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Dedication to Jeremy D. Pickett-Heaps  
In Memoriam 1940–2021

The editors of this volume would like to dedicate this 
collection to Dr. Jeremy D. Pickett-Heaps, with thanks 
and gratitude for his leadership and stalwart advocacy in 
advancing studies of diatoms and diatom motility. Sadly, 
Jeremy passed away just prior to this volume’s publication. 
One of the editors (SAC) had the pleasure and honor of 
studying and working with Jeremy and is proud to write 
this dedication. In addition, another editor (RG) visited 
Jeremy in Colorado where he was greatly influenced on his 
work in diatom morphogenesis. 

Jeremy was truly an international scholar. Born in Mumbai, India, he received his B.A. 
and Ph.D. in Cambridge, England, and did his postdoctoral work back in his home of 
Australia. He then worked for almost 20 years as a professor at the University of Colorado 
Boulder, after which he went back to Melbourne to the University of Melbourne until his 
retirement. His work on algae was prodigious, as witnessed by the large number of excellent 
publications listed at the end of this dedication.

Jeremy was always a strong advocate for live observation of cell behaviors. While Jeremy 
always understood the value and use of theoretical and in vitro biochemical studies (in fact, 
early in my career I published a theoretical model of cell division along with him [1.180]), 
Jeremy would always tell everyone in the lab to let the in vivo living cells tell you what is 
really going on. While the in vitro studies and electron microscope structural studies could 
provide direction and constraints, Jeremy always relied on live cell observations to drive his 
understandings.

His love of microscopy led Jeremy to not only record cells for research purposes, but 
to start a new company, Cytographics, in which he used 16 mm and video recordings to 
make educational materials displaying cellular processes (e.g., [1.128] [1.129] [1.161]). In 
Jeremy’s own words from his Cytographics site, “As this [electron microscope] work pro-
gressed, I became increasingly frustrated at trying to recreate dynamic cellular events solely 
from static images. A turning point in my career came when I first saw the extraordinary 
sight of a live diatom undergoing mitosis at high magnification. After borrowing a 16 mm 
time-lapse camera, I was soon filming algae doing all the things I had studied with the 
electron microscope. Since then, I have built up a laboratory devoted to the high-resolution 
video imaging and recording of all sorts of cells and microscopic organisms going about 
their complex and extraordinary lives. It’s the best peep show around!”

Jeremy was a true trailblazer in the study of algae. Discovering the passage of cell wall 
material from the Golgi [1.51], the role of microtubules and microtubule organizing centers 
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(e.g., [1.90] [1.94] [1.119] [1.123]), and evolutionary relationships among algae (e.g., [1.93] 
[1.106] [1.111] [1.113]) Jeremy always tried to look at algae in new ways. His work, and that 
of his students and colleagues, was instrumental in using the highly organized mitotic spin-
dle in diatoms to understand microtubule organization during cell division [1.61] [1.79] 
[1.218] [1.224] [1.228]. But among the algae, diatoms have always been special to Jeremy.

Jeremy was fascinated by the early microscopy work by the botanist Robert Lauterborn 
and his exquisitely detailed drawings of algal phenomena. In 1984 he published a work with 
some co-authors on a translation of Lauterborn’s 1896 treatise, along with some modern 
microscopic observations of the same cells [1.167]. The publication displayed how modern 
optical and electron microscopy simply confirmed the excellent work of Lauterborn in 
understanding the dynamics of diatom mitosis. I had the great privilege of seeing a copy 
of the 1896 document when Jeremy had it briefly on loan to take copies of some of the 
original images for his publication, and the drawings truly were beautiful and amazingly 
detailed.

I was lucky enough to be working in Jeremy’s lab in Boulder during an exciting time in 
diatom motility. Dr. Lesley Edgar was working in the lab, investigating the underlying ultra-
structure of motile diatoms, leading her to develop a model of diatom gliding [1.20] [1.21], 
and where I had the honor of publishing with her on some aspects of diatom morphogen-
esis [1.11]. She searched through Boulder for some ponds containing the best diatoms for 
investigation, one of which I still use as my major source of cells for research. As a graduate 
student I began working with intracellular motility and the role of microtubules and micro-
tubule organizing centers in forming the diatom valves used in motility. I, too, became 
enthralled with watching diatoms as they glided, and divided, and formed new cell walls. 
Using both video and film, under Jeremy’s tutelage the lab analyzed the motile behavior 
and intracellular movements of the cells, and using scanning electron microscopy I studied 
the forming raphe and valve structures of diatoms during development and reproduction. 
Jeremy always wanted to know what cell phenomena members of the lab were watching 
and seeing, helping us to contemplate both their mystery and their beauty as well as their 
biological importance. After a short time in Jeremy’s lab I was hooked on diatoms and their 
movement and have never looked back.

During my time in his lab, Jeremy always filled the lab with joy and enthusiasm for sci-
ence and exploration. Any time someone would come up with an idea or suggested an 
experiment, Jeremy would always encourage us to try it out and see what happens. He was 
a firm believer in the idea that science is about using new techniques and new approaches 
to poke at the cells and see what they were trying to tell you. And at every point in the work 
we were doing, Jeremy would strive for excellence in the microscopy coming out of the lab. 
Whether it was light microscopy using the newest optical techniques, electron microscopy 
using the best approaches for serial sectioning, or scanning electron microscopy finding the 
best angles for imaging, he wanted the cleanest, clearest images possible. He had an innate 
sense of the images that would not only be the best to show the processes or structures we 
were trying to explain, but would also be the most beautiful. He was worried far less about 
dogma or current trends, and far more about trying to find the truth.

I also had the pleasure of working in his lab as a visiting colleague after he had gone 
back to the University of Melbourne. His enthusiasm was undiminished, and his love for 
microscopy and for developing educational materials had, if anything, only expanded. His 
encouragement to test and try new ideas led to investigations into some of the light-based 
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responses of diatoms that I continue to this day. As always, he encouraged everyone in the 
lab to use the latest techniques to tease the truth out of the cells.

His care for everyone who came into the lab, whether student, technician, visiting col-
league, or postdoc, was always an inspiration. He constantly showed a love of life, a love of 
science, and a love for his lab personnel, all in equal measure. He helped us understand that 
science is a way to help organize and understand the world and the fabric of nature, and that 
the diatoms were a beautiful and glimmering thread in that fabric.

This dedication would also be remiss if it did not mention the incredible diatom research-
ers from the Pickett-Heaps Lab who were remarkable colleagues and mentors, but have also 
unfortunately passed away far too soon. I owe my deepest thanks to the late Drs. Lesley 
Edgar, Cindy Troxell, and Timothy Spurck. Their friendship, knowledge, humor, and ded-
ication helped foster and guide my research into diatoms. It is to their love of science and 
diatoms, and to Jeremy’s, that this book is dedicated.
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Preface

Anyone who has peered into a microscope and observed the movement of diatoms knows 
they have witnessed an intriguing example of cellular biology. Unlike most other of their 
sister algae, this movement involves neither swimming through solution (like Euglena or 
Chlamydomonas) or amoeboid crawling of membrane and cytoplasm (like Synchroma). 
Surrounded by a hardened silicified cell wall, motile diatoms are still able to glide gracefully 
along surfaces while the cell protoplast remains contained within these ornate cell walls. As 
such, the mysteries involving this curious form of movement have been of interest for well 
over a hundred years, and models of many sorts have been proposed to explain it (see [1.20]).

Our hope is that this volume will help to not only convey our excitement about research 
in diatoms, but also demonstrate a variety of techniques and approaches currently used to 
understand some of the aspects of diatom movement. We have included chapters centering 
on a number of areas: detailed observation of movements [1.23] [1.43], cellular aspects of 
motility [1.5] [1.8], ecology and environmental interactions [1.13] [1.40] [1.44], more pas-
sive and epiphitic movements [1.18] [1.42], new and novel methodologies [1.2] [1.51] and 
potential models of motility [1.7] [1.20] [1.47].

Our goal is not to vigorously promote and defend any one particular model, but rather to 
present the reader with the variety of experimental approaches that are currently being used 
to address the problem. In this way readers will be able to assess for themselves the areas of 
diatom motility that require further exploration, and the predictions of various models that 
still need to be tested. For example, the exact mechanism of force production for diatom 
motility is still unresolved. While models of force generation arising from motor proteins 
interacting with the cytoskeleton and coupled to secreted mucilage strands are favored by 
some, others currently favor models generating motile force generated by the explosive 
release and hydration of mucilage regulated by the localization of the secretory site directed 
by the underlying cytoskeleton.

There are certainly areas of diatom motility that were unfortunately not able to be 
included in this volume, and we encourage readers to explore these areas if they wish to 
be more fully aware of important work in the field. In particular, the editors want to note a 
number of areas of diatom motility that are not fully addressed in the current volume or are 
open areas and questions needing more research:

Chemotaxis: Understanding the chemical triggers that can stimulate and help regulate 
diatom movement, especially during cell pairing during reproduction, is crucial to a full 
understanding of the process. Important work on diatom chemoattractants and phero-
mones has been done in recent years (e.g., diatom pheromones [1.19] [1.39]), although 



xxviii  Preface

the mechanisms by which these chemical stimulants interact with and help to regulate the 
motility generating process are still poorly understood.

Tube-dwelling diatoms: A number of species have the ability to specialize their extracel-
lular secretions to provide their own surfaces for movement [1.27] [1.48], generating types 
of stalks and tubes through which the diatoms can move, but providing three-dimensional 
structures important for attachment and ecology of other organisms [1.17] [1.28].

Centric diatoms: While centric diatoms have little or no direct substratum motility as seen 
with many of the pennate diatoms, they can modify their position in the water column [1.36] 
and there has been some great recent work demonstrating there is direct regulation of diatom 
buoyancy [1.16] [1.34]. We encourage readers to explore this topic as well if they wish to be 
further engaged in current approaches regarding functional regulation of centric movement.

Composition of diatom mucilage: Understanding the chemical and physical nature of 
diatom mucilages and secretions is important to understanding the way that diatoms can 
use mucilage for a variety of functions. It is likely that different materials are secreted for 
purposes such as protection of cells during reproduction, and holding the two halves of 
their frustule together, stalk production, as well as making connections that can move their 
position relative to the frustule. A number of prior investigations have begun to look into 
this (e.g., [1.26] [1.27]) and it seems like a great opportunity for continued future work. It 
has practical impact in the study of biofouling [1.50] and underwater adhesives.

Photoreception: A number of labs have begun to investigate the types of molecules 
responsible for photoreception in algae. While numerous types of promising candidates 
have been described (e.g. [1.12] [1.29] [1.31] [1.35] [1.37]), there have been no definitive 
studies pointing to specific molecules driving the diurnal, light aggregation, or light avoid-
ance behaviors. Better knowledge of the specific light and chemical receptors in diatoms, 
and how they alter the processes of force generation and directional bias in cells will be 
needed too. Light piping in the colonial pennate diatom Bacillaria has been postulated 
[1.21], but not yet tested.

Effect of morphogenetic alterations on motility: Numerous diatom species have alter-
native morphologies based on the environmental conditions (e.g., [1.9] [1.30]). In addition, 
while numerous pennate diatoms are basically symmetric about the transapical plane divid-
ing the two raphe branches (e.g., Navicula spp.), there are also numerous other species (e.g., 
Gomphonema spp.) in which the raphe runs down the apical axis, but the morphology at the 
two ends is decidedly different. There are also species where the raphe is displaced along valvar 
wings and the break between branches is at one end (e.g., Surirella spp.). The characteriza-
tion of such species, correlating the valve morphology and raphe morphology with motility 
characteristics, seems like a productive line of research to better determine the relationship 
between wall structure and movement, and whether the motility associated with the ends of 
raphe branches can be regulated independently.

Cytoskeletal organization: The actin cables comprised of large bundles of actin 
filaments underlying the raphe in motile raphid diatoms appear essential to active, 


