borovkov and A.A. Mogulsky (1992, 2012)).

We investigate the large deviations problem for processes with independent
increments and impulsive processes with switching in the schemes of the Poisson and
Lévy approximations. Models with phase merging are studied for the first time. This
formulation of the problem is completely new and allows us to obtain some
significant generalizations. For example, the presence of a diffusion component in the
small diffusion scheme is embedded in the definition of the limit process. Conversely,
the Poisson approximation scheme considers processes with independent increments
with switching without a diffusion component, which occurs only after the limit
transition. The Poisson approximation scheme, which takes into account rare large
jumps in the process, is certainly a natural object for study, especially in terms of the
problem of large deviations.



1

Basic Tools for Asymptotic Analysis

1.1. Basic concepts of operator asymptotic analysis

This first chapter introduces the known auxiliary concepts, which are actively used
in the following sections. In particular, the concepts of the Poisson approximation and
Lévy approximation, impulsive recurrent process, random evolutionary system with
locally independent increments, compensating operator, Nisio semigroup, nonlinear
exponential operator, martingale control problem, rate functional, compactness, etc.
are introduced. The following results are new:

1. The previously known results were used for a detailed substantiation of the
relationship between the Nisio semigroup, the martingale control problem, the Brick
formula, the nonlinear exponential operator and the corresponding rate functional.
Some comparative examples are given for the classical formulation of the problem of
large deviations in the scheme of small diffusion.

2. The problems related to the study of compactness and exponential compactness
of processes, as well as the application of the comparison condition to the limit
nonlinear exponential generator are described. For the processes that will be studied
further, the corresponding compactness conditions are tested using the methods from
the stability theory, in particular the Lyapunov function. For the corresponding
nonlinear exponential generator, the comparison condition is checked.

3. For the first time, the problem of studying the problem of large deviations in the
Poisson approximation scheme is set, and the corresponding nonlinear exponential
generators for the process with independent increments are determined.

Random Evolutionary Systems: Asymptotic Properties and Large Deviations, 
First Edition. Dmitri Koroliouk and Igor Samoilenko. 
© ISTE Ltd 2021. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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1.1.1. Reducibly invertible and potential operators

We denote by B the Banach space of real-valued measurable functions, defined on
a state space E of a random process, with sup-norm

||ϕ|| = sup
x∈E

|ϕ(x)|, ϕ ∈ B.

Let Q : B → B be a linear operator on B. We introduce the following subspaces:

DQ := {ϕ : ϕ ∈ B, Qϕ ∈ B} − domain of definition Q,

RQ := {ψ : ψ = Qϕ,ϕ ∈ B} − subspace of values Q,

NQ := {ϕ : Qϕ = 0, ϕ ∈ B} − subspace of zeros Q.

The operator Q will be called bounded if there exists a constant C > 0 such that
||Qϕ|| ≤ C||ϕ||, ϕ ∈ DQ.

DEFINITION 1.1.– A bounded linear operator Q is called reducibly invertible if the
Banach space B can be represented as a direct sum of two subspaces

B = NQ ⊕RQ,

where the null-subspace has a non-trivial dimension

dimNQ ≥ 1.

More detailed information on the properties of reducibly invertible operators can
be found in the works of Nashed (1976), Korolyuk and Turbin (1993) and Korolyuk
and Limnios (2005); for possible generalizations in the Hilbert space, see Boichuk
and Samoilenko (2004).

The following representation defines a projector on a subspace NQ:

Πϕ :=

{
ϕ, ϕ ∈ NQ,
0, ϕ ∈ RQ.

Instead, the operator I −Π is a projector on a subspace RQ

(I −Π)ϕ :=

{
0, ϕ ∈ NQ,
ϕ, ϕ ∈ RQ.

We can also define a projector by means of the resolvent

Rλ := [λI −Q]−1.
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DEFINITION 1.2.– A projector on a subspaceNQ is determined by the following ratio:

Π := lim
λ→0+

λRλ.

When applied to the study of Markov processes, another way of defining the
corresponding projector is important. It becomes possible in the presence of a Feller
semigroup Pt, t ≥ 0, which corresponds to the reducibly invertible operator Q (see,
for example, Ethier and Kurtz (1986, p. 473)).

DEFINITION 1.3.– The projector on a subspace NQ is determined by the following
ratio:

Πϕ := lim
λ→0+

λ

∫ ∞

0

e−λtPtϕdt.

DEFINITION 1.4.– The potential operator of a reducibly invertible operator Q is
called the operator

R0 := Π− (Q+Π)−1 = (Π−Q)−1 −Π,

or in terms of resolvent

R0 := lim
λ→0+

[Rλ −Π/λ].

For details, see Nashed (1976), Korolyuk and Turbin (1993) and Korolyuk and
Limnios (2005).

If for a known semigroup Pt, t ≥ 0, which corresponds to a reducibly invertible
operatorQ, the ergodicity condition

lim
t→∞

Pt = Π �= 0,

verifies, then the potential operatorR0 is bounded and can be defined as

R0 :=

∫ ∞

0

(Pt −Π)dt.

The potential operator has the following properties:

QR0 = R0Q = Π− I, [1.1]

ΠR0 = R0Π = 0. [1.2]
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1.1.2. Singular perturbation problem

The singular perturbation problem (see Kurtz 1973; Papanicolaou et al. 1977;
Ethier and Kurtz 1986; Korolyuk and Limnios 2005) for a reducibly invertible operator
Q, corresponding to the switching process in the series scheme, with a small series
parameter ε → 0(ε > 0) and the perturbing operator Q1 is solved in the following
steps.

You need to build a vector ϕε = ϕ + εϕ1 and a vector ψ, which satisfy the
asymptotic representation

[ε−1Q+Q1]ϕ
ε = ψ + εθε [1.3]

with a uniformly bounded vector θε, such that

||θε|| ≤ C, ε→ 0.

The left part of the obtained equation can be rewritten as

[ε−1Q+Q1](ϕ+ εϕ1) = ε−1Qϕ+ [Qϕ1 +Q1ϕ] + εQ1ϕ1.

Equating to the right part of [1.3], we have:⎧⎨⎩ Qϕ = 0,
Qϕ1 +Q1ϕ = ψ,
Q1ϕ1 = θε.

[1.4]

The last equation shows that the function ϕ1 ∈ DQ1 . In addition, from the first
equation, we have function ϕ as an arbitrary function from the null-subspace of
operatorQ.

Thus, the main question remains a solution of equation

Qϕ1 = ψ −Q1ϕ.

The solvability condition for the reducibly invertible operator Q has the form:

ΠQΠϕ1 = 0 = Πψ −ΠQ1Πϕ,

where we finally get

Πψ = ΠQ1Πϕ.

Note that the operator ΠQ1Π acts in subspace NQ; therefore, we can consider the
reduced operator Q̂1 on the reduced subspace N̂Q:

ΠQ1Π = Q̂1Π.

We also use ψ̂ := Π̂ψ ∈ N̂Q.
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Then, the last equation takes the form

ψ̂ = Q̂1ϕ̂.

Since we have a relation in subspace N̂Q, we can solve the second equation of
system [1.4] with respect to ϕ1 (see [1.1]):

ϕ1 = R0(Q1ϕ− ψ),Πϕ1 = 0.

So,

ϕ1 = R0Q̃1ϕ, Q̃1 := Q1 − Q̂1,

and finally we have

θε = Q1ϕ1 = Q1R0Q̃1ϕ.

Thus, the explicit expressions for functions ψ, ϕ1, θ
ε, are obtained, which give the

solution of the singular perturbation problem.

1.1.3. Markov process

Let x(t), t ≥ 0 be a Markov process on a standard state space (E, E) (where E is
a Polish space and E is its Borel σ-algebra), defined by means of the generator

Qϕ(x) = q(x)

∫
E

[ϕ(y)− ϕ(x)]P (x, dy), x ∈ E,ϕ(u) ∈ BE. [1.5]

The semi-Markov kernel

Q(x,B, t) = P (x,B)(1 − e−q(x)t), x ∈ E,B ∈ E , t ≥ 0,

determines the associated Markov renewal process (xk, τk), k ≥ 0, where xk, k ≥ 0,
is called the embedded Markov chain, given by the stochastic kernel

P (x,B) = P (xk+1 ∈ B|xk = x),

and τk, k ≥ 0, is the point process of jump moments, which is determined by the time
distribution function of sojourn time θk+1 = τk+1 − τk, k ≥ 0:

P (θk+1 ≤ t|xk = x) = 1− e−q(x)t.

The corresponding counting process of jumps is

ν(t) := max{k ≥ 0 : τk ≤ t}.
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The main assumption about the Markov process is the following condition:

CM: The Markov process x(t), t ≥ 0, is uniformly ergodic with a stationary
distribution π(A), A ∈ E .

REMARK 1.1.– Let Π be a projector at null-subspace of a reducibly invertible
operator Q (defined in [1.5]):

Πϕ(x) =

∫
E

π(dx)ϕ(x).

The Markov process x(t), t ≥ 0, is supposed to be uniformly ergodic, if for a
semigroup Pt, determined by such a process, exists

lim
t→∞

Pt = Π �= 0

in uniform operator topology. The main property of uniform ergodicity is the
exponential speed of this convergence:

||Pt −Π|| ≤Me−αt, t > 0

for some M > 1, α > 0. For details, see Doob (1990) and Korolyuk and Turbin
(1993).

We should note that in this case the Markov process x(t), t ≥ 0, has a stationary
distribution π(x), the embedded Markov chain xn, n ≥ 1 has a stationary distribution
ρ(x) and the following relationships are found:

π(dx)q(x) = qρ(dx), q :=

∫
E

π(dx)q(x).

1.1.4. Semi-Markov process

We call the Markov renewal process a two-component Markov chain xn, τn, n ≥ 0
on (E × R+, E ⊕ B+), where τ0 ≤ ... ≤ τn ≤ ... are renewal moments. Such a
process is homogeneous by the second component, and its transient probabilities are
determined by the semi-Markov kernel

Q(x,B, t) = P (x,B)Fx(t), x ∈ E,B ∈ E , t ≥ 0

through equality

Q(x,B, t) = P (xn+1 ∈ B, θn+1 ≤ t|xn = x)

= P (xn+1∈B|xn = x)P (θn+1 ≤ t|xn = x), θn+1 := τn+1 − τn.
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Introduce the counting process ν(t), t ≥ 0:

ν(t) = sup{n ≥ 0 : τn ≤ t},

which counts the number of renewal moments of the Markov renewal process over
time (0, t].

We call the semi-Markov process x(t), t ≥ 0, associated with the Markov renewal
process xn, τn, n ≥ 0 a random process

x(t) := xν(t), t ≥ 0.

Denote by Q the generator of the associated Markov process:

Q = q(x)(P − I),

where the transition probability operator P is defined as

Pf(x) =

∫
E

P (x, dy)f(y), x ∈ E,

for all bounded measurable real-function functions f , defined on E, q(x) is
determined as

q(x) := 1/m1(x),m1(x) := Eθx =

∫ ∞

0

F x(t)dt,

or mk(x) =
∫∞
0 skFx(ds).

The main assumption about the semi-Markov process is the following condition:

CSM: The semi-Markov process x(t), t ≥ 0 is uniformly ergodic with a stationary
distribution

π(dx)q(x) = qρ(dx), q := 1/m,m :=

∫
E

ρ(dx)m(x),

ρ(B) =

∫
E

ρ(dx)P (x,B), ρ(E) = 1.

Let us denote a projector Π :

NQ := ΠB(E),RQ := (I −Π)B(E);

Πϕ(x) := ϕ̂1, ϕ̂ :=

∫
E

ϕ(x)π(dx).
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1.1.5. Phase merging

A Markov process xε(t), t ≥ 0 is determined on a standard phase space (E, E)
with splitting

E =

N⋃
k=1

Ek, Ek ∩ Ek′ = ∅, k �= k′

in the series scheme, with a small series parameter ε→ 0, ε > 0.

Its Markov kernel has the form

Qε(x,B, t) = P ε(x,B)[1 − e−q(x)t], x ∈ E,B ∈ E , t ≥ 0.

The following conditions should also be fulfilled:

ME1: A kernel describing the transient probabilities of the embedded Markov
chain xεn, n ≥ 0, has the following representation:

P ε(x,B) = P (x,B) + εP1(x,B).

The stochastic kernel P (x,B) on the split phase space is defined as follows:

P (x,Ek) = 1k(x) :=

{
1, x ∈ Ek,
0, x /∈ Ek.

The stochastic kernel P (x,B) defines the accompanying Markov chain xn, n ≥ 0
on the classes Ek, 1 ≤ k ≤ N . The perturbing kernel P1(x,B) also satisfies the
condition

P1(x,E) = 0,

which is a direct consequence of the equality P ε(x,E) = P (x,E) = 1.

ME2: The associated Markov process x0(t), t ≥ 0, set by the generator

Qϕ(x) = q(x)

∫
E

P (x, dy)[ϕ(y) − ϕ(x)],

is uniformly ergodic inside each of the classes Ek, 1 ≤ k ≤ N, with stationary
distributions πk(dx), 1 ≤ k ≤ N, which satisfy the ratio:

πk(dx)q(x) = qkρk(dx), qk :=

∫
Ek

πk(dx)q(x).
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ME3: The average exit probabilities

p̂k :=

∫
Ek

ρk(dx)P1(x,E\Ek) > 0, 1 ≤ k ≤ N.

Thus, the perturbing kernel P1(x,B) determines the transition probabilities
between classes Ek, 1 ≤ k ≤ N. So, the equality P ε(x,B) = P (x,B) + εP1(x,B)
means that the embedded Markov chain xεn, n ≥ 0 spends a long time in each of the
classes Ek and jumps between the classes with small probabilities εP1(x,E\Ek).

Under conditions ME1–ME3, there is a weak convergence (see Korolyuk and
Limnios (2005, Chapter 4))

v(xε(t)) ⇒ x̂(t), ε→ 0, v(x) = k ∈ Ê = {1, ..., N}, x ∈ Ek.

The limit Markov process x̂(t), t ≥ 0 on a merging phase space Ê = {1, ..., N} is
determined by the generating matrix

Q̂1 = (q̂kr , 1 ≤ k, r ≤ N),

where:

q̂kr = q̂kp̂kr , k �= r, q̂k = qkp̂k, 1 ≤ k ≤ N.

p̂kr = pkr/p̂k, pkr =

∫
Ek

ρk(dx)P1(x,Er), 1 ≤ k, r ≤ N, k �= r,

p̂k = −
∫
Ek

ρk(dx)P1(x,Ek).

ME4: The merged Markov process x̂(t), t ≥ 0 is ergodic, with the stationary
distribution π̂ = (πk, k ∈ Ê).

Thus, the operatorQε can be represented as:

Qε = Q+ εQ1, Q1(x) = q(x)

∫
E

P1(x, dy)ϕ(y).

REMARK 1.2.– Generalizations of this approach can be found in Yin and Zhang
(1998, 2005), where the operatorQε = Q+ εQ1,

Q = q(x)

∫
E

P (x, dy)[ϕ(y) − ϕ(x)], Q1(x) = q1(x)

∫
E

P1(x, dy)ϕ(y).
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Let Π be a projector on the null-subspace of a reducibly invertible operator Q. Its
action on test functions ϕ is defined as follows:

Πϕ(x) =

N∑
k=1

ϕ̂k1k(x), ϕ̂k :=

∫
Ek

πk(dx)ϕ(x).

Denote the reduced operator Q̂1 using the ratio

Q̂1Π = ΠQ1Π.

Let Π̂ be a projector on the null-subspace of a reducibly invertible operator Q̂1:

Π̂ϕ̂ :=
∑
k∈Ê

π̂kϕ̂k.

Let us denote the potential matrix R̂0 = [R̂0
kl; 1 ≤ k, l ≤ N ] by the following

ratios:

Q̂1R̂0 = R̂0Q̂1 = Π̂− I.

1.1.6. Processes with independent increments

The Markov processes with independent increments in the Euclidean space Rd

with the norm | · | will be denoted η(t), t ≥ 0. In the general case, such processes
are determined by the corresponding generators (see Bertoin (1996, Chapter I.2) and
Korolyuk and Limnios (2005, Chapter 1.2.4))

Γ̃ϕ(u)=bϕ′(u)− σ2

2
ϕ′′(u) +

∫
Rd

[ϕ(u + v)− ϕ(u)− vϕ′(u)1(|v|≤1)]Γ̃(dv),

[1.6]

where ϕ(u) is a real-valued, twice differentiable function in Rd, which is equal to 0
at infinity, and has a sup-norm ||ϕ|| = sup

u∈Rd

|ϕ(u)|, ϕ(u) ∈ C2
0 (R

d),

b =

∫
Rd

vΓ(dv),

where Γ(dv) is the intensity kernel that satisfies Γ({0}) = 0.

In the following, we will study the asymptotic behavior of type [1.6] processes,
whose generators can be represented as

Γ̃ϕ(u) =

d∑
k=1

bkϕ
′
k(u) +

∫
Rd

[ϕ(u+ v)− ϕ(u)−
d∑
k=1

vkϕ
′
k(u)1(|v|≤1)]Γ̂(dv),

ϕ′
k(u) := ∂ϕ(u)/∂uk, 1 ≤ k ≤ d.
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Note that despite the absence of a diffusion component at increasing time
intervals in Poisson approximation schemes, the diffusion component in the limit
process appears as a result of the averaging of small jumps in the initial process.

EXAMPLE 1.1.– A compound Poisson process is an example of a Markov process with
independent increments

η(t) =

ν(t)∑
k=1

ηk,

where ν(t), t ≥ 0, is a homogeneous Poisson process with intensity λ, and ηk, k ≥ 1,
are independent and identically distributed real-valued random variables that do not
depend on ν(t), t ≥ 0, and have a distribution function F (u). The corresponding
generator has the form

Γϕ(u) = λ

∫
R

(ϕ(u + v)− ϕ(u))F (dv).

We will also denote by η(t), t ≥ 0, a Markov processes with locally independent
increments (also known as PDMP, piecewise deterministic Markov process, Davis
(1993)) in the Euclidean space Rd. Such processes are determined by the generator
(see Korolyuk and Limnios (2005, Chapter 1.2.5), and Korolyuk (1999))

Γϕ(u) = b(u)ϕ′(u) +

∫
Rd

[ϕ(u+ v)− ϕ(u)− vϕ′(u)1(|v|≤1)]Γ(u, dv).

[1.7]

When the intensity kernel is bounded, the form of the generator is simplified,
namely:

Γ̃ϕ(u) = bϕ′(u) +

∫
Rd

[ϕ(u + v)− ϕ(u)]Γ̃(dv) [1.8]

for a process with independent increments, and

Γϕ(u) = b(u)ϕ′(u) +

∫
Rd

[ϕ(u+ v)− ϕ(u)]Γ(u, dv) [1.9]

for a processes with locally independent increments (see Korolyuk and Limnios (2005,
Chapter 1.2.5)).

1.1.7. Poisson approximation scheme for the processes with
independent increments

The term Poisson approximation should be understood in a context similar to
the averaging scheme or diffusion approximation, which allows us to study the limit
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behavior of random processes at increasing time intervals. Therefore, it is not a classic
problem of approximating a random process by Poisson processes.

The main idea of the Poisson approximation (see Korolyuk and Limnios (2005,
Chapter 7)) is that the small series parameter normalizes the probabilities (or
intensities) of jumps. Thus, the jumps are divided into two types: small jumps with
probabilities close to 1 and large jumps that occur with a probability going to 0,
together with a small series parameter ε→ 0.

EXAMPLE 1.2.– Here is a simple example of a random variable with similar
properties. For α let:

P{α = b} = ε2p,

P{α = εa1 + ε2b1} = 1− ε2p.

Then, we have:

Eα = εa1 + ε2(bp+ b1) + o(ε2),

Eα2 = ε2(b2p+ a21) + o(ε2).

Such moment conditions characterize the Lévy approximation.

When a1 = 0, we will have

Eα = ε2(bp+ b1) + o(ε2),

Eα2 = ε2b2p+ o(ε2),

and therefore, by putting ε̃ = ε2, we obtain the moment conditions that characterize
the Poisson approximation:

Eα = ε̃(bp+ b1) + o(ε̃),

Eα2 = ε̃b2p+ o(ε̃).

In the study of processes with independent increments, the moment conditions are
imposed on the corresponding intensity kernel, normalized by a small series
parameter.

Let C3(R
d) be a class of functions that defines a measure and includes real-valued

bounded functions, such as g(u)/|u|2 → 0, as |u| → 0 if g ∈ C3(R
d) (see Jacod and

Shiryaev 2003; Korolyuk and Limnios 2005).
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Consider a family of normalized Markov processes with trajectories in DR[0,∞)
and independent increments in the series scheme, with a small series parameter
ε→ 0, ε > 0:

ηε(t) = η(t/ε), t ≥ 0,

determined by generators (see [1.8])

Γ̃εϕ(u) = ε−1

∫
R

[ϕ(u + v)− ϕ(u)]Γ̃ε(dv).

Let the conditions of the Poisson approximation be satisfied:

C1: Poisson approximation.

PA1 Approximation of means:

bε =

∫
R

vΓ̃ε(dv) = ε[b+ θεb ],

and

cε =

∫
R

v2Γ̃ε(dv) = ε[c+ θεc ],

where

b < +∞, c < +∞.

PA2 For the intensity kernel, there is an asymptotic representation:

Γ̃εg =

∫
R

g(v)Γ̃ε(dv) = ε[Γ̃g + θεg]

for all g ∈ C3(R), which is a class of functions that defines a measure (see Jacod and
Shiryaev 2003).

The kernel Γ̃0(dv) is set on the class of functions that defines the measure C3(R)
by the ratio

Γ̃g =

∫
R

g(v)Γ̃0(dv), g ∈ C3(R).

The negligibly small terms θεb , θ
ε
c , θ

ε
g satisfy the condition

|θε· | → 0, ε→ 0.

PA3 There is a relationship:

c :=

∫
R

v2Γ̃0(dv),

which causes the absence of a diffusion component in the limit generator.
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C2 Uniform quadratic integrability:

lim
c→∞

∫
|v|>c

v2Γ̃0(dv) = 0.

LEMMA 1.1.– Generator of the process with independent increments

Γ̃εϕ(u) = ε−1

∫
R

[ϕ(u + v)− ϕ(u)]Γ̃ε(dv)

in the scheme of Poisson approximation has the following asymptotic representation:

Γ̃εϕ(u) = bϕ′(u) +

∫
R

[ϕ(u + v)− ϕ(u)− vϕ′(u)]Γ̃0(dv) + θεϕ,

where |θεϕ| → 0, ε→ 0, ε > 0.

REMARK 1.3.– In the space Rd, the asymptotic representation has the form

Γ̃εϕ(u) =

d∑
k=1

bkϕ
′
k(u) +

∫
Rd

[ϕ(u + v)− ϕ(u)−
d∑
k=1

vkϕ
′
k(u)]Γ̂

0(dv)+ θεϕ,

ϕ′
k(u) := ∂ϕ(u)/∂uk, 1 ≤ k ≤ d.

PROOF.– Rewrite the expression for the generator as follows:

Γ̃εϕ(u) = ε−1

∫
R

[ϕ(u + v)− ϕ(u)− vϕ′(u)− v2

2
ϕ′′(u)]Γ̃ε(dv)

+ε−1

∫
R

vϕ′(u)Γ̃ε(dv) +
ε−1

2

∫
R

v2ϕ′(u)Γ̃ε(dv).

It is easy to see that the function ψu(v) = ϕ(u+ v)− ϕ(u)− vϕ′(u)− v2

2 ϕ
′′(u)

belongs to the class C3(R). Really,

ψu(v)/v
2 → 0, v → 0

uniformly by u, by the condition of derivative boundedness of the function ϕ(u) on a
compact. In addition, this function is continuous and bounded for ϕ(u) ∈ C2

0 (R) by
condition PA1.

Thus, from conditions PA1, PA2, we have:

Γ̃εϕ(u) =

∫
R

[ϕ(u + v)− ϕ(u)− vϕ′(u)− v2

2
ϕ′′(u)]Γ̃0(dv)

+bϕ′(u) +
c

2
ϕ′′(u) + θεbϕ+ θεcϕ+ θεψϕ.


